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Abstract

This work provides simple algorithms for multi-
class (and multi-label) prediction in settings
where both the number of examples n and the
data dimension d are relatively large. These ro-
bust and parameter free algorithms are essen-
tially iterative least-squares updates and very ver-
satile both in theory and in practice. On the the-
oretical front, we present several variants with
convergence guarantees. Owing to their effective
use of second-order structure, these algorithms
are substantially better than first-order methods
in many practical scenarios. On the empirical
side, we show how to scale our approach to high
dimensional datasets, achieving dramatic com-
putational speedups over popular optimization
packages such as Liblinear and Vowpal Wabbit
on standard datasets (MNIST and CIFAR-10),
while attaining state-of-the-art accuracies.

1. Introduction
The aim of this paper is to develop robust and scalable
algorithms for multi-class classification problems with k
classes, where the number of examples n and the number
of features d is simultaneously quite large. Typically, such
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problems have been approached by the minimization of a
convex surrogate loss, such as the multiclass hinge-loss or
the multiclass logistic loss, or reduction to convex binary
subproblems such as one-versus-rest. Given the size of the
problem, (batch or online) first-order methods are typically
the methods of choice to solve these underlying optimiza-
tion problems. First-order updates easily scale to large d.
To deal with the large number of examples, online meth-
ods are very appealing in the single machine setting, while
batch methods are often preferred in distributed settings.

Empirically however, these first-order approaches are of-
ten found to be lacking. Many natural high-dimensional
data such as images, audio, and video typically result in
ill-conditioned optimization problems. While each itera-
tion of a first-order method is fast, the number of iterations
needed unavoidably scale with the condition number of the
data matrix (Nemirovsky & Yudin, 1983), even for simple
generalized linear models (henceforth GLM).

A natural alternative in such scenarios is to use second-
order methods, which are robust to the conditioning of
the data. In this paper, we present simple second-order
methods for multiclass prediction in GLMs. The meth-
ods are parameter free, robust in practice and admit easy
extensions. As an example, we show a more sophisti-
cated variant which learns the unknown link function in
the GLM simultaneously with the weights. Finally, we
also present a wrapper algorithm which tackles the difficul-
ties typically encountered in applying second-order meth-
ods to high-dimensional problems. This can be viewed as
a block-coordinate descent style stagewise regression pro-
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cedure that incrementally solves least-squares problems on
small batches of features. The result of this overall devel-
opment is a suite of techniques that are simple, versatile and
substantially faster than several other state-of-the-art opti-
mization methods. Finally, we empirically find that in ill-
conditioned datasets, such as images, these methods con-
sistently outperform first-order methods in generalization.

Our Contributions: Our work has three main contri-
butions. Working in the GLM framework: E[y | x] =
g(Wx), where y is a vector of predictions, W is the weight
matrix, and g is the vector valued link function, we present
a simple second-order update rule. The update is based
on a majorization of the Hessian, and uses a scaled ver-
sion of the empirical second moment 1

n

∑
i xix

T
i as the

preconditioner. Our algorithm is parameter-free and does
not require a line search for convergence. Furthermore
our computations only involve a d× d matrix unlike IRLS
and other Hessian related approaches where matrices are
O(dk × dk) for multiclass problems1. Theoretically, the
proposed method enjoys an iteration complexity indepen-
dent of the condition number of the data matrix.

We extend our algorithm to simultaneously estimate the
weights as well as the link function in GLMs under a para-
metric assumption on the link function, building on ideas
from isotonic regression (Kalai & Sastry, 2009; Kakade
et al., 2011). We provide a global convergence guarantee
for this algorithm despite the non-convexity of the problem.
Practically this enables, for example, the use of our current
predictions as features to improve the predictions in subse-
quent iterations. Similar procedures are common for binary
SVMs (Platt, 1999) and re-ranking(Collins & Koo, 2000).

