## A. Proofs

Proof of Lemma 3. Consider the Bellman equation

$$\lambda + V_{\pi,\ell}(x,a) = \ell(x,a) + V_{\pi,\ell}(Ax + Ba, \pi(Ax + Ba)).$$

We prove the lemma by showing that the given quadratic form is the unique solution of the Bellman equation.

Let  $z = (x \ a)$  and

$$z' = \begin{pmatrix} Ax + Ba \\ -K(Ax + Ba) + c \end{pmatrix} = \begin{pmatrix} I \\ -K \end{pmatrix} \begin{pmatrix} A & B \end{pmatrix} \begin{pmatrix} x \\ a \end{pmatrix} + \begin{pmatrix} 0 \\ c \end{pmatrix} .$$

We guess a quadratic form for the value functions and write

$$\lambda + z^{\top} P z + L^{\top} z = (x - g_*)^{\top} Q (x - g_*) + a^{\top} a + z'^{\top} P z' + L^{\top} z' .$$

The above equation has a solution if

$$P = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} = \begin{pmatrix} A^{\top} \\ B^{\top} \end{pmatrix} \begin{pmatrix} I & -K^{\top} \end{pmatrix} P \begin{pmatrix} I \\ -K \end{pmatrix} \begin{pmatrix} A & B \end{pmatrix} + \begin{pmatrix} Q & 0 \\ 0 & I \end{pmatrix}, \tag{11}$$

and

$$L^{\top} = \begin{pmatrix} L_1^{\top} & L_2^{\top} \end{pmatrix} = \begin{pmatrix} L^{\top} + 2 \begin{pmatrix} 0 & c^{\top} \end{pmatrix} P \end{pmatrix} \begin{pmatrix} I \\ -K \end{pmatrix} \begin{pmatrix} A & B \end{pmatrix} - \begin{pmatrix} 2g_*^{\top}Q & 0 \end{pmatrix}, \tag{12}$$

and

$$\lambda = g_*^{\top} Q g_* + c^{\top} P_{22} c + L_2^{\top} c .$$

We have that

$$\left\| \begin{pmatrix} A & B \end{pmatrix} \begin{pmatrix} I \\ -K \end{pmatrix} \right\| = \|A - BK\| < 1 .$$

This implies that iterative equations (11) and (12) have a unique solution. Thus, the quadratic form is the solution of the Bellman equation.  $\Box$ 

Proof of Lemma 4. From Lemma 3, we have that

$$P_t = \begin{pmatrix} A^\top \\ B^\top \end{pmatrix} \begin{pmatrix} I & -K_t^\top \end{pmatrix} P_t \begin{pmatrix} I \\ -K_t \end{pmatrix} \begin{pmatrix} A & B \end{pmatrix} + \begin{pmatrix} Q & 0 \\ 0 & I \end{pmatrix}$$

and

$$L_t^\top = \begin{pmatrix} L_t^\top + 2 \begin{pmatrix} 0 & c_t^\top \end{pmatrix} P_t \end{pmatrix} \begin{pmatrix} I \\ -K_t \end{pmatrix} \begin{pmatrix} A & B \end{pmatrix} - \begin{pmatrix} 2g_t^\top Q & 0 \end{pmatrix} \; .$$

Notice that the value of  $P_t$  depends only on the values of A, B, and  $K_t$ , which in turn, by Lemma 2, depend only on  $\{K_1, P_1, \dots, P_{t-1}\}$ . Thus, matrix  $P_t$  is determined by  $K_1$  independently of the adversarial choices  $\{g_1, \dots, g_t\}$ .

In the absence of adversarial vectors, the optimal policy has the form of  $\pi(x) = -K_*x$ , where  $K_* = (I + B^\top SB)^{-1}B^\top SA$  and S is the solution of the Riccati equation. Consider a problem where  $g_1 = g_2 = \cdots = 0$ ,  $c_1 = c_2 = \cdots = 0$ , and  $K_1 = K_*$  is the gain matrix of the optimal policy. Then,  $V_1$  is the value function of the optimal policy. Because  $\pi_2$  is the greedy policy with respect to  $V_1$ , it is the optimal policy and thus  $K_2$  is also the gain matrix of the optimal policy, and so  $K_2 = K_1$ . Repeating the same argument shows that all gain matrices are the same. Thus, if we choose  $K_1$  to be the optimal gain matrix in the non-adversarial problem, we will get  $K_1 = \cdots = K_t$  and hence  $P_1 = P_2 = \cdots = P_t$ .

