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1. Gradient for Discrete DPP
Gradient ascent and stochastic gradient ascent provide at-
tractive approaches in learning parameters, Θ of DPP kernel
L(Θ) because of their theoretical guarantees, but require
knowledge of the gradient of the log-likelihoodL(Θ). In the
discrete DPP setting, this gradient can be computed straight-
forwardly and we provide examples for discrete Gaussian
and polynomial kernels here.

L(Θ) =

T∑
t=1

log(det(LAt(Θ)))− T log(det(L(Θ) + I)) ,

dL(Θ)

dΘ
=

∑T
t=1 tr

(
LAt(Θ)−1 dLAt (Θ)

dΘ

)
−T tr

(
(L(Θ) + I)−1 dL(Θ)

dΘ

)
.

To find the MLE, we can perform gradient ascent

Θi = Θi−1 + η
dl(Θ)

dΘ
.

In the following examples, we denote
xi = (x

(1)
i , x

(2)
i , . . . , x

(d)
i ), where d is the number of di-

mension.

1.1. Example I: Gaussian Similarity with Uniform
Quality

L(Σ) = exp{−(x− y)>Σ−1(x− y)} .

Denote G(lm)
ij = Lij

(x
(l)
i −x

(l)
j )(x

(m)
i −x(m)

j )

2Σ2
lm

.

Then,

dL(Σ)

dΣlm
=

∑T
t=1 tr

(
LAt(Σ)−1G

(lm)
At

)
−T tr

(
(L(Σ) + I)−1G(lm)

)
.

1.2. Example II: Gaussian Similarity with Gaussian
Quality

L(Γ,Σ)
= exp{−x>Γ−1x − (x − y)>Σ−1(x − y) − y>Γ−1y} .

Denote C(lm)
ij = Lij

(x
(l)
i x

(m)
i +x

(l)
j x

(m)
j )

2Γ2
lm

and G
(lm)
ij as in

previous example.

Then,

dL(Γ,Σ)

dΓlm
=

∑T
t=1 tr

(
LAt(Σ)−1C

(lm)
At

)
−T tr

(
(L(Σ) + I)−1C(lm)

)
and dl(Γ,Σ)

dΣlm
is the same as the previous example.

1.3. Example III: Polynomial Similarity with Uniform
Quality

L(p, q) =
(
x>y + p

)q
.

Denote Rij = qL
q−1
q

ij and Uij = Lij log(L
1
q

ij).

Then,

dL(p, q)

dp
=

∑T
t=1 tr

(
LAt(p, q)−1RAt

)
−T tr

(
(L(p, q) + I)−1R)

)
,
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Algorithm 1 Random-Walk Metropolis-Hastings
Input: Dimension: D, Starting point: Θ0, Prior distribu-
tion: P(Θ), Proposal distribution f(Θ̂|Θ) with mean Θ,
Samples: A1, . . . , AT .
Θ = Θ0

for i = 0 : (τ − 1) do
Θ̂ ∼ f(Θ̂|Θi)

r =
(
P(Θ̂|A1,...,AT )
P(Θi|A1,...,AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
u ∼ Uniform[0,1]
if u < min{1, r} then

Θi+1 = Θ̂
Output: Θ0:τ

dL(p, q)

dq
=

∑T
t=1 tr

(
LAt(p, q)−1UAt

)
−T tr

(
(L(p, q) + I)−1U)

)
.

2. Bayesian Learning
In the main paper, we highlight two techniques: random-
walk Metropolis-Hastings (MH) and slice sampling to sam-
ple from the posterior distribution. We present the pseudo-
code for these algorithms here (Alg. 1 and Alg. 2).

In Alg. 3, we also present the pseudo-code for the random-
walk MH algorithm for handling large-scale discrete and
continuous DPPs using posterior bounds. Finally, we
present an illustration of slice sampling using posterior
bounds in Figure 1.

3. Proof of DPP/kDPP Denominator Bounds
In the main paper, we show that the lower and upper poste-
rior probability bounds for the DPP/kDPP can be incorpo-
rated in many MCMC algorithms, and provide an effective
means of garnering posterior samples assuming the bounds
can be efficiently tightened. Below, we provide the proofs
to Propositions 3.1 and 3.2, which bound the denominator
of the posterior probability using eigenvalue truncations.

Proposition 3.1 Let λ1:∞ be the eigenvalues of kernel L.
Then

M∏
n=1

(1 + λn) ≤
∞∏
n=1

(1 + λn) (1)

and
∞∏
n=1

(1 + λn) ≤ exp

{
tr(L)−

M∑
n=1

λn

}[ M∏
n=1

(1 + λn)

]
.