Both the above algorithms are metric free but scale poorly
with the dimensionality of the problem.Following ideas in
the block-coordinate descent and stagewise regression lit-
erature, we generate batches of features (through projec-
tion or subsampling) and perform one of the above second-
order updates on that batch only. We then repeat this pro-
cess, successively fitting the residuals. In settings where the
second order information is relevant, such as MNIST and
CIFAR-10, we find that stagewise variants can be highly
effective, providing orders of magnitude speed-ups over
online methods and other first-order approaches. This is
particularly noteworthy since we compare a simple MAT-
LAB implementation of our algorithms with sophisticated
C software for the alternative approaches. In contrast, for
certain text problems where the data matrix is well condi-
tioned, online methods are highly effective. Notably, we
also achieve state of the art accuracy results on MNIST and
CIFAR-10, outperforming the “dropout” neural net (Hin-

1This is a critical distinction as we focus on tasks involving
increasingly complex class hierarchies, particularly in the context
of computer vision problems.

ton et al., 2012), where our underlying optimization proce-
dures are entirely based on simple least squares approaches.
These promising results highlight that this is a fruitful av-
enue for the development of further theory and algorithms,
which we leave for future work.

Related Work: A large chunk of the work on large-scale
optimization builds on and around online and stochastic
optimization, leveraging the ability of these algorithms
to ensure a very rapid initial reduction of test error (see
e.g. (Bottou & Bousquet, 2008; Shalev-Shwartz, 2012)).
These methods can be somewhat unsuited though for ill-
conditioned problems, leading to recent works on hybrid
methods (Shalev-Shwartz & Zhang, 2013; Roux et al.,
2012). There has also been a renewed interest in Quasi-
Newton methods scalable to statistical problems using
stochastic approximation ideas (Byrd et al., 2011; Bor-
des et al., 2009). High-dimensional problems have also
led to natural consideration of block coordinate descent
style procedures, both in serial (Nesterov, 2012) and dis-
tributed (Richtárik & Takác, 2012; Recht et al., 2011) set-
tings. Indeed, in some of our text experiments, our stage-
wise procedure comes quite close to a block-coordinate
descent type update. There are also related approaches
for training SVMs that extract the most information out
of a small subset of data before moving to the next batch
(Chapelle, 2007; Matsushima et al., 2012; Yu et al., 2012).

On the statistical side, our work most directly generalizes
past works on learning in GLMs for binary classification,
when the link function is known or unknown (Kalai & Sas-
try, 2009; Kakade et al., 2011; Friedman, 2001). In the
statistics literature, the iteratively reweighed least squares
algorithm (IRLS) is the workhorse for fitting GLMs and
also works by recasting the optimization problem to a se-
ries of least squares problems. However, IRLS can diverge,
while the proposed algorithms are guaranteed to make
progress on each iteration. In IRLS (and some other ma-
jorization algorithms e.g., (Jebara & Choromanska, 2012))
each iteration needs to work with a new Hessian since it
depends on the parameters. In contrast, our algorithms use
the same matrix throughout their run.

2. Setting and Algorithms
We begin with the simple case of binary GLMs, before ad-
dressing the more challenging multi-class setting.

2.1. Warmup: Binary GLMs

The canonical definition of a GLM in binary classification
(where y ∈ {0, 1}) setup posits the probabilistic model

E[y | x] = g(w∗Tx), (1)
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where g : R 7→ R is a monotone increasing function,
and w∗ ∈ Rd. To facilitate the development of better algo-
rithms, assume that g is a L-Lipschitz function of its uni-
variate argument. Since g is a monotone increasing univari-
ate function, there exists a convex function Φ : R 7→ R
such that Φ′ = g. Based on this convex function, let us
define a convex loss function.
Definition 1 (Calibrated loss). Given the GLM (1), define
the associated convex loss

`(w; (x, y)) = Φ(wTx)− ywTx. (2)

Up to constants independent of w, this definition yields the
least-squares loss for the identity link function, g(u) = u,
and the logistic loss for the logit link function, g(u) =
eu/(1 + eu). The loss is termed calibrated: for each x,
minimizing the above loss yields a consistent estimate of
the weights w∗. Trivially:

E[∇`(w∗; (x, y)) | x] = E[∇Φ(w∗Tx)− xy|x]

(a)
= E[g(w∗Tx)x | x]− g(w∗Tx)x = 0, (3)

where the equality (a) follows since Φ′ = g and E[y | x] =
g(w∗x) by the probabilistic model (1). Similar observa-
tions have been previously noted for the binary case (see
Kakade et al. (2011)). Computing the optimal w∗ amounts
to using a standard convex optimization procedure. We
now discuss these choices for multi-class prediction.

