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Abstract
Determinantal point processes (DPPs) are well-
suited for modeling repulsion and have proven
useful in applications where diversity is desired.
While DPPs have many appealing properties,
learning the parameters of a DPP is difficult, as
the likelihood is non-convex and is infeasible to
compute in many scenarios. Here we propose
Bayesian methods for learning the DPP kernel pa-
rameters. These methods are applicable in large-
scale discrete and continuous DPP settings, even
when the likelihood can only be bounded. We
demonstrate the utility of our DPP learning meth-
ods in studying the progression of diabetic neu-
ropathy based on the spatial distribution of nerve
fibers, and in studying human perception of diver-
sity in images.

1. Introduction
A determinantal point process (DPP) is a distribution over
configurations of points. The defining characteristic of the
DPP is that it is repulsive, which makes it useful for model-
ing diversity. Recently, DPPs have played an increasingly
important role in machine learning and statistics with ap-
plications both in the discrete setting—where they are used
as a diverse subset selection method (Affandi et al., 2012;
2013b; Gillenwater et al., 2012; Kulesza & Taskar, 2010;
2011a; Snoek et al., 2013)— and in the continuous setting
for generating point configurations that tend to be spread
out(Affandi et al., 2013a; Zou & Adams, 2012).
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Formally, given a space Ω ⊆ Rd, a specific point config-
uration A ⊆ Ω, and a positive semi-definite kernel func-
tion L : Ω× Ω→ R, the probability density under a DPP
with kernel L is given by

PL(A) ∝ det(LA) , (1)

where LA is the |A| × |A| matrix with entries L(x,y) for
each x,y ∈ A. This defines a repulsive point process since
point configurations that are more spread out according to
the metric defined by the kernel L have higher densities.

Building on work of Kulesza & Taskar (2010), it is intuitive
to decompose the kernel L as

L(x,y) = q(x)k(x,y)q(y) , (2)

where q(x) can be interpreted as the quality function at
point x and k(x,y) as the similarity kernel between points
x and y. The ability to bias the quality in certain locations
while still maintaining diversity via the similarity kernel
offers great modeling flexibility.

One of the remarkable aspects of DPPs is that they of-
fer efficient algorithms for inference, including computing
marginal and conditional probabilities (Kulesza & Taskar,
2012), sampling (Affandi et al., 2013a;b; Hough et al., 2006;
Kulesza & Taskar, 2010), and restricting to fixed-sized point
configurations (k-DPPs) (Kulesza & Taskar, 2011a). How-
ever, an important component of DPP modeling, learning
the DPP kernel parameters, is still considered a difficult,
open problem. Even in the discrete Ω setting, DPP kernel
learning has been conjectured to be NP-hard (Kulesza &
Taskar, 2012). Intuitively, the issue arises from the fact that
in seeking to maximize the log-likelihood of Eq. (1), the
numerator yields a concave log-determinant term and the
normalizer a convex term, leading to a non-convex objective.
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This non-convexity holds even under various simplifying as-
sumptions on the form of L. Furthermore, when Ω is either
a large, discrete set or a continuous subspace, computation
of the likelihood is inefficient or infeasible, respectively.
This precludes the use of gradient-based and black-box op-
timization methods.

Attempts to partially learn the kernel have been studied
by, for example, learning the parametric form of the quality
function q(x) for fixed similarity k(x,y) (Kulesza & Taskar,
2011b), or learning a weighting on a fixed set of kernel
experts (Kulesza & Taskar, 2011a). So far, the only attempt
to learn the parameters of the similarity kernel k(x,y) has
used Nelder-Mead optimization (Lavancier et al., 2012),
which lacks theoretical guarantees about convergence to a
stationary point. Moreover, the use of Nelder-Mead (and
other black-box optimization methods) relies heavily on
exact computation of the likelihood.

In this paper, we consider parametric forms for the qual-
ity function q(x) and similarity kernel k(x,y) and propose
Bayesian methods to learn the DPP kernel parameters Θ
using Markov chain Monte Carlo (MCMC). In addition to
capturing posterior uncertainty rather than a single point
estimate, our proposed methods apply without approxima-
tion to large-scale discrete and continuous DPPs when the
likelihood can only be bounded (with any desired precision).

