Tracking Adversarial Targets

A. Proofs

Proof of Lemma 3. Consider the Bellman equation
A+ Vee(z,a) =l(x,a) + Vi o(Az + Ba, m(Az + Ba)) .

We prove the lemma by showing that the given quadratic form is the unique solution of the Bellman equation.
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We guess a quadratic form for the value functions and write
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The above equation has a solution if
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We have that
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This implies that iterative equations (11) and (12) have a unique solution. Thus, the quadratic form is the solution of the
Bellman equation. O

Proof of Lemma 4. From Lemma 3, we have that
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Notice that the value of P; depends only on the values of A, B, and K}, which in turn, by Lemma 2, depend only on
{Ki,P1,...,Pi_1}. Thus, matrix P; is determined by K independently of the adversarial choices {g1,. .., gt}

In the absence of adversarial vectors, the optimal policy has the form of n(x) = —K,x, where K, = (I +
BTSB)"'BTSA and S is the solution of the Riccati equation. Consider a problem where g; = go = --- = 0,
c1 =cg = ---=0,and K; = K, is the gain matrix of the optimal policy. Then, V; is the value function of the op-

timal policy. Because s is the greedy policy with respect to V7, it is the optimal policy and thus K is also the gain matrix
of the optimal policy, and so Ko = K. Repeating the same argument shows that all gain matrices are the same. Thus,
if we choose K to be the optimal gain matrix in the non-adversarial problem, we will get K; = --- = K; and hence
Pp=Py=---=P,. O

Proof of Lemma 7. First we prove (i). Under policy m(x) = —K.x + ¢, we have that

(a:gg, m(a:gg)) = (Axgg + B (2Ty), m(AxTt + Bwt(mgg))) .
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Thus, by (1) and (7),
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By Lemmas 2 and 4, ¢; = —%P;QIQ (L 22;11 Ls}g). Thus,
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where H = P*fZ}QB T(I - A+ BK,)"TK. To obtain a bound on max; ||c;|| from the above equation, we need to show
that || H|| is sufficiently smaller than one. Let N = (I — A+ BK,)™', M = K,NB,and L= (I + M " M) 'MT. We
have that
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Because || M T M| = Anax(MTM), |N| < 1/(1 - p),and || MTM| < ||K.|]*|B]|* /(1 — p)?, we get that
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By (14) and the above inequality, we get that
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Letv=1/(1— | H||). We get that
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Now we are ready to bound ||¢¢||. By (13), we get that for any ¢ > 1,
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Proof of (ii). First we write ¢; in terms of ¢;_1:
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This implies that ¢; — ¢;,—1 = 727 (Dgi—1 — (I — H)cy—1). Then we use the facts that ||c;|| < C and ||H|| < 1 to obtain
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Proof of Lemma 8. Let f™ : X — X be the transition function under policy 7 = (K, ¢), i.e. f™(z) = (A — BK)x + Bec.
Let € = ||zp — 7| and et = ||z — 72| denote the difference between the state variable and the limiting state under
the chosen policy. We write*
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From this decomposition, we get that
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* A similar decomposition, but with a different norm, was used in (Even-Dar et al., 2009, proof of Lemma 5.2.) to bound the difference
between the stationary distribution of the chosen policy and the distribution of the state variable in a finite MDP problem.
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Thus,
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where the second step follows from Equation (7), Lemma 7, and the fact that z; = 0. If ¢ > [log(T — 1)/log(1/p)], we
get that
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To prove the second part of lemma, let ur = [log(T — 1)/log(1/p)]. We have that
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Thus, by (8) and (15),
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The fact that all gain matrices are identical greatly simplifies the boundedness proof.

Proof of Lemma 11. First, it is easy to verify that P, oo > I and thus, H(V;) = P, 22 > 2I. The gradient of the value
function can be written as
VoVi(zl,,a) = 2P, g0a + Py o125, + L,; .

Thus, ||V, Vi(2Z ,a)| < F for any ||ja|]| < U.
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, all actions are bounded by
la]| = |—K.z 4+ e < | K| X +C < U .

Proof of (ii) and (iii). By Lemma 6,
|[-Kzl, +c| <K'X' +C'"<U.

Similarly,
|—K.xl + | < |Ki| X'+ C<U.

Proof of (iv). By (4) and the fact that K; = K, and P, = P,, we get that
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Further, by (2), for any policy = € II and any action satisfying ||a|| < U, the value functions are bounded by
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Proof of Lemma 13. For policy 7 = (K, c), we have £(z,7) = 2" (Q + KTK)rx —2(c" K + ¢/ Q)x + ¢ ¢+ g Qgs.
Define S = Q + K"K and d; = 2(c" K + ¢/ Q). We write
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We get the desired result by Lemma 6. O