2.2. Multi-class GLMs and Minimization Algorithms

The first question in the multi-class case concerns the def-
inition of a generalized linear model; monotonicity is not
immediately extended in the multi-class setting. Follow-
ing the definition in the recent work of Agarwal (2013), we
extend the binary case by defining the model:

E[y | x] = ∇Φ(W ∗x) := g(W ∗x) (4)

where W ∗ ∈ Rk×d is the weight matrix, Φ : Rk 7→ R
is a proper and convex lower semicontinuous function of
k variables and y ∈ Rk is a vector with 1 for the correct
class and zeros elsewhere. This definition essentially cor-
responds to the link function g = ∇Φ satisfying (maximal
and cyclical) monotonicity (Rockafellar, 1966).

This formulation immediately yields an analogous defini-
tion for a calibrated multi-class loss.
Definition 2 (Calibrated multi-class loss). Given the
GLM (4), define the associated convex loss

`(W ; (x, y)) = Φ(Wx)− yTWx. (5)

The loss function is convex as before and yields, for ex-
ample, the multi-class logistic loss when the probabilistic
model (4) is a multinomial logit model. It is Fisher consis-
tent: the minimizer of the expected loss is W ∗ (as in (3)).

As before, existing convex optimization algorithms can be

utilized to estimate the weight matrix W . First-order meth-
ods applied to the problem have per-iteration complexity of
O(dk), but can require a large number of iterations as dis-
cussed before. Here, the difficulty in utilizing second-order
approaches is that the Hessian is of size dk × dk (e.g. as
in IRLS); any direct matrix inversion method is now much
more computationally expensive even for moderate k.

Algorithm 1 provides a simple variant of least squares re-
gression — which repeatedly fits the residual error — that
exploits the second order structure in x. The algorithm
uses a block-diagonal upper bound on the Hessian matrix
in order to preserve the correlations between the covariates
x, but does not consider interactions across the different
classes to have a more computationally tractable update.
The algorithm has several attractive properties. Notably, (i)
the algorithm is parameter free2 and (ii) the algorithm only
inverts a d × d matrix. Furthermore, this matrix is inde-
pendent of the weights W (and the labels) and can be com-
puted once ahead of time. In that spirit, the algorithm can
also be viewed as preconditioned gradient descent, with a
block diagonal preconditioner whose diagonal blocks are
all equal to the matrix Σ̂−1. At each step, we utilize the
residual error Ê[(ŷ − y)xT ], akin to a gradient update on
least-squares loss. Note the “stepsize” here is determined
by L, a parameter entirely dependent on the loss function
and not on the data. For the case of logistic regression, sim-
ply L = 1 satisfies this Lipchitz constraint. Also observe
that for the square loss, where L = 1, the generalized least
squares algorithm reduces to least squares (and terminates
in one iteration).

We now describe the convergence properties of Algo-
rithm 1. The results are stated in terms of the sample loss

`n(w) =
1

n

n∑
i=1

`(W ; (xi, yi)). (7)

The following additional assumptions regarding the link
function ∇Φ are natural for characterizing convergence
rates. Assuming that the link function g = ∇Φ is L-
Lipschitz amounts to the condition

‖g(u)− g(v)‖2 ≤ L‖u− v‖2, where u, v ∈ Rk. (8)

If we want a linear convergence rate, we must further as-
sume µ-strong monotonicity, meaning for all u, v ∈ Rk:

〈g(u)− g(v), u− v〉 ≥ µ‖u− v‖22. (9)

Theorem 1. Define W ∗ = arg minW `n(W ). Suppose
that the link function∇Φ is L-Lipschitