A. Proofs

Proof of Lemma 3. Consider the Bellman equation

$$
\lambda+V_{\pi, \ell}(x, a)=\ell(x, a)+V_{\pi, \ell}(A x+B a, \pi(A x+B a)) .
$$

We prove the lemma by showing that the given quadratic form is the unique solution of the Bellman equation.
Let $z=\left(\begin{array}{ll}x & a\end{array}\right)$ and

$$
z^{\prime}=\binom{A x+B a}{-K(A x+B a)+c}=\binom{I}{-K}\left(\begin{array}{ll}
A & B
\end{array}\right)\binom{x}{a}+\binom{0}{c} .
$$

We guess a quadratic form for the value functions and write

$$
\lambda+z^{\top} P z+L^{\top} z=\left(x-g_{*}\right)^{\top} Q\left(x-g_{*}\right)+a^{\top} a+z^{\prime \top} P z^{\prime}+L^{\top} z^{\prime} .
$$

The above equation has a solution if

$$
P=\left(\begin{array}{ll}
P_{11} & P_{12} \tag{11}\\
P_{21} & P_{22}
\end{array}\right)=\binom{A^{\top}}{B^{\top}}\left(\begin{array}{ll}
I & -K^{\top}
\end{array}\right) P\binom{I}{-K}\left(\begin{array}{ll}
A & B
\end{array}\right)+\left(\begin{array}{cc}
Q & 0 \\
0 & I
\end{array}\right),
$$

and

$$
L^{\top}=\left(\begin{array}{ll}
L_{1}^{\top} & L_{2}^{\top}
\end{array}\right)=\left(\begin{array}{ll}
L^{\top}+2\left(\begin{array}{ll}
0 & c^{\top}
\end{array}\right) P
\end{array}\right)\binom{I}{-K}\left(\begin{array}{ll}
A & B
\end{array}\right)-\left(\begin{array}{ll}
2 g_{*}^{\top} Q & 0 \tag{12}
\end{array}\right),
$$

and

$$
\lambda=g_{*}^{\top} Q g_{*}+c^{\top} P_{22} c+L_{2}^{\top} c .
$$

We have that

$$
\left\|\left(\begin{array}{ll}
A & B
\end{array}\right)\binom{I}{-K}\right\|=\|A-B K\|<1 .
$$

This implies that iterative equations (11) and (12) have a unique solution. Thus, the quadratic form is the solution of the Bellman equation.

Proof of Lemma 4. From Lemma 3, we have that

$$
P_{t}=\binom{A^{\top}}{B^{\top}}\left(\begin{array}{ll}
I & -K_{t}^{\top}
\end{array}\right) P_{t}\binom{I}{-K_{t}}\left(\begin{array}{ll}
A & B
\end{array}\right)+\left(\begin{array}{cc}
Q & 0 \\
0 & I
\end{array}\right)
$$

and

$$
L_{t}^{\top}=\left(\begin{array}{ll}
L_{t}^{\top}+2\left(\begin{array}{ll}
0 & c_{t}^{\top}
\end{array}\right) P_{t}
\end{array}\right)\binom{I}{-K_{t}}\left(\begin{array}{ll}
A & B
\end{array}\right)-\left(\begin{array}{ll}
2 g_{t}^{\top} Q & 0
\end{array}\right)
$$