*Proof of Lemma* 7. First we prove (i). Under policy  $\pi_t(x) = -K_*x + c_t$ , we have that

$$\left(x_{\infty}^{\pi_t}, \, \pi_t(x_{\infty}^{\pi_t})\right) = \left(Ax_{\infty}^{\pi_t} + B\pi_t(x_{\infty}^{\pi_t}), \, \pi_t(Ax_{\infty}^{\pi_t} + B\pi_t(x_{\infty}^{\pi_t}))\right) .$$

Thus, by (1) and (7),

$$\lambda = (x_{\infty}^{\pi_t} - g_t)^{\top} Q(x_{\infty}^{\pi_t} - g_t) + (-K_* x_{\infty}^{\pi_t} + c_t)^{\top} (-K_* x_{\infty}^{\pi_t} + c_t)$$

$$= g_t^{\top} Q g_t + c_t^{\top} (I + B^{\top} (I - A + B K_*)^{-\top} (Q + K_*^{\top} K_*) (I - A + B K_*)^{-1} B) c_t$$

$$+ 2(-g_t^{\top} Q - c_t^{\top} K_*) (I - A + B K_*)^{-1} B c_t.$$

Then (5) implies that

$$\begin{split} L_{t,2}^\top &= 2(-g_t^\top Q - c_t^\top K_*)(I - A + BK_*)^{-1}B\,,\\ P_{*,22} &= I + B^\top (I - A + BK_*)^{-\top} (Q + K_*^\top K_*)(I - A + BK_*)^{-1}B\,. \end{split}$$

By Lemmas 2 and 4,  $c_t = -\frac{1}{2}P_{*,22}^{-1}\left(\frac{1}{t-1}\sum_{s=1}^{t-1}L_{s,2}\right)$ . Thus,

$$c_{t} = -P_{*,22}^{-1} \left( \frac{1}{t-1} \sum_{s=1}^{t-1} L_{s,2} \right)$$

$$= -\frac{P_{*,22}^{-1} B^{\top}}{t-1} (I - A + BK_{*})^{-\top} \sum_{s=1}^{t-1} (-Qg_{s} - K_{*}^{\top} c_{s})$$

$$= \frac{1}{t-1} \left( D \sum_{s=1}^{t-1} g_{s} + H \sum_{s=1}^{t-1} c_{s} \right),$$
(13)

where  $H = P_{*,22}^{-1}B^{\top}(I - A + BK_*)^{-\top}K_*^{\top}$ . To obtain a bound on  $\max_t \|c_t\|$  from the above equation, we need to show that  $\|H\|$  is sufficiently smaller than one. Let  $N = (I - A + BK_*)^{-1}$ ,  $M = K_*NB$ , and  $L = (I + M^{\top}M)^{-1}M^{\top}$ . We have that

$$H = (I + B^{\top} N^{\top} (Q + K_{*}^{\top} K_{*}) N B)^{-1} M^{\top}$$

$$\prec (I + B^{\top} N^{\top} K_{*}^{\top} K_{*} N B)^{-1} M^{\top}$$

$$= (I + M^{\top} M)^{-1} M^{\top}$$

$$= L, \tag{14}$$

and

$$LL^{\top} = (I + M^{\top}M)^{-1}M^{\top}M(I + M^{\top}M)^{-1}$$
  
=  $(I + M^{\top}M)^{-1}(M^{\top}M + I - I)(I + M^{\top}M)^{-1}$   
=  $(I + M^{\top}M)^{-1}(I - (I + M^{\top}M)^{-1})$ .