In Sec. 2, we review DPPs and their fixed-sized counterpart
(k-DPPs). We then explore maximum likelihood estimation
(MLE) algorithms for learning DPP and k-DPP kernels. Af-
ter examining the shortcomings of the MLE approach, we
propose a set of techniques for Bayesian posterior inference
of the kernel parameters in Sec. 3. In Sec. 4, we derive a
set of DPP moments that can be used for model assessment,
MCMC convergence diagnostics, and in low-dimensional
settings for learning kernel parameters via numerical tech-
niques. Finally, in Sec. 5 we use DPP learning to study the
progression of diabetic neuropathy based on the spatial dis-
tribution of nerve fibers and also to study human perception
of diversity of images.

2. Background
2.1. Discrete DPPs/k-DPPs

For a discrete base set Ω = {x1,x2, . . . ,xN}, a DPP de-
fined by an N ×N positive semi-definite kernel matrix L
is a probability measure on the 2N possible subsets A of Ω:

PL(A) =
det(LA)

det(L+ I)
. (3)

Here, LA ≡ [Lij ]xi,xj∈A is the submatrix of L indexed
by the elements in A and I is the N ×N identity matrix
(Borodin & Rains, 2005).

In many applications, we are instead interested in the proba-

bility distribution which gives positive mass only to subsets
of a fixed size, k. In these cases, we consider fixed-sized
DPPs (or k-DPPs) with probability distribution on sets A of
cardinality k given by

PkL(A) =
det(LA)

ek(λ1, . . . , λN )
, (4)

where λ1, . . . , λN are the eigenvalues of L and
ek(λ1, . . . , λN ) is the kth elementary symmetric polyno-
mial (Kulesza & Taskar, 2011a). Note that ek(λ1, . . . , λN )
can be efficiently computed using recursion (Kulesza &
Taskar, 2012).

2.2. Continuous DPPs/k-DPPs

Consider now the case where Ω ⊆ Rd is a continuous space.
DPPs extend to this case naturally, with L now a kernel
operator instead of a matrix. Again appealing to Eq. (1), the
DPP probability density for point configurations A ⊂ Ω is
given by

PL(A) =
det(LA)∏∞
n=1(λn + 1)

, (5)

where λ1, λ2, . . . are eigenvalues of the operator L.

The k-DPP also extends to the continuous case with

PkL(A) =
det(LA)

ek(λ1:∞)
, (6)

where λ1:∞ = (λ1, λ2, . . .).

In contrast to the discrete case, the eigenvalues λi for con-
tinuous DPP kernels are generally unknown; exceptions
include a few kernels such as the Gaussian.

3. Learning Parametric DPPs
Assume that we are given a training set consisting of sam-
ples A1, A2, . . . , AT , and that we model these data using a
DPP/k-DPP with parametric kernel

L(x,y; Θ) = q(x; Θ)k(x,y; Θ)q(y; Θ) , (7)

with parameters Θ. We denote the associated kernel matrix
for a set At by LAt(Θ) and the full kernel matrix/operator
by L(Θ). Likewise, we denote the kernel eigenvalues by
λi(Θ). In this section, we explore various methods for
DPP/k-DPP learning.

3.1. Learning using Optimization Methods

To learn the parameters Θ of a discrete DPP model, recalling
Eq. (3) we can maximize the log-likelihood

L(Θ) =

T∑
t=1

log det(LAt(Θ))− T log det(L(Θ) + I) .
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Lavancier et al. (2012) suggest using the Nelder-Mead sim-
plex algorithm (Nelder & Mead, 1965). This method evalu-
ates the objective function at the vertices of a simplex, then
iteratively shrinks the simplex towards an optimal point. Al-
though straightforward, this procedure does not necessarily
converge to a stationary point (McKinnon, 1998). Gradient
ascent and stochastic gradient ascent are attractive due to
their theoretical guarantees, but require knowledge of the
gradient of L(Θ). In the discrete DPP setting, this gradient
can be computed straightforwardly, and we provide exam-
ples for discrete Gaussian and polynomial kernels in the
Supplement.

