
Tracking Adversarial Targets

A. Proofs
Proof of Lemma 3. Consider the Bellman equation

λ+ Vπ,`(x, a) = `(x, a) + Vπ,`(Ax+Ba, π(Ax+Ba)) .

We prove the lemma by showing that the given quadratic form is the unique solution of the Bellman equation.

Let z = (x a) and

z′ =

(
Ax+Ba

−K(Ax+Ba) + c

)
=

(
I
−K

)(
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)(x
a

)
+

(
0
c

)
.

We guess a quadratic form for the value functions and write

λ+ z>Pz + L>z = (x− g∗)>Q(x− g∗) + a>a+ z′>Pz′ + L>z′ .

The above equation has a solution if

P =

(
P11 P12

P21 P22

)
=

(
A>

B>

)(
I −K>

)
P

(
I
−K

)(
A B

)
+

(
Q 0
0 I

)
, (11)

and

L> =
(
L>1 L>2

)
=
(
L> + 2

(
0 c>

)
P
)( I
−K

)(
A B

)
−
(
2g>∗ Q 0

)
, (12)

and
λ = g>∗ Qg∗ + c>P22c+ L>2 c .

We have that ∥∥∥∥(A B
)( I
−K

)∥∥∥∥ = ‖A−BK‖ < 1 .

This implies that iterative equations (11) and (12) have a unique solution. Thus, the quadratic form is the solution of the
Bellman equation.

Proof of Lemma 4. From Lemma 3, we have that

Pt =

(
A>

B>

)(
I −K>t

)
Pt

(
I
−Kt

)(
A B

)
+

(
Q 0
0 I

)
and

L>t =
(
L>t + 2

(
0 c>t

)
Pt
)( I
−Kt

)(
A B

)
−
(
2g>t Q 0

)
.

Notice that the value of Pt depends only on the values of A, B, and Kt, which in turn, by Lemma 2, depend only on
{K1, P1, . . . , Pt−1}. Thus, matrix Pt is determined by K1 independently of the adversarial choices {g1, . . . , gt}.

In the absence of adversarial vectors, the optimal policy has the form of π(x) = −K∗x, where K∗ = (I +
B>SB)−1B>SA and S is the solution of the Riccati equation. Consider a problem where g1 = g2 = · · · = 0,
c1 = c2 = · · · = 0, and K1 = K∗ is the gain matrix of the optimal policy. Then, V1 is the value function of the op-
timal policy. Because π2 is the greedy policy with respect to V1, it is the optimal policy and thus K2 is also the gain matrix
of the optimal policy, and so K2 = K1. Repeating the same argument shows that all gain matrices are the same. Thus,
if we choose K1 to be the optimal gain matrix in the non-adversarial problem, we will get K1 = · · · = Kt and hence
P1 = P2 = · · · = Pt.

Proof of Lemma 7. First we prove (i). Under policy πt(x) = −K∗x+ ct, we have that(
xπt∞, πt(x

πt
∞)
)

=
(
Axπt∞ +Bπt(x

πt
∞), πt(Ax

πt
∞ +Bπt(x

πt
∞))

)
.
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Thus, by (1) and (7),

λ = (xπt∞ − gt)>Q(xπt∞ − gt) + (−K∗xπt∞ + ct)
>(−K∗xπt∞ + ct)

= g>t Qgt + c>t (I +B>(I −A+BK∗)
−>(Q+K>∗ K∗)(I −A+BK∗)

−1B)ct

+ 2(−g>t Q− c>t K∗)(I −A+BK∗)
−1Bct .

Then (5) implies that

L>t,2 = 2(−g>t Q− c>t K∗)(I −A+BK∗)
−1B ,

P∗,22 = I +B>(I −A+BK∗)
−>(Q+K>∗ K∗)(I −A+BK∗)

−1B .

By Lemmas 2 and 4, ct = − 1
2P
−1
∗,22

(
1
t−1

∑t−1
s=1 Ls,2

)
. Thus,

ct = −P−1
∗,22

(
1

t− 1

t−1∑
s=1

Ls,2

)

= −
P−1
∗,22B

>

t− 1
(I −A+BK∗)

−>
t−1∑
s=1

(−Qgs −K>∗ cs)

=
1

t− 1

(
D

t−1∑
s=1

gs +H

t−1∑
s=1

cs

)
, (13)

where H = P−1
∗,22B

>(I − A+BK∗)
−>K>∗ . To obtain a bound on maxt ‖ct‖ from the above equation, we need to show

that ‖H‖ is sufficiently smaller than one. Let N = (I − A+ BK∗)
−1, M = K∗NB, and L = (I +M>M)−1M>. We

have that

H = (I +B>N>(Q+K>∗ K∗)NB)−1M>

≺ (I +B>N>K>∗ K∗NB)−1M>

= (I +M>M)−1M>

= L , (14)

and

LL> = (I +M>M)−1M>M(I +M>M)−1

= (I +M>M)−1(M>M + I − I)(I +M>M)−1

= (I +M>M)−1
(
I − (I +M>M)−1

)
.

Because
∥∥M>M∥∥ = λmax(M>M), ‖N‖ ≤ 1/(1− ρ), and

∥∥M>M∥∥ ≤ ‖K∗‖2 ‖B‖2 /(1− ρ)2, we get that∥∥LL>∥∥ ≤ ∥∥(I +M>M)−1
∥∥ ∥∥I − (I +M>M)−1

∥∥
≤ 1− 1

1 + ‖M>M‖

≤ 1− 1

1 + ‖K∗‖2 ‖B‖2 /(1− ρ)2

=
‖K∗‖2 ‖B‖2 /(1− ρ)2

1 + ‖K∗‖2 ‖B‖2 /(1− ρ)2
.

By (14) and the above inequality, we get that

‖H‖ ≤ ‖L‖ =
∥∥L>∥∥ =

√
λmax(LL>) =

√
‖LL>‖

≤ ‖K∗‖ ‖B‖ /(1− ρ)√
1 + ‖K∗‖2 ‖B‖2 /(1− ρ)2

.
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Let v = 1/(1− ‖H‖). We get that

v ≤ 1

1− ‖K∗‖‖B‖/(1−ρ)√
1+‖K∗‖2‖B‖2/(1−ρ)2

=

√
1 + ‖K∗‖2 ‖B‖2 /(1− ρ)2√

1 + ‖K∗‖2 ‖B‖2 /(1− ρ)2 − ‖K∗‖ ‖B‖ /(1− ρ)

=

√
1 + ‖K∗‖2 ‖B‖2 /(1− ρ)2

(√
1 + ‖K∗‖2 ‖B‖2 /(1− ρ)2 +

‖K∗‖ ‖B‖
1− ρ

)
= H ′ .

Now we are ready to bound ‖ct‖. By (13), we get that for any t ≥ 1,

‖ct‖ ≤ ‖D‖G+
1

t− 1

t−1∑
s=1

‖cs‖ ≤ ‖D‖G+ ‖H‖max
s≥1
‖cs‖ .

Thus, maxt≥1 ‖ct‖ ≤ ‖D‖G+ ‖H‖maxt≥1 ‖ct‖ and thus, maxt≥1 ‖ct‖ ≤ ‖D‖G
1−‖H‖ ≤ ‖D‖GH

′ = C.

Proof of (ii). First we write ct in terms of ct−1:

ct =
1

t− 1

(
D

t−1∑
s=1

gs +H

t−1∑
s=1

cs

)

=
Dgt−1

t− 1
+
Hct−1

t− 1
+
t− 2

t− 1

(
D

t− 2

t−2∑
s=1

gs +
H

t− 2

t−2∑
s=1

cs

)

=
Dgt−1

t− 1
+
Hct−1

t− 1
+
t− 2

t− 1
ct−1

=
1

t− 1
(Dgt−1 + ((t− 2)I +H)ct−1) .

This implies that ct − ct−1 = 1
t−1 (Dgt−1 − (I −H)ct−1). Then we use the facts that ‖ct‖ ≤ C and ‖H‖ < 1 to obtain

‖ct − ct−1‖ ≤
‖D‖G+ 2C

t− 1
.

Proof of Lemma 8. Let fπ : X → X be the transition function under policy π = (K, c), i.e. fπ(x) = (A−BK)x+Bc.
Let εk,t = ‖xk − xπt∞‖ and εt = ‖xt − xπt∞‖ denote the difference between the state variable and the limiting state under
the chosen policy. We write4

εk,t = ‖fπk(xk−1)− fπt(xk−1) + fπt(xk−1)− xπt∞‖
≤ ‖fπk(xk−1)− fπt(xk−1)‖+ ‖fπt(xk−1)− fπt(xπt∞)‖ .

From this decomposition, we get that

εk,t ≤ ‖B‖ ‖ck − ct‖+ ‖fπt(xk−1)− fπt(xπt∞)‖
≤ ‖B‖ ‖ck − ct‖+ ρ ‖xk−1 − xπt∞‖

≤ ‖B‖ (‖D‖G+ 2C)

t−1∑
s=k

1

s
+ ρ ‖xk−1 − xπt∞‖ .