Because  $\|M^\top M\| = \lambda_{\max}(M^\top M)$ ,  $\|N\| \le 1/(1-\rho)$ , and  $\|M^\top M\| \le \|K_*\|^2 \|B\|^2 / (1-\rho)^2$ , we get that

$$\begin{aligned} \|LL^{\top}\| &\leq \|(I+M^{\top}M)^{-1}\| \|I-(I+M^{\top}M)^{-1}\| \\ &\leq 1 - \frac{1}{1+\|M^{\top}M\|} \\ &\leq 1 - \frac{1}{1+\|K_*\|^2 \|B\|^2 / (1-\rho)^2} \\ &= \frac{\|K_*\|^2 \|B\|^2 / (1-\rho)^2}{1+\|K_*\|^2 \|B\|^2 / (1-\rho)^2} \,. \end{aligned}$$

By (14) and the above inequality, we get that

$$||H|| \le ||L|| = ||L^{\top}|| = \sqrt{\lambda_{\max}(LL^{\top})} = \sqrt{||LL^{\top}||}$$

$$\le \frac{||K_*|| ||B|| / (1 - \rho)}{\sqrt{1 + ||K_*||^2 ||B||^2 / (1 - \rho)^2}}.$$

Let v = 1/(1 - ||H||). We get that

$$v \leq \frac{1}{1 - \frac{\|K_*\| \|B\|/(1-\rho)}{\sqrt{1 + \|K_*\|^2 \|B\|^2/(1-\rho)^2}}}$$

$$= \frac{\sqrt{1 + \|K_*\|^2 \|B\|^2/(1-\rho)^2}}{\sqrt{1 + \|K_*\|^2 \|B\|^2/(1-\rho)^2} - \|K_*\| \|B\|/(1-\rho)}$$

$$= \sqrt{1 + \|K_*\|^2 \|B\|^2/(1-\rho)^2} \left(\sqrt{1 + \|K_*\|^2 \|B\|^2/(1-\rho)^2} + \frac{\|K_*\| \|B\|}{1-\rho}\right)$$

$$= H'.$$

Now we are ready to bound  $||c_t||$ . By (13), we get that for any  $t \ge 1$ ,

$$||c_t|| \le ||D||G + \frac{1}{t-1} \sum_{s=1}^{t-1} ||c_s|| \le ||D||G + ||H|| \max_{s \ge 1} ||c_s||.$$

Thus,  $\max_{t\geq 1}\|c_t\|\leq \|D\|G+\|H\|\max_{t\geq 1}\|c_t\|$  and thus,  $\max_{t\geq 1}\|c_t\|\leq \frac{\|D\|G}{1-\|H\|}\leq \|D\|GH'=C$ .

Proof of (ii). First we write  $c_t$  in terms of  $c_{t-1}$ :

$$c_{t} = \frac{1}{t-1} \left( D \sum_{s=1}^{t-1} g_{s} + H \sum_{s=1}^{t-1} c_{s} \right)$$

$$= \frac{Dg_{t-1}}{t-1} + \frac{Hc_{t-1}}{t-1} + \frac{t-2}{t-1} \left( \frac{D}{t-2} \sum_{s=1}^{t-2} g_{s} + \frac{H}{t-2} \sum_{s=1}^{t-2} c_{s} \right)$$

$$= \frac{Dg_{t-1}}{t-1} + \frac{Hc_{t-1}}{t-1} + \frac{t-2}{t-1} c_{t-1}$$

$$= \frac{1}{t-1} (Dg_{t-1} + ((t-2)I + H)c_{t-1}).$$

This implies that  $c_t - c_{t-1} = \frac{1}{t-1}(Dg_{t-1} - (I-H)c_{t-1})$ . Then we use the facts that  $||c_t|| \le C$  and ||H|| < 1 to obtain

$$||c_t - c_{t-1}|| \le \frac{||D|| G + 2C}{t-1}$$
.

Proof of Lemma 8. Let  $f^{\pi}: \mathcal{X} \to \mathcal{X}$  be the transition function under policy  $\pi = (K, c)$ , i.e.  $f^{\pi}(x) = (A - BK)x + Bc$ . Let  $\epsilon_{k,t} = \|x_k - x_{\infty}^{\pi_t}\|$  and  $\epsilon_t = \|x_t - x_{\infty}^{\pi_t}\|$  denote the difference between the state variable and the limiting state under the chosen policy. We write<sup>4</sup>

$$\epsilon_{k,t} = \|f^{\pi_k}(x_{k-1}) - f^{\pi_t}(x_{k-1}) + f^{\pi_t}(x_{k-1}) - x_{\infty}^{\pi_t}\|$$

$$\leq \|f^{\pi_k}(x_{k-1}) - f^{\pi_t}(x_{k-1})\| + \|f^{\pi_t}(x_{k-1}) - f^{\pi_t}(x_{\infty}^{\pi_t})\|.$$