We note, however, that both of these methods are susceptible
to convergence to local optima due to the non-convex like-
lihood landscape. Furthermore, these methods (and many
other black-box optimization techniques) require that the
likelihood is known exactly. From the determinant in the de-
nominator of Eq. (3), we see that when the number of base
items N is large, computing the likelihood or its derivative
is inefficient. A similar inefficiency arises when we expect
large sets At, as determined by Θ. Both of these challenges
limit the general applicability of these MLE approaches.
Instead, in Sec. 3.3, we develop a Bayesian method that
only requires an upper and lower bound on the likelihood.
We focus on the large N challenge and discuss in the Sup-
plement how analogous methods can be used for handling
large observation sets, At.

The log-likelihood of the k-DPP kernel parameter is

L(Θ) =

T∑
t=1

log det(LAt(Θ))− T log
∑
|B|=k

det(LB(Θ)) ,

which presents an addition complication due to needing a
sum over

(
n
k

)
terms in the gradient.

For continuous DPPs/k-DPPs, once again, both MLE
optimization-based methods require that the likelihood is
computable. Recalling Eq. (5), we note the infinite product
in the denominator. As such, for kernel operators with infi-
nite rank (such as the Gaussian), we are forced to consider
approximate MLE methods based on an explicit truncation
of the eigenvalues. Gradient ascent using such truncations
further relies on having a known eigendecomposition with a
differentiable form for the eigenvalues. Unfortunately, such
approximate gradients are not unbiased estimates of the true
gradient, so the theory associated with stochastic gradient
based approaches does not hold.

3.2. Bayesian Learning for Discrete DPPs

Instead of optimizing the likelihood to get an MLE, we
propose a Bayesian approach to estimating the posterior

distribution over kernel parameters:

P(Θ|A1, . . . , AT ) ∝ P(Θ)

T∏
t=1

det(LAt(Θ))

det(L(Θ) + I)
(8)

for the DPP and, for the k-DPP,

P(Θ|A1, . . . , AT ) ∝ P(Θ)

T∏
t=1

det(LAt(Θ))

ek(λ1(Θ), . . . , λN (Θ))
.

(9)
Here, P(Θ) is the prior on Θ. Since neither Eq. (8)
nor Eq. (9) yield a closed-form posterior, we resort to
approximate techniques based on Markov chain Monte
Carlo (MCMC). We highlight two techniques: random-walk
Metropolis-Hastings (MH) and slice sampling. We note,
however, that other MCMC methods can be employed with-
out loss of generality, and may be more efficient in some
scenarios.

In random-walk MH, we use a proposal distribu-
tion f(Θ̂|Θi) to generate a candidate value Θ̂ given the
current parameters Θi, which are then accepted or rejected
with probability min{r, 1} where

r =

(
P(Θ̂|A1, . . . , AT )

P(Θi|A1, . . . , AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
. (10)

The proposal distribution f(Θ̂|Θi) is chosen to have mean
Θi. The hyperparameters of f(Θ̂|Θi) tune the width of the
distribution, determining the average step size. See Alg. 1
of the Supplement.

While random-walk MH can provide a straightforward
means of sampling from the posterior, its efficiency requires
tuning the proposal distribution. Choosing an aggressive
proposal can result in a high rejection rate, while choosing a
conservative proposal can result in inefficient exploration of
the parameter space. To avoid the need to tune the proposal
distribution, we can instead use slice sampling (Neal, 2003).
We first describe this method in the univariate case, follow-
ing the “linear stepping-out” approach described in Neal
(2003). Given the current parameter Θi, we first sample
y ∼ Uniform[0,P(Θi|A1, . . . , AT )]. This defines our slice
with all values of Θ with P(Θ|A1, . . . , AT ) greater than
y included in the slice. We then define a random interval
around Θi with width w that is linearly expanded until nei-
ther endpoint is in the slice. We propose Θ̂ uniformly in the
interval. If Θ̂ is in the slice, it is accepted. Otherwise, Θ̂
becomes the new boundary of the interval, shrinking it so as
to still include the current state of the Markov chain. This
procedure is repeated until a proposed Θ̂ is accepted. See
Alg. 2 of the Supplement.