(2)

Proof: The first inequality is trivial since the eigenvalues
λ1:∞ are all nonnegative.

Figure 1. Illustration of slice sampling algorithm using posterior
bounds. In the first step, a candidate slice ŷ is generated. ŷ is
rejected if it is above the upper posterior bound and rejected if it
is below the lower posterior bound. If ŷ is in between the bounds,
then the bounds are tightened until a decision can be made. Once
a slice, y is accepted, we need to sample new parameters inside
the slice. To determine whether the endpoints of the interval or the
new parameters are in the slice we: (i) decide that they are in the
slice if the upper bound of posterior probability evaluated at the
points are higher than the slice value, or (ii) decide that they are
outside of the slice if the lower bound of the posterior probability
is lower than the slice value. Otherwise, we tighten the bounds
until a decision can be made.
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Algorithm 2 Univariate Slice Sampling
Input: Starting point: Θ0, Initial width: w, Prior distri-
bution: P(Θ), Samples: A = [A1, . . . , AT ].
Θ = Θ0

for i = 0 : (τ − 1) do
y ∼ Uniform[0,P(Θi|A1, . . . , AT )]
z ∼ Uniform[0, 1]
L = Θi − z ∗ w2
R = L+ w

2
while y > P(L|A1, . . . , AT ) do
L = L− w

2
while y > P(R|A1, . . . , AT ) do
R = R+ w

2

Θ̂ ∼ Uniform[L,R]
if P(Θ̂|A1, . . . , AT ) < y then

while P(Θ̂|A1, . . . , AT ) < y do
if Θ̂ > Θ then
R = Θ̂

else
L = Θ̂

Θ̂ ∼ Uniform[L,R]
Θi+1 = Θ̂

Output: Θ0:τ

To prove the second inequality, we use the AM-
GM inequality: For any non-negative numbers,
γ1, ..., γM , (

∏M
n=1 γn)

1
M ≤

∑M
n=1

γn
M .

Let ΛM =
∑∞
n=M+1 λn and γn = 1 + λn. Then,

∞∏
n=1

(1 + λn) =

∞∏
n=1

γn = (

M∏
n=1

γn)(

∞∏
n=M+1

γn)

= (

M∏
n=1

γn)( lim
l→∞

M+l∏
n=M+1

γn)

≤ (

M∏
n=1

γn)( lim
l→∞

(

M+l∑
n=M+1

γn
l

)l)

≤ (

M∏
n=1

(1 + λn)) exp(ΛM ) .

�

Proposition 3.2 Let λ1:∞ be the eigenvalues of kernel L.
Then

ek(λ1:M ) ≤ ek(λ1:∞) (3)

and

ek(λ1:∞) ≤
k∑
j=0

(tr(L)−
∑M
n=1 λn)j

j!
ek−j(λ1:M ) . (4)

Proof: Let ek(λ1:m) be the kth elementary symmetric func-
tion: ek(λ1:m) =

∑
J⊆{1,....,m},|J|=k

∏
j∈J λj .

Algorithm 3 Random-Walk Metropolis-Hastings with Pos-
terior Bounds

Input: Dimension: D, , Starting point: Θ0, Prior distribu-
tion: P(Θ), Proposal distribution f(Θ̂|Θ) with mean Θ,
samples: A = [A1, . . . , AT ].
Θ = Θ0

for i = 0 : τ do
Θ̂ ∼ f(Θ̂|Θi)
r+ =∞, r− = −∞
u ∼ Uniform[0,1]
while u ∈ [r−, r+] do
r+ =

(
P+(Θ̂|A1,...,AT )
P−(Θi|A1,...,AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
r− =

(
P−(Θ̂|A1,...,AT )
P+(Θi|A1,...,AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
Increase tightness on P+ and P−

if u < min{1, r−} then
Θt = Θ̂

Output: Θ0:τ

Trivially, we have a lower bound since the eigenvalues λ1:∞
are non-negative: ek(λ1:m) ≤ ek(λ1:n) for m ≤ n.

For the upper bound we can use the Schur-concavity of
elementary symmetric functions for non-negative arguments
(Guan, 2006). Thus, for λ̄1:N ≺ λ1:N :

k∑
i=1

λ̄n ≤
k∑

n=1

λn for k = 1, . . . , N − 1 (5)

and
N∑
n=1

λ̄n =

N∑
n=1

λn , (6)

we have ek(λ̄1:N ) ≥ ek(λ1:N ).

Now let ΛM =
∑∞
n=M+1 and ΛNM =

∑N
n=M+1. We con-

sider

λ̄
(M)
1:N = (λ1, . . . , λM ,

ΛNM
N −M

, . . . ,
ΛNM

N −M
). (7)

Note that λ̄(M)
1:N ≺ λ1:N and so ek(λ̄

(M)
1:N ) ≥ ek(λ1:N ) for

M < N .