From this decomposition, we get that

$$\begin{split} \epsilon_{k,t} &\leq \|B\| \, \|c_k - c_t\| + \|f^{\pi_t}(x_{k-1}) - f^{\pi_t}(x_{\infty}^{\pi_t})\| \\ &\leq \|B\| \, \|c_k - c_t\| + \rho \, \|x_{k-1} - x_{\infty}^{\pi_t}\| \\ &\leq \|B\| \, (\|D\| \, G + 2C) \sum_{s=k}^{t-1} \frac{1}{s} + \rho \, \|x_{k-1} - x_{\infty}^{\pi_t}\| \; . \end{split}$$

<sup>&</sup>lt;sup>4</sup>A similar decomposition, but with a different norm, was used in (Even-Dar et al., 2009, proof of Lemma 5.2.) to bound the difference between the stationary distribution of the chosen policy and the distribution of the state variable in a finite MDP problem.

Thus,

$$\epsilon_{t} \leq \|B\| (\|D\| G + 2C) \sum_{k=1}^{t} \rho^{t-k} \sum_{s=k}^{t-1} \frac{1}{s} + \rho^{t-1} \|x_{1} - x_{\infty}^{\pi_{t}}\|$$

$$= \|B\| (\|D\| G + 2C) \sum_{s=1}^{t-1} \frac{1}{t-s} \sum_{k=s}^{t-1} \rho^{k} + \rho^{t-1} \frac{\|B\| C}{1-\rho}$$

$$\leq \frac{\|B\| (\|D\| G + 2C)}{1-\rho} \sum_{s=1}^{t-1} \frac{\rho^{s}}{t-s} + \rho^{t-1} \frac{\|B\| C}{1-\rho} ,$$

where the second step follows from Equation (7), Lemma 7, and the fact that  $x_1 = 0$ . If  $t > \lceil \log(T-1)/\log(1/\rho) \rceil$ , we get that

$$\begin{split} \sum_{s=1}^{t-1} \frac{\rho^s}{t-s} &= \sum_{s: \rho^s \leq 1/(t-1)} \frac{\rho^s}{t-s} + \sum_{s: 1 > \rho^s > 1/(t-1)} \frac{\rho^s}{t-s} \\ &\leq \frac{1}{t-1} \sum_{s=1}^{t-1} \frac{1}{t-s} + \frac{\log(t-1)}{\log(1/\rho)} \left( \frac{1}{t-\log(t-1)/\log(1/\rho)} \right) \\ &\leq \frac{1+\log(t-1)}{t-1} + \frac{\log(t-1)}{\log(1/\rho)} \left( \frac{1}{t-\log(t-1)/\log(1/\rho)} \right) \,. \end{split}$$

Thus,

$$\epsilon_t \le \frac{\|B\| (\|D\| G + 2C)}{1 - \rho} \left( \frac{1 + \log(t - 1)}{t - 1} + \frac{\log(t - 1)}{\log(1/\rho)} \left( \frac{1}{t - \log(t - 1)/\log(1/\rho)} \right) \right) + \rho^{t - 1} \frac{\|B\| C}{1 - \rho}.$$

To prove the second part of lemma, let  $u_T = \lceil \log(T-1)/\log(1/\rho) \rceil$ . We have that

$$\sum_{t>u_T} \frac{1}{t - \log(T - 1)/\log(1/\rho)} \le \sum_{t>u_T} \frac{1}{t - u_T} \le \sum_{t=1}^{T - u_T} \frac{1}{t} \le \sum_{t=1}^{T} \frac{1}{t} \le 1 + \log(T).$$
 (15)

Thus, by (8) and (15),

$$\begin{split} \sum_{t=1}^T \epsilon_t &\leq \sum_{t \leq u_T} \epsilon_t + \sum_{t > u_T} \epsilon_t \\ &\leq \frac{1}{1-\rho} \left( 4 \left\| B \right\| C \left\lceil \frac{\log T}{\log(1/\rho)} \right\rceil + \frac{\left\| B \right\| C}{1-\rho} \right. \\ &+ \left\| B \right\| (\left\| D \right\| G + 2C)(1 + \log T) \left( 1 + \log T + \frac{\log T}{\log(1/\rho)} \right) \right) \,. \end{split}$$

The fact that all gain matrices are identical greatly simplifies the boundedness proof.

*Proof of Lemma 11.* First, it is easy to verify that  $P_{*,22} \succ I$  and thus,  $H(V_t) = P_{*,22} \succ 2I$ . The gradient of the value function can be written as

$$\nabla_a V_t(x_{\infty}^{\pi}, a) = 2P_{*,22}a + P_{*,21}x_{\infty}^{\pi} + L_{t,2}^{\top}$$
.

Thus,  $\|\nabla_a V_t(x_\infty^\pi, a)\| \le F$  for any  $\|a\| \le U$ .

Proof of (i). By (8),  $||x_t|| \le X$ , and by Lemma 7,  $||c_t|| \le C$ . Thus, all actions are bounded by

$$||a_t|| = ||-K_*x_t + c_t|| \le ||K_*|| X + C \le U$$
.

Proof of (ii) and (iii). By Lemma 6,

$$||-Kx_{\infty}^{\pi}+c|| \leq K'X'+C' \leq U.$$

Similarly,

$$||-K_*x_{\infty}^{\pi}+c_t|| \leq ||K_*||X'+C \leq U$$
.

Proof of (iv). By (4) and the fact that  $K_t = K_*$  and  $P_t = P_*$ , we get that

$$||L_t|| \le \frac{2}{1-\rho} (G ||Q|| + \rho C ||P_*||).$$

Further, by (2), for any policy  $\pi \in \Pi$  and any action satisfying  $||a|| \leq U$ , the value functions are bounded by

$$V_{t}(x_{\infty}^{\pi}, a) = (x_{\infty}^{\pi \top} \quad a^{\top}) P_{*} \begin{pmatrix} x_{\infty}^{\pi} \\ a \end{pmatrix} + L_{t}^{\top} \begin{pmatrix} x_{\infty}^{\pi} \\ a \end{pmatrix}$$

$$\leq \|P_{*}\| (X' + U)^{2} + \frac{2}{1 - \rho} (G \|Q\| + \rho C \|P_{*}\|) (X' + U)$$

$$= V$$

Proof of Lemma 13. For policy  $\pi = (K, c)$ , we have  $\ell_t(x, \pi) = x^\top (Q + K^\top K) x - 2(c^\top K + g_t^\top Q) x + c^\top c + g_t^\top Q g_t$ . Define  $S = Q + K^\top K$  and  $d_t = 2(c^\top K + g_t^\top Q)$ . We write

$$\gamma_{T} = \sum_{t=1}^{T} \left( x_{\infty}^{\pi \top} S x_{\infty}^{\pi} - d_{t} x_{\infty}^{\pi} \right) - \sum_{t=1}^{T} \left( x_{t}^{\pi \top} S x_{t}^{\pi} - d_{t} x_{t}^{\pi} \right)$$

$$= \sum_{t=1}^{T} d_{t} (x_{t}^{\pi} - x_{\infty}^{\pi}) + \sum_{t=1}^{T} \left( \left\| S^{1/2} x_{\infty}^{\pi} \right\| - \left\| S^{1/2} x_{t}^{\pi} \right\| \right) \left( \left\| S^{1/2} x_{t}^{\pi} \right\| + \left\| S^{1/2} x_{\infty}^{\pi} \right\| \right).$$

Thus,

$$\gamma_T \leq \sum_{t=1}^T d_t (x_t^{\pi} - x_{\infty}^{\pi}) + \sum_{t=1}^T \left\| S^{1/2} (x_t^{\pi} - x_{\infty}^{\pi}) \right\| \left( \left\| S^{1/2} x_t^{\pi} \right\| + \left\| S^{1/2} x_{\infty}^{\pi} \right\| \right)$$

$$\leq \sum_{t=1}^T \left( \left\| d_t \right\| + \left\| S^{1/2} \right\| \left( \left\| S^{1/2} x_t^{\pi} \right\| + \left\| S^{1/2} x_{\infty}^{\pi} \right\| \right) \right) \left\| x_t^{\pi} - x_{\infty}^{\pi} \right\|$$

$$\leq Z_1' \sum_{t=1}^T \left\| x_t^{\pi} - x_{\infty}^{\pi} \right\| .$$

We get the desired result by Lemma 6.