There are many ways to extend this algorithm to a multidi-
mensional setting. We consider the simplest extension pro-
posed by Neal (2003) where we use hyperrectangles instead
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Figure 1. Sample autocorrelation function for posterior samples
of the slowest mixing kernel parameter in Eq. (11) and Eq. (12),
sampled using MH and slice sampling.

of intervals. A hyperrectangle region is constructed around
Θi and the edge in each dimension is expanded or shrunk
depending on whether its endpoints lie inside or outside
the slice. One could alternatively consider coordinate-wise
or random-direction approaches to multidimensional slice
sampling.

As an illustrative example, we consider synthetic data gen-
erated from a two-dimensional discrete DPP with

q(xi) = exp

{
−1

2
x>i Γ−1xi

}
(11)

k(xi,xj) = exp

{
−1

2
(xi−xj)>Σ−1(xi−xj)

}
, (12)

where Γ = diag(0.5, 0.5) and Σ = diag(0.1, 0.2). We con-
sider Ω to be a grid of 100 points evenly spaced in a 10×10
unit square and simulate 100 samples from this DPP. We
then condition on these simulated data and perform poste-
rior inference of the kernel parameters using MCMC. Fig. 1
shows the sample autocorrelation function of the slowest
mixing parameter, Σ11, learned using random-walk MH
and slice sampling. Furthermore, we ran a Gelman-Rubin
test (Gelman & Rubin, 1992) on five chains starting from
overdispersed starting positions and found that the average
partial scale reduction function across the four parameters
to be 1.016 for MH and 1.023 for slice sampling, indicating
fast mixing of the posterior samples.

3.3. Bayesian Learning for Large-Scale Discrete and
Continuous DPPs

When the number of items, N , for discrete Ω is
large or when Ω is continuous, evaluating the normaliz-
ers det(L(Θ) + I) or

∏∞
n=1(λn(Θ) + 1), respectively, can

be inefficient or infeasible. Even in cases where an explicit
form of the truncated eigenvalues can be computed, this will
only lead to approximate MLE solutions, as discussed in
Sec. 3.1.

On the surface, it seems that most MCMC algorithms will
suffer from the same problem since they require knowledge
of the likelihood as well. However, we argue that for most of
these algorithms, an upper and lower bound of the posterior

probability is sufficient as long as we can control the ac-
curacy of these bounds. We denote the upper and lower
bounds by P+(Θ|A1, . . . , AT ) and P−(Θ|A1, . . . , AT ),
respectively. In the random-walk MH algorithm we can
then compute the upper and lower bounds on the acceptance
ratio,

r+ =

(
P+(Θ̂|A1, . . . , AT )

P−(Θi|A1, . . . , AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
(13)

r− =

(
P−(Θ̂|A1, . . . , AT )

P+(Θi|A1, . . . , AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
. (14)

The threshold u ∼ Uniform[0, 1] can be precomputed, so
we can often accept or reject the proposal Θ̂ even if
these bounds have not completely converged. All that
is necessary is for u < min{1, r−} (immediately reject)
or u > min{1, r+} (immediately accept). In the case
that u ∈ (r−, r+), we can perform further computations
to increase the accuracy of our bounds until a decision can
be made. As we only sample u once in the beginning, this
iterative procedure yields a Markov chain with the exact tar-
get posterior as its stationary distribution; all we have done
is “short-circuit” the computation once we have bounded
the acceptance ratio r away from u. We show this procedure
in Alg. 3 of the Supplement.

The same idea applies to slice sampling. In the first
step of generating a slice, instead of sampling y ∼
Uniform[0,P(Θi|A1, . . . , AT )], we use a rejection sam-
pling scheme to first propose a candidate slice

ŷ ∼ Uniform[0,P+(Θi|A1, . . . , AT )] . (15)

We then decide whether ŷ < P−(Θi|A1, . . . , AT ), in
which case we know ŷ < P(Θi|A1, . . . , AT ) and we
accept ŷ as the slice and set y = ŷ. In the case
where ŷ ∈ (P−(Θi|A1, . . . , AT ),P+(Θi|A1, . . . , AT )),
we keep increasing the tightness of our bounds until a
decision can be made. If at any point ŷ exceeds the
newly computed P+(Θi|A1, . . . , AT ), we know that ŷ >
P(Θi|A1, . . . , AT ) so we reject the proposal. In this case,
we generate a new ŷ and repeat.

Upon accepting a slice y, the subsequent steps for proposing
a parameter Θ̂ proceed in a similarly modified manner. For
the interval computation, the endpoints Θe are each exam-
ined to decide whether y < P−(Θe|A1, . . . , AT ) (endpoint
is not in slice) or y > P+(Θe|A1, . . . , AT ) (endpoint is in
slice). The tightness of the posterior bounds is increased un-
til a decision can be made and the interval adjusted, if need
be. After convergence, Θ̂ is generated uniformly over the
interval and is likewise tested for acceptance. We illustrate
this procedure in Fig. 1 of the Supplement.

The lower and upper posterior probability bounds can be
incorporated in many MCMC algorithms, and provide an
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effective means of garnering posterior samples assuming
the bounds can be efficiently tightened. For DPPs, the upper
and lower bounds depend on the truncation of the kernel
eigenvalues and can be arbitrarily tightened by including
more terms.

In the discrete DPP/k-DPP settings, the eigenvalues can
be efficiently computed to a specified point using methods
such as power law iterations. The corresponding bounds
for a 3600 × 3600 Gaussian kernel example are shown in
Fig. 2. In the continuous setting, explicit truncation can be
done when the kernel has Gaussian quality and similarity,
as we show in Sec. 5.1. For other continuous DPP kernels,
low-rank approximations can be used (Affandi et al., 2013a)
resulting in approximate posterior samples (even after con-
vergence of the Markov chain). We believe these methods
could be used to get exact posterior samples by extending
the discrete-DPP Nyström theory of Affandi et al. (2013b),
but this is beyond the scope of this paper. In contrast, a
gradient ascent algorithm for MLE is not even feasible: we
do not know the form of the approximated eigenvalues, so
we cannot take their derivative.

Explicit forms for the DPP/k-DPP posterior probability
bounds as a function of the eigenvalue truncations follow
from Prop. 3.1 and 3.2 combined with Eqs. (8) and (9),
respectively. Proofs are in the Supplement.

Proposition 3.1. Let λ1:∞ be the eigenvalues of kernel L.
Then

M∏
n=1

(1 + λn) ≤
∞∏
n=1

(1 + λn) (16)

and

∞∏
n=1

(1 + λn) ≤ exp

{
tr(L)−

M∑
n=1

λn

}[ M∏
n=1

(1 + λn)

]
.

Proposition 3.2. Let λ1:∞ be the eigenvalues of kernel L.
Then

ek(λ1:M ) ≤ ek(λ1:∞) (17)

and

ek(λ1:∞) ≤
k∑
j=0

(tr(L)−
∑M
n=1 λn)j

j!
ek−j(λ1:M ) .

Note that the expression tr(L) in the bounds can be eas-
ily computed as either

∑N
i=1 Lii in the discrete case or∫

Ω
L(x,x)dx in the continuous case.

4. Method of Moments
In this section, we derive a set of DPP moments that can be
used in a variety of ways. For example, we can compute the
theoretical moments associated with each of our posterior
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Figure 2. Normalizer bounds for a discrete DPP (left) and a 10-
DPP (right) with Gaussian quality and similarity as in Eqs. (11)
and (12) and Ω a grid of 3600 points.

samples and use these as summary statistics in assessing
convergence of the MCMC sampler, e.g., via Gelman-Rubin
diagnostics (Gelman & Rubin, 1992). Likewise, if we ob-
serve that these posterior-sample-based moments do not
cover the empirical moments of the data, this can usefully
hint at a lack of posterior consistency and a potential need
to revise the misspecified prior.