We now compute ek(λ̄
(M)
1:N ). Note that for ek(λ̄

(M)
1:N ), the

terms in the sum are products of k factors, each containing
some of the λ1:M factors and some of the ΛN

M

N−M factors.

The sum of the terms that have j factors of type ΛN
M

N−M is(
N−M
j

) ( ΛN
M

N−M

)j
ek−j(Λ(m)), so we have:

ek(λ̄
(M)
1:N ) =

k∑
j=0

(
N −M

j

)(
ΛNM

N −M

)j
ek−j(λ1:M ) .
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Using
(
N−M
j

)
≤ (N−M)j

j! , we get

ek(λ̄
(M)
1:N ) =

k∑
j=0

(
(ΛNM )j

j!

)
ek−j(λ1:M ) .

Letting N →∞, we get out upper bound

ek(λ1:∞) ≤
k∑
j=0

(
(ΛM )j

j!

)
ek−j(λ1:M ) for m ≤ n.

4. DPP/kDPP Numerator Bounds
In the main paper, we develop a Bayesian method that only
requires an upper and lower bound on the likelihood. There,
we focus on the large N challenge by bounding the denomi-
nator of the posterior probability. An analogous method can
be used for handling large observation sets,At, by bounding
the numerator term, det(LAt

(Θ)). Assume that the size of
a particular observation At is K. Let ξ1, ξ2 . . . ξK denote
the eigenvalues of LAt . We can then express det(LAt(Θ))
as

det(LAt
(Θ)) =

K∏
n=1

ξn . (8)

We can find a truncation of the eigenvalues, ξ1, . . . , ξM
(M < K), using methods such as power iteration. Below
we provide the numerator bounds based on the eigenvalue
truncation that can be arbitrarily tightened by including
more eigenvalue terms.

Proposition 4.1 Let ξ1:K be the eigenvalues of kernel LAt
.

Then for M < K,

M∏
n=1

ξn ≤
K∏
n=1

ξn (9)

and

K∏
n=1

ξn ≤

[
M∏
n=1

ξn

] [(
1

K −M

)(
tr(LAt)−

M∑
n=1

ξn

)]K−M
.

(10)

Proof: The first inequality is trivial since the eigenvalues
ξ1:K are all nonnegative.

To prove the second inequality, we use the AM-
GM inequality: For any non-negative numbers,
γ1, ..., γM , (

∏M
n=1 γn)

1
M ≤

∑M
n=1

γn
M .

Then,

K∏
n=1

ξn = (

M∏
n=1

ξn)(

K∏
n=M+1

ξn)

≤

[
M∏
n=1

ξn

] [(
1

K −M

) K∑
n=M+1

ξn

]K−M

=

[
M∏
n=1

ξn

] [(
1

K −M

)(
tr(LAt

)−
M∑
n=1

ξn

)]K−M
.

�

5. Moments for Continuous DPP with
Gaussian Quality and Similarity

In the continuous case, given the eigendecomposition of the
kernel operator, L(x,y) =

∑∞
n=1 λnφn(x)∗φn(y) (where

φn(x)∗ denotes the complex conjugate of the nth eigenfunc-
tion), the mth moment can be evaluated as

E[xm] =

∫
Ω

∞∑
n=1

λn
λn + 1

xmφn(x)2dx . (11)

Here we present the derivation for moments when

q(x) =
√
α

D∏
d=1

1
√
πρd

exp

{
− x2

d

2ρd

}
(12)

and

k(x,y) =

D∏
d=1

exp

{
− (xd − yd)2

2σd

}
,x,y ∈ RD. (13)

In this case, the eigenvalues and eigenvectors of the operator
L are given by (Fasshauer & McCourt, 2012),

λn = α

D∏
d=1

√
1

β2
d+1

2 + 1
2γd

(
1

γd(β2
d + 1) + 1

)nd−1

,

(14)
and

φn(x) =

D∏
d=1

(
1

πρ2
d

) 1
4

√
βd

2nd−1Γ(nd)
exp

{
−β

2
dx

2

2ρ2
d

}
Hnd−1

(
βdxd√
ρ2
d

)
,

(15)

where γd = σd

ρd
, βd = (1+ 2

γd
)

1
4 and n = (n1, n2, . . . , nD)

is a multi-index.

In the case of DPPs (as opposed to k-DPPs), we can
use the number of items as an estimate of the 0th mo-
ment. The 0th moment is given by

∑
n=1

λn

1+λn
. Denote
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x = (x1, x2, . . . , xd). The for higher moments, note that

E[xmj ] =
∫
R
∑∞
n=1

λn

λn+1x
m
j φn(x)2dxj

=
∑∞
n=1

λn

λn+1

∫
R x

m
j φn(x)2dxj .