Notice that the value of P_{t} depends only on the values of A, B, and K_{t}, which in turn, by Lemma 2, depend only on $\left\{K_{1}, P_{1}, \ldots, P_{t-1}\right\}$. Thus, matrix P_{t} is determined by K_{1} independently of the adversarial choices $\left\{g_{1}, \ldots, g_{t}\right\}$.
In the absence of adversarial vectors, the optimal policy has the form of $\pi(x)=-K_{*} x$, where $K_{*}=(I+$ $\left.B^{\top} S B\right)^{-1} B^{\top} S A$ and S is the solution of the Riccati equation. Consider a problem where $g_{1}=g_{2}=\cdots=0$, $c_{1}=c_{2}=\cdots=0$, and $K_{1}=K_{*}$ is the gain matrix of the optimal policy. Then, V_{1} is the value function of the optimal policy. Because π_{2} is the greedy policy with respect to V_{1}, it is the optimal policy and thus K_{2} is also the gain matrix of the optimal policy, and so $K_{2}=K_{1}$. Repeating the same argument shows that all gain matrices are the same. Thus, if we choose K_{1} to be the optimal gain matrix in the non-adversarial problem, we will get $K_{1}=\cdots=K_{t}$ and hence $P_{1}=P_{2}=\cdots=P_{t}$.

Proof of Lemma 7. First we prove (i). Under policy $\pi_{t}(x)=-K_{*} x+c_{t}$, we have that

$$
\left(x_{\infty}^{\pi_{t}}, \pi_{t}\left(x_{\infty}^{\pi_{t}}\right)\right)=\left(A x_{\infty}^{\pi_{t}}+B \pi_{t}\left(x_{\infty}^{\pi_{t}}\right), \pi_{t}\left(A x_{\infty}^{\pi_{t}}+B \pi_{t}\left(x_{\infty}^{\pi_{t}}\right)\right)\right) .
$$

Thus, by (1) and (7),

$$
\begin{aligned}
\lambda= & \left(x_{\infty}^{\pi_{t}}-g_{t}\right)^{\top} Q\left(x_{\infty}^{\pi_{t}}-g_{t}\right)+\left(-K_{*} x_{\infty}^{\pi_{t}}+c_{t}\right)^{\top}\left(-K_{*} x_{\infty}^{\pi_{t}}+c_{t}\right) \\
= & g_{t}^{\top} Q g_{t}+c_{t}^{\top}\left(I+B^{\top}\left(I-A+B K_{*}\right)^{-\top}\left(Q+K_{*}^{\top} K_{*}\right)\left(I-A+B K_{*}\right)^{-1} B\right) c_{t} \\
& +2\left(-g_{t}^{\top} Q-c_{t}^{\top} K_{*}\right)\left(I-A+B K_{*}\right)^{-1} B c_{t} .
\end{aligned}
$$

Then (5) implies that

$$
\begin{aligned}
L_{t, 2}^{\top} & =2\left(-g_{t}^{\top} Q-c_{t}^{\top} K_{*}\right)\left(I-A+B K_{*}\right)^{-1} B \\
P_{*, 22} & =I+B^{\top}\left(I-A+B K_{*}\right)^{-\top}\left(Q+K_{*}^{\top} K_{*}\right)\left(I-A+B K_{*}\right)^{-1} B
\end{aligned}
$$

By Lemmas 2 and 4, $c_{t}=-\frac{1}{2} P_{*, 22}^{-1}\left(\frac{1}{t-1} \sum_{s=1}^{t-1} L_{s, 2}\right)$. Thus,

$$
\begin{align*}
c_{t} & =-P_{*, 22}^{-1}\left(\frac{1}{t-1} \sum_{s=1}^{t-1} L_{s, 2}\right) \\
& =-\frac{P_{*, 22}^{-1} B^{\top}}{t-1}\left(I-A+B K_{*}\right)^{-\top} \sum_{s=1}^{t-1}\left(-Q g_{s}-K_{*}^{\top} c_{s}\right) \\
& =\frac{1}{t-1}\left(D \sum_{s=1}^{t-1} g_{s}+H \sum_{s=1}^{t-1} c_{s}\right) \tag{13}
\end{align*}
$$

where $H=P_{*, 22}^{-1} B^{\top}\left(I-A+B K_{*}\right)^{-\top} K_{*}^{\top}$. To obtain a bound on $\max _{t}\left\|c_{t}\right\|$ from the above equation, we need to show that $\|H\|$ is sufficiently smaller than one. Let $N=\left(I-A+B K_{*}\right)^{-1}, M=K_{*} N B$, and $L=\left(I+M^{\top} M\right)^{-1} M^{\top}$. We have that