In the discrete case, we first need to compute the marginal
probabilities. Borodin (2009) shows that the marginal ker-
nel, K, can be computed directly from L:

K = L(I + L)−1 . (18)

The mth moment can then be calculated via

E[xm] =

N∑
i=1

xmi K(xi,xi) . (19)

In the continuous case, given the eigendecomposition of the
kernel operator, L(x,y) =

∑∞
n=1 λnφn(x)∗φn(y) (where

φn(x)∗ denotes the complex conjugate of the nth eigenfunc-
tion), the mth moment is

E[xm] =

∫
Ω

∞∑
n=1

λn
λn + 1

xmφn(x)2dx . (20)

Note that Eq. (20) generally cannot be evaluated in closed
form since the eigendecompositions of most kernel opera-
tors are not known. However, in certain cases, such as the
Gaussian kernel of Sec. 5.1 with eigenfunctions given by
Hermite polynomials, the moments can be directly com-
puted. In the Supplement, we derive the mth moment for
this Gaussian kernel setting.

Unfortunately, the method of moments can be challenging
to use for direct parameter learning since Eqs. (19) and (20)
rarely yield analytic forms that are solvable for Θ. In low
dimensions, Θ can be estimated numerically, but it is an
open question to estimate these moments for large-scale
problems.
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Figure 3. For a continuous DPP with Gaussian quality and similarity, from left to right: Posterior samples of α, ρ and σ, and associated
zeroth and second moments. The top row are samples from Scenario (i) (blue) and Scenario (ii) (green) while the second row are samples
from Scenario (iii). Red lines indicate the true parameter values that generated the data and their associated theoretical moments. The
y-axis scaling aims to place all scenarios on equal footing.

5. Experiments
5.1. Simulations

We provide an explicit example of Bayesian learning for a
continuous DPP with the kernel defined by

q(x) =
√
α

D∏
d=1

1
√
πρd

exp

{
− x2

d

2ρd

}
(21)

k(x,y) =

D∏
d=1

exp

{
− (xd − yd)2

2σd

}
, x,y ∈ RD. (22)

Here, Θ = {α, ρd, σd} and the eigenvalues of the operator
L(Θ) are given by (Fasshauer & McCourt, 2012),

λm(Θ) = α

D∏
d=1

√
1

β2
d+1

2 + 1
2γd

(
1

γd(β2
d + 1) + 1

)md−1

,

(23)
where γd = σd

ρd
, βd = (1 + 2

γd
)

1
4 , and m = (m1, . . . ,mD)

is a multi-index. Furthermore, the trace of L(Θ) can be
easily computed as

tr(L(Θ)) =

∫
Rd

α

D∏
d=1

1

πρd
exp

{
− x2

d

2ρd

}
dx = α . (24)

We test our Bayesian learning algorithms on simulated data
generated from a 2-dimensional isotropic kernel (σd = σ,
ρd = ρ for d = 1, 2) using Gibbs sampling (Affandi et al.,
2013a). We then learn the parameters under weakly infor-
mative inverse gamma priors on σ, ρ and α. Details are
in the Supplement. We consider the following simulation
scenarios:

(i) 10 DPP samples with average number of points=18
using (α, ρ, σ) = (1000, 1, 1)

(ii) 1000 DPP samples with average number of points=18
using (α, ρ, σ) = (1000, 1, 1)

(iii) 10 DPP samples with average number of points=77
using (α, ρ, σ) = (100, 0.7, 0.05).

Fig. 3 shows trace plots of the posterior samples for all three
scenarios. In the first scenario, the parameter estimates vary
wildly whereas in the other two scenarios, the posterior
estimates are more stable. In all cases, the zeroth and sec-
ond moment estimated from the posterior samples are in
the neighborhood of the corresponding empirical moments.
This leads us to believe that the posterior is broad when we
have both a small number of samples and few points in each
sample. The posterior becomes more peaked as the total
number of points increases. The stationary similarity kernel
allows us to garner information either from few sets with
many points or many sets of few points.