Using the results of moment integrals involving a product
of two Hermite polynomials (Paris, 2010), we get that

E[xmj ] =

∫
Rd

∞∑
n

λn
λn + 1

(

√
ρj√
2βj

)m℘m
2

(nj − 1) (16)

for m even and 0 otherwise. The polynomial ℘m
2

(nj −1) is
given in Eq. (4.8) in Paris (2010). For example, the second
and fourth moments are given by

(i) E[x2
j ] =

∑∞
n

λn

λn+1 (
√
ρj√
2βj

)2(2nj − 1) ,

(ii) E[x4
j ] =

∑∞
n

λn

λn+1 (
√
ρj√
2βj

)43(2n2
j − 2nj + 1) .

For a low dimensional setting, we can learn the parameters
by using grid search such that the moments agree.

6. Details on Simulation
In the main paper, we use our Bayesian learning algorithms
to learn parameters from (i) simulated data generated from a
2-dimensional isotropic discrete kernel (σd = σ, ρd = ρ for
d = 1, 2), (ii) nerve fiber data using 2-dimensional isotropic
continuous kernel (σd = σ, ρd = ρ for d = 1, 2) and (ii)
image diversity data using 3600-dimensional discrete kernel
with Gaussian similarity. In all of these experiments, we use
weakly informative inverse gamma priors on σ, ρ and α. In
particular, for all three parameters, we used the same priors
for all three parameters

P(α) = P(ρ) = P(σ) = Inv-Gamma(0.001, 0.001) .

We then learn the parameters using hyperrectangle slice
sampling.

7. Details on Image Diversity
In studying the diversity in images, we extracted 3 different
types of features from the images—color features, SIFT-
descriptors (Lowe, 1999; Vedaldi & Fulkerson, 2010) and
GIST-descriptors (Oliva & Torralba, 2006). We describe
these features below.

Color: Each pixel is assigned a coordinate in three-
dimensional Lab color space. The colors are then sorted
into axis-aligned bins, producing a histogram of either 8
(denoted color8) or 64 (denoted color64) dimensions.

SIFT: The images are processed to obtain sets of 128-
dimensional SIFT descriptors. These descriptors are com-
monly used in object recognition to identify objects in im-
ages and are invariant to scaling, orientation and minor

distortions. The descriptors for a given category are com-
bined, subsampled to set of 25,000, and then clustered using
k-means into either 256 (denoted SIFT256) or 512 (denoted
SIFT512) clusters. The feature vector for an image is the
normalized histogram of the nearest clusters to the descrip-
tors in the image.

GIST: The images are processed to obtain 960-dimensional
GIST feature vectors that are commonly used to describe
scene structure.

We also extracted the features above from the center of the
images, defined as the centered rectangle with dimensions
half those of the original image. This yields a total of 10
different feature vectors. Since we are only concerned with
the diversity of the images, we ensure that the quality across
the images are uniform by normalizing each feature vector
such that their L2 norm equals to 1. We then combine the
feature vectors into 3 types of features—color, SIFT and
GIST.

For the Google Top 6 images, we model the samples, AtTop6
as though they are generated from a 6-DPP with kernel
Lsubcat(At). To highlight the effect of the human anno-
tation in the partial results sets, we model the samples as
though they are generated from a conditional 6-DPP.

In general, given a partial set of observations A and k-DPP
kernel L, we can define the conditional k-DPP probability
of choosing a set B given the inclusion of set A (with |A|+
|B| = k) as

PkL(Y = A ∪B|A ∈ Y ) ∝ det(LAB) , (17)

with
LA =

([
((L+ IAc)

−1
]
Ac

)−1

− I , (18)

where IAc denotes the identity matrix with 0 along the
diagonal corresponding to elements in A. Here, following
the N × N inversion, the matrix is restricted to rows and
columns indexed by elements not in A, then inverted again.
The normalizer is given by (Kulesza & Taskar, 2012).∑

|Y ′|=k−|A|

det(LAY ′) . (19)

In our experiment, our samples can be seperated into the
partial result sets and human annotations,

AtDPP+human = (At, bt) , (20)

where At is the partial result sets and bt is the human anno-
tated result, we model the data from the conditional 6-DPP
Lsubcat(bt|At). In this case, the likelihood is given by

Li(Θcat) =
det(Li A

t

bt
(Θcat))∑N

i=1 L
i At

xi
(Θcat)

(21)
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for each subcategory, i. That is, for each subcategory, i,
we compute Li(Θcat) and use Eq. (18) to compute the
conditional kernel.
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