4A similar decomposition, but with a different norm, was used in (Even-Dar et al., 2009, proof of Lemma 5.2.) to bound the difference
between the stationary distribution of the chosen policy and the distribution of the state variable in a finite MDP problem.
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Thus,

εt ≤ ‖B‖ (‖D‖G+ 2C)

t∑
k=1

ρt−k
t−1∑
s=k

1

s
+ ρt−1 ‖x1 − xπt∞‖

= ‖B‖ (‖D‖G+ 2C)

t−1∑
s=1

1

t− s

t−1∑
k=s

ρk + ρt−1 ‖B‖C
1− ρ

≤ ‖B‖ (‖D‖G+ 2C)

1− ρ

t−1∑
s=1

ρs

t− s
+ ρt−1 ‖B‖C

1− ρ
,

where the second step follows from Equation (7), Lemma 7, and the fact that x1 = 0. If t > dlog(T − 1)/ log(1/ρ)e, we
get that

t−1∑
s=1

ρs

t− s
=

∑
s:ρs≤1/(t−1)

ρs

t− s
+

∑
s:1>ρs>1/(t−1)

ρs

t− s

≤ 1

t− 1

t−1∑
s=1

1

t− s
+

log(t− 1)

log(1/ρ)

(
1

t− log(t− 1)/ log(1/ρ)

)
≤ 1 + log(t− 1)

t− 1
+

log(t− 1)

log(1/ρ)

(
1

t− log(t− 1)/ log(1/ρ)

)
.

Thus,

εt ≤
‖B‖ (‖D‖G+ 2C)

1− ρ

(
1 + log(t− 1)

t− 1
+

log(t− 1)

log(1/ρ)

(
1

t− log(t− 1)/ log(1/ρ)

))
+ ρt−1 ‖B‖C

1− ρ
.

To prove the second part of lemma, let uT = dlog(T − 1)/ log(1/ρ)e. We have that

∑
t>uT

1

t− log(T − 1)/ log(1/ρ)
≤
∑
t>uT

1

t− uT
≤
T−uT∑
t=1

1

t
≤

T∑
t=1

1

t
≤ 1 + log(T ) . (15)

Thus, by (8) and (15),

T∑
t=1

εt ≤
∑
t≤uT

εt +
∑
t>uT

εt

≤ 1

1− ρ

(
4 ‖B‖C

⌈
log T

log(1/ρ)

⌉
+
‖B‖C
1− ρ

+ ‖B‖ (‖D‖G+ 2C)(1 + log T )

(
1 + log T +

log T

log(1/ρ)

))
.

The fact that all gain matrices are identical greatly simplifies the boundedness proof.

Proof of Lemma 11. First, it is easy to verify that P∗,22 � I and thus, H(Vt) = P∗,22 � 2I . The gradient of the value
function can be written as

∇aVt(xπ∞, a) = 2P∗,22a+ P∗,21x
π
∞ + L>t,2 .

Thus, ‖∇aVt(xπ∞, a)‖ ≤ F for any ‖a‖ ≤ U .
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Proof of (i). By (8), ‖xt‖ ≤ X , and by Lemma 7, ‖ct‖ ≤ C. Thus, all actions are bounded by

‖at‖ = ‖−K∗xt + ct‖ ≤ ‖K∗‖X + C ≤ U .

Proof of (ii) and (iii). By Lemma 6,
‖−Kxπ∞ + c‖ ≤ K ′X ′ + C ′ ≤ U .

Similarly,
‖−K∗xπ∞ + ct‖ ≤ ‖K∗‖X ′ + C ≤ U .

Proof of (iv). By (4) and the fact that Kt = K∗ and Pt = P∗, we get that

‖Lt‖ ≤
2

1− ρ
(G ‖Q‖+ ρC ‖P∗‖) .

Further, by (2), for any policy π ∈ Π and any action satisfying ‖a‖ ≤ U , the value functions are bounded by

Vt(x
π
∞, a) =

(
xπ>∞ a>

)
P∗

(
xπ∞
a

)
+ L>t

(
xπ∞
a

)
≤ ‖P∗‖ (X ′ + U)2 +

2

1− ρ
(G ‖Q‖+ ρC ‖P∗‖) (X ′ + U)

= V .

Proof of Lemma 13. For policy π = (K, c), we have `t(x, π) = x>(Q + K>K)x − 2(c>K + g>t Q)x + c>c + g>t Qgt.
Define S = Q+K>K and dt = 2(c>K + g>t Q). We write

γT =

T∑
t=1

(
xπ>∞ Sxπ∞ − dtxπ∞

)
−

T∑
t=1

(
xπ>t Sxπt − dtxπt

)
=

T∑
t=1

dt(x
π
t − xπ∞) +

T∑
t=1

(∥∥∥S1/2xπ∞

∥∥∥− ∥∥∥S1/2xπt

∥∥∥)(∥∥∥S1/2xπt

∥∥∥+
∥∥∥S1/2xπ∞

∥∥∥) .

Thus,

γT ≤
T∑
t=1

dt(x
π
t − xπ∞) +

T∑
t=1

∥∥∥S1/2(xπt − xπ∞)
∥∥∥(∥∥∥S1/2xπt

∥∥∥+
∥∥∥S1/2xπ∞

∥∥∥)
≤

T∑
t=1

(
‖dt‖+

∥∥∥S1/2
∥∥∥(∥∥∥S1/2xπt

∥∥∥+
∥∥∥S1/2xπ∞

∥∥∥)) ‖xπt − xπ∞‖
≤ Z ′1

T∑
t=1

‖xπt − xπ∞‖ .

We get the desired result by Lemma 6.