$$
\begin{align*}
H & =\left(I+B^{\top} N^{\top}\left(Q+K_{*}^{\top} K_{*}\right) N B\right)^{-1} M^{\top} \\
& \prec\left(I+B^{\top} N^{\top} K_{*}^{\top} K_{*} N B\right)^{-1} M^{\top} \\
& =\left(I+M^{\top} M\right)^{-1} M^{\top} \\
& =L \tag{14}
\end{align*}
$$

and

$$
\begin{aligned}
L L^{\top} & =\left(I+M^{\top} M\right)^{-1} M^{\top} M\left(I+M^{\top} M\right)^{-1} \\
& =\left(I+M^{\top} M\right)^{-1}\left(M^{\top} M+I-I\right)\left(I+M^{\top} M\right)^{-1} \\
& =\left(I+M^{\top} M\right)^{-1}\left(I-\left(I+M^{\top} M\right)^{-1}\right)
\end{aligned}
$$

Because $\left\|M^{\top} M\right\|=\lambda_{\max }\left(M^{\top} M\right),\|N\| \leq 1 /(1-\rho)$, and $\left\|M^{\top} M\right\| \leq\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}$, we get that

$$
\begin{aligned}
\left\|L L^{\top}\right\| & \leq\left\|\left(I+M^{\top} M\right)^{-1}\right\|\left\|I-\left(I+M^{\top} M\right)^{-1}\right\| \\
& \leq 1-\frac{1}{1+\left\|M^{\top} M\right\|} \\
& \leq 1-\frac{1}{1+\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}} \\
& =\frac{\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}}{1+\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}}
\end{aligned}
$$

By (14) and the above inequality, we get that

$$
\begin{aligned}
\|H\| & \leq\|L\|=\left\|L^{\top}\right\|=\sqrt{\lambda_{\max }\left(L L^{\top}\right)}=\sqrt{\left\|L L^{\top}\right\|} \\
& \leq \frac{\left\|K_{*}\right\|\|B\| /(1-\rho)}{\sqrt{1+\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}}}
\end{aligned}
$$

Let $v=1 /(1-\|H\|)$. We get that

$$
\begin{aligned}
v & \leq \frac{1}{1-\frac{\left\|K_{*}\right\|\|B\| /(1-\rho)}{\sqrt{1+\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}}}} \\
& =\frac{\sqrt{1+\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}}}{\sqrt{1+\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}}-\left\|K_{*}\right\|\|B\| /(1-\rho)} \\
& =\sqrt{1+\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}}\left(\sqrt{1+\left\|K_{*}\right\|^{2}\|B\|^{2} /(1-\rho)^{2}}+\frac{\left\|K_{*}\right\|\|B\|}{1-\rho}\right) \\
& =H^{\prime} .
\end{aligned}
$$

Now we are ready to bound $\left\|c_{t}\right\|$. By (13), we get that for any $t \geq 1$,

$$
\left\|c_{t}\right\| \leq\|D\| G+\frac{1}{t-1} \sum_{s=1}^{t-1}\left\|c_{s}\right\| \leq\|D\| G+\|H\| \max _{s \geq 1}\left\|c_{s}\right\|
$$

Thus, $\max _{t \geq 1}\left\|c_{t}\right\| \leq\|D\| G+\|H\| \max _{t \geq 1}\left\|c_{t}\right\|$ and thus, $\max _{t \geq 1}\left\|c_{t}\right\| \leq \frac{\|D\| G}{1-\|H\|} \leq\|D\| G H^{\prime}=C$.
Proof of (ii). First we write c_{t} in terms of c_{t-1} :

$$
\begin{aligned}
c_{t} & =\frac{1}{t-1}\left(D \sum_{s=1}^{t-1} g_{s}+H \sum_{s=1}^{t-1} c_{s}\right) \\
& =\frac{D g_{t-1}}{t-1}+\frac{H c_{t-1}}{t-1}+\frac{t-2}{t-1}\left(\frac{D}{t-2} \sum_{s=1}^{t-2} g_{s}+\frac{H}{t-2} \sum_{s=1}^{t-2} c_{s}\right) \\
& =\frac{D g_{t-1}}{t-1}+\frac{H c_{t-1}}{t-1}+\frac{t-2}{t-1} c_{t-1} \\
& =\frac{1}{t-1}\left(D g_{t-1}+((t-2) I+H) c_{t-1}\right) .
\end{aligned}
$$

This implies that $c_{t}-c_{t-1}=\frac{1}{t-1}\left(D g_{t-1}-(I-H) c_{t-1}\right)$. Then we use the facts that $\left\|c_{t}\right\| \leq C$ and $\|H\|<1$ to obtain

$$
\left\|c_{t}-c_{t-1}\right\| \leq \frac{\|D\| G+2 C}{t-1}
$$

Proof of Lemma 8. Let $f^{\pi}: \mathcal{X} \rightarrow \mathcal{X}$ be the transition function under policy $\pi=(K, c)$, i.e. $f^{\pi}(x)=(A-B K) x+B c$. Let $\epsilon_{k, t}=\left\|x_{k}-x_{\infty}^{\pi_{t}}\right\|$ and $\epsilon_{t}=\left\|x_{t}-x_{\infty}^{\pi_{t}}\right\|$ denote the difference between the state variable and the limiting state under the chosen policy. We write ${ }^{4}$

$$
\begin{aligned}
\epsilon_{k, t} & =\left\|f^{\pi_{k}}\left(x_{k-1}\right)-f^{\pi_{t}}\left(x_{k-1}\right)+f^{\pi_{t}}\left(x_{k-1}\right)-x_{\infty}^{\pi_{t}}\right\| \\
& \leq\left\|f^{\pi_{k}}\left(x_{k-1}\right)-f^{\pi_{t}}\left(x_{k-1}\right)\right\|+\left\|f^{\pi_{t}}\left(x_{k-1}\right)-f^{\pi_{t}}\left(x_{\infty}^{\pi_{t}}\right)\right\|
\end{aligned}
$$

From this decomposition, we get that

$$
\begin{aligned}
\epsilon_{k, t} & \leq\|B\|\left\|c_{k}-c_{t}\right\|+\left\|f^{\pi_{t}}\left(x_{k-1}\right)-f^{\pi_{t}}\left(x_{\infty}^{\pi_{t}}\right)\right\| \\
& \leq\|B\|\left\|c_{k}-c_{t}\right\|+\rho\left\|x_{k-1}-x_{\infty}^{\pi_{t}}\right\| \\
& \leq\|B\|(\|D\| G+2 C) \sum_{s=k}^{t-1} \frac{1}{s}+\rho\left\|x_{k-1}-x_{\infty}^{\pi_{t}}\right\| .
\end{aligned}
$$

[^0]Thus,

$$
\begin{aligned}
\epsilon_{t} & \leq\|B\|(\|D\| G+2 C) \sum_{k=1}^{t} \rho^{t-k} \sum_{s=k}^{t-1} \frac{1}{s}+\rho^{t-1}\left\|x_{1}-x_{\infty}^{\pi_{t}}\right\| \\
& =\|B\|(\|D\| G+2 C) \sum_{s=1}^{t-1} \frac{1}{t-s} \sum_{k=s}^{t-1} \rho^{k}+\rho^{t-1} \frac{\|B\| C}{1-\rho} \\
& \leq \frac{\|B\|(\|D\| G+2 C)}{1-\rho} \sum_{s=1}^{t-1} \frac{\rho^{s}}{t-s}+\rho^{t-1} \frac{\|B\| C}{1-\rho}
\end{aligned}
$$

where the second step follows from Equation (7), Lemma 7, and the fact that $x_{1}=0$. If $t>\lceil\log (T-1) / \log (1 / \rho)\rceil$, we get that

$$
\begin{aligned}
\sum_{s=1}^{t-1} \frac{\rho^{s}}{t-s} & =\sum_{s: \rho^{s} \leq 1 /(t-1)} \frac{\rho^{s}}{t-s}+\sum_{s: 1>\rho^{s}>1 /(t-1)} \frac{\rho^{s}}{t-s} \\
& \leq \frac{1}{t-1} \sum_{s=1}^{t-1} \frac{1}{t-s}+\frac{\log (t-1)}{\log (1 / \rho)}\left(\frac{1}{t-\log (t-1) / \log (1 / \rho)}\right) \\
& \leq \frac{1+\log (t-1)}{t-1}+\frac{\log (t-1)}{\log (1 / \rho)}\left(\frac{1}{t-\log (t-1) / \log (1 / \rho)}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\epsilon_{t} \leq & \frac{\|B\|(\|D\| G+2 C)}{1-\rho}\left(\frac{1+\log (t-1)}{t-1}+\frac{\log (t-1)}{\log (1 / \rho)}\left(\frac{1}{t-\log (t-1) / \log (1 / \rho)}\right)\right) \\
& +\rho^{t-1} \frac{\|B\| C}{1-\rho}
\end{aligned}
$$

To prove the second part of lemma, let $u_{T}=\lceil\log (T-1) / \log (1 / \rho)\rceil$. We have that

$$
\begin{equation*}
\sum_{t>u_{T}} \frac{1}{t-\log (T-1) / \log (1 / \rho)} \leq \sum_{t>u_{T}} \frac{1}{t-u_{T}} \leq \sum_{t=1}^{T-u_{T}} \frac{1}{t} \leq \sum_{t=1}^{T} \frac{1}{t} \leq 1+\log (T) \tag{15}
\end{equation*}
$$

Thus, by (8) and (15),

$$
\begin{aligned}
\sum_{t=1}^{T} \epsilon_{t} \leq & \sum_{t \leq u_{T}} \epsilon_{t}+\sum_{t>u_{T}} \epsilon_{t} \\
\leq & \frac{1}{1-\rho}\left(4\|B\| C\left[\frac{\log T}{\log (1 / \rho)}\right]+\frac{\|B\| C}{1-\rho}\right. \\
& \left.\quad+\|B\|(\|D\| G+2 C)(1+\log T)\left(1+\log T+\frac{\log T}{\log (1 / \rho)}\right)\right)
\end{aligned}
$$

The fact that all gain matrices are identical greatly simplifies the boundedness proof.
Proof of Lemma 11. First, it is easy to verify that $P_{*, 22} \succ I$ and thus, $H\left(V_{t}\right)=P_{*, 22} \succ 2 I$. The gradient of the value function can be written as

$$
\nabla_{a} V_{t}\left(x_{\infty}^{\pi}, a\right)=2 P_{*, 22} a+P_{*, 21} x_{\infty}^{\pi}+L_{t, 2}^{\top}
$$

Thus, $\left\|\nabla_{a} V_{t}\left(x_{\infty}^{\pi}, a\right)\right\| \leq F$ for any $\|a\| \leq U$.

Proof of (i). By (8), $\left\|x_{t}\right\| \leq X$, and by Lemma 7, $\left\|c_{t}\right\| \leq C$. Thus, all actions are bounded by

$$
\left\|a_{t}\right\|=\left\|-K_{*} x_{t}+c_{t}\right\| \leq\left\|K_{*}\right\| X+C \leq U .
$$

Proof of (ii) and (iii). By Lemma 6,

$$
\left\|-K x_{\infty}^{\pi}+c\right\| \leq K^{\prime} X^{\prime}+C^{\prime} \leq U
$$

Similarly,

$$
\left\|-K_{*} x_{\infty}^{\pi}+c_{t}\right\| \leq\left\|K_{*}\right\| X^{\prime}+C \leq U
$$

Proof of (iv). By (4) and the fact that $K_{t}=K_{*}$ and $P_{t}=P_{*}$, we get that

$$
\left\|L_{t}\right\| \leq \frac{2}{1-\rho}\left(G\|Q\|+\rho C\left\|P_{*}\right\|\right)
$$

Further, by (2), for any policy $\pi \in \Pi$ and any action satisfying $\|a\| \leq U$, the value functions are bounded by

$$
\begin{aligned}
V_{t}\left(x_{\infty}^{\pi}, a\right) & =\left(\begin{array}{ll}
x_{\infty}^{\pi \top} & a^{\top}
\end{array}\right) P_{*}\binom{x_{\infty}^{\pi}}{a}+L_{t}^{\top}\binom{x_{\infty}^{\pi}}{a} \\
& \leq\left\|P_{*}\right\|\left(X^{\prime}+U\right)^{2}+\frac{2}{1-\rho}\left(G\|Q\|+\rho C\left\|P_{*}\right\|\right)\left(X^{\prime}+U\right) \\
& =V
\end{aligned}
$$

Proof of Lemma 13. For policy $\pi=(K, c)$, we have $\ell_{t}(x, \pi)=x^{\top}\left(Q+K^{\top} K\right) x-2\left(c^{\top} K+g_{t}^{\top} Q\right) x+c^{\top} c+g_{t}^{\top} Q g_{t}$. Define $S=Q+K^{\top} K$ and $d_{t}=2\left(c^{\top} K+g_{t}^{\top} Q\right)$. We write

$$
\begin{aligned}
\gamma_{T} & =\sum_{t=1}^{T}\left(x_{\infty}^{\pi \top} S x_{\infty}^{\pi}-d_{t} x_{\infty}^{\pi}\right)-\sum_{t=1}^{T}\left(x_{t}^{\pi \top} S x_{t}^{\pi}-d_{t} x_{t}^{\pi}\right) \\
& =\sum_{t=1}^{T} d_{t}\left(x_{t}^{\pi}-x_{\infty}^{\pi}\right)+\sum_{t=1}^{T}\left(\left\|S^{1 / 2} x_{\infty}^{\pi}\right\|-\left\|S^{1 / 2} x_{t}^{\pi}\right\|\right)\left(\left\|S^{1 / 2} x_{t}^{\pi}\right\|+\left\|S^{1 / 2} x_{\infty}^{\pi}\right\|\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\gamma_{T} & \leq \sum_{t=1}^{T} d_{t}\left(x_{t}^{\pi}-x_{\infty}^{\pi}\right)+\sum_{t=1}^{T}\left\|S^{1 / 2}\left(x_{t}^{\pi}-x_{\infty}^{\pi}\right)\right\|\left(\left\|S^{1 / 2} x_{t}^{\pi}\right\|+\left\|S^{1 / 2} x_{\infty}^{\pi}\right\|\right) \\
& \leq \sum_{t=1}^{T}\left(\left\|d_{t}\right\|+\left\|S^{1 / 2}\right\|\left(\left\|S^{1 / 2} x_{t}^{\pi}\right\|+\left\|S^{1 / 2} x_{\infty}^{\pi}\right\|\right)\right)\left\|x_{t}^{\pi}-x_{\infty}^{\pi}\right\| \\
& \leq Z_{1}^{\prime} \sum_{t=1}^{T}\left\|x_{t}^{\pi}-x_{\infty}^{\pi}\right\|
\end{aligned}
$$

We get the desired result by Lemma 6 .

[^0]: ${ }^{4}$ A similar decomposition, but with a different norm, was used in (Even-Dar et al., 2009, proof of Lemma 5.2.) to bound the difference between the stationary distribution of the chosen policy and the distribution of the state variable in a finite MDP problem.