Dispersion Measure In many applications, we are inter-
ested in quantifying the overdispersion of point process data.
In spatial statistics, a standard dispersion measure is the
Ripley K-function (Ripley, 1977). We instead aim to use
the learned DPP parameters (encoding repulsion) to quan-
tify overdispersion. Importantly, our measure should be
invariant to scaling. In the Supplement we derive that, as
the data are scaled from x to ηx, the parameters scale from
(α, σi, ρi) to (α, ησi, ηρi). This suggests that an appropriate
scale-invariant repulsion measure is γi = σi/ρi.

5.2. Applications

5.2.1. DIABETIC NEUROPATHY

Recent breakthroughs in skin tissue imaging have spurred
interest in studying the spatial patterns of nerve fibers in
diabetic patients. It has been observed that these nerve fibers
become more clustered as diabetes progresses. Waller et al.
(2011) previously analyzed this phenomena based on 6 thigh
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Figure 4. Nerve fiber samples. Clockwise: (i) Normal subject,
(ii) Mildly Diabetic Subject 1, (iii) Mildly Diabetic Subject 2,(iv)
Moderately Diabetic subject, (v) Severely Diabetic Subject 1 and
(vi) Severely Diabetic Subject 2.

nerve fiber samples. These samples were collected from 5
diabetic patients at different stages of diabetic neuropathy
and one healthy subject. On average, there are 79 points
in each sample (see Fig. 4). Waller et al. (2011) analyzed
the Ripley K-function and concluded that the difference
between the healthy and severely diabetic samples is highly
significant.

We instead study the differences between these samples by
learning the kernel parameters of a DPP and quantifying
the level of repulsion of the point process. Due to the small
sample size, we consider a 2-class study of Normal/Mildly
Diabetic versus Moderately/Severely Diabetic. We perform
two analyses. In the first, we directly quantify the level of
repulsion based on our scale-invariant statistic, γ = σ/ρ
(see Sec. 5.1). In the second, we perform a leave-one-out
classification by training the parameters on the two classes
with one sample left out. We then evaluate the likelihood
of the held-out sample under the two learned classes. We
repeat this for all six samples.

We model our data using a 2-dimensional continuous DPP
with Gaussian quality and similarity as in Eqs. (21) and
(22). Since there is no observed preferred direction in the
data, we use an isotropic kernel (σd = σ and ρd = ρ for
d = 1, 2). We place weakly informative inverse gamma pri-
ors on (α, ρ, σ), as specified in the Supplement, and learn
the parameters using slice sampling with eigenvalue bounds
as outlined in Sec. 3.3. The results shown in Fig. 5 indicate
that our γ measure clearly separates the two classes, concur-
ring with the results of Waller et al. (2011). Furthermore,
we are able to correctly classify all six samples. While the
results are preliminary, being based on only six observations,
they show promise for this task.

5.2.2. DIVERSITY IN IMAGES

We also examine DPP learning for quantifying how visual
features relate to human perception of diversity in different
image categories. This is useful in applications such as
image search, where it is desirable to present users with a

set of images that are not only relevant to the query, but
diverse as well.

Building on work by Kulesza & Taskar (2011a), three image
categories—cars, dogs and cities—were studied. Within
each category, 8-12 subcategories (such as Ford for cars,
London for cities and poodle for dogs) were queried from
Google Image Search and the top 64 results were retrieved.
For a subcategory subcat, these images form our base set
Ωsubcat. To assess human perception of diversity, annotated
sets of size six were generated from these base sets. How-
ever, it is challenging to ask a human to coherently select
six diverse images from a set of 64 total. Instead, Kulesza &
Taskar (2011a) generated a partial result set of five images
from a 5-DPP on each Ωsubcat with a kernel based on the
SIFT256 features (see the Supplement). Human annotators
(via Amazon Mechanical Turk) were then presented with
two images selected at random from the remaining subcate-
gory images and asked to add the image they felt was least
similar to the partial result set. These experiments resulted
in about 500 samples spread evenly across the different
subcategories.

We aim to study how the human annotated sets differ
from the top six Google results, Top-6. As in Kulesza
& Taskar (2011a), we extracted three types of features from
the images—color features, SIFT descriptors (Lowe, 1999;
Vedaldi & Fulkerson, 2010) and GIST descriptors (Oliva
& Torralba, 2006) described in the Supplement. We denote
these features for image i as f colori , fSIFTi , and fGISTi , re-
spectively. For each subcategory, we model our data as a
discrete 6-DPP on Ωsubcat with kernel

Lsubcat
i,j = exp

{
−
∑
feat

‖f feati − f featj ‖22
σcat
feat

}
(25)

for feat ∈ {color,SIFT,GIST} and i, j indexing the 64
images in Ωsubcat. Here, we assume that each category has
the same parameters across subcategories, namely, σcat

feat for
subcat ∈ cat and cat ∈ {cars,dogs, cities}.

To learn from the Top-6 images, we consider the samples
as being generated from a 6-DPP. To emphasize the human
component of the 5-DPP + human annotation sets, we
examine a conditional 6-DPP (Kulesza & Taskar, 2012) that
fixes the five partial results set images and only considers
the probability of adding the human-annotated image. The
Supplement provides details on this conditional k-DPP.

All subcategory samples within a category are assumed to
be independent draws from a DPP on Ωsubcat with kernel
Lsubcat parameterized by a shared set of σcat

feat. As such,
each of these samples equally informs the posterior of σcat

feat.
We samples the posterior of the 6-DPP or conditional 6-
DPP kernel parameters using slice sampling with weakly
informative inverse gamma priors on the σcat

feat. Details are
in the Supplement.
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Figure 5. Left: Repulsion measure, γ. Right: Leave-one-out log-likelihood of each sample in Fig. 4 (in the same order) under the two
learned DPP classes: Normal/Mildly Diabetic (left box) and Moderately/Severely Diabetic (right box).

Fig. 6 shows a comparison between σcat
feat learned from the

human annotated samples (conditioning on the 5-DPP par-
tial result sets) and the Top-6 samples for different cate-
gories. The results indicate that the 5-DPP + human anno-
tated samples differs significantly from the Top-6 samples
in the features judged by human to be important for diver-
sity in each category. For cars and dogs, human annotators
deem color to be a more important feature for diversity than
the Google search engine based on their Top-6 results. For
cities, on the other hand, the SIFT features are deemed
more important by human annotators than by Google. Keep
in mind, though, that this result only highlights the diversity
components of the results while ignoring quality. In real life
applications, it is desirable to combine both the quality of
each image (as a measure of relevance of the image to the
query) and the diversity between the top results. Regardless,
we have shown that DPP kernel learning can be informative
of judgements of diversity, and this information could be
used (for example) to tune search engines to provide results
more in accordance with human judgement.

6. Conclusion
Determinantal point processes have become increasingly
popular in machine learning and statistics. While many
important DPP computations are efficient, learning the pa-
rameters of a DPP kernel is difficult. This is due to the
fact that not only is the likelihood function non-convex,
but in many scenarios the likelihood and its gradient are
either unknown or infeasible to compute. We proposed
Bayesian approaches using MCMC for inferring these pa-
rameters. In addition to providing a characterization of the
posterior uncertainty, these algorithms can be used to deal
with large-scale discrete and continuous DPPs based solely
on likelihood bounds. We demonstrated the utility of learn-
ing DPP parameters in studying diabetic neuropathy and
evaluating human perception of diversity in images.
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Figure 6. For the image diversity experiment, boxplots of posterior
samples of (rom left to right) σcat

color, σ
cat
SIFT and σcat

GIST. Each plot
shows results for human annotated sets (left) versus Google Top 6
(right). Categories from top to bottom: (a) cars, (b) dogs and (c)
cities.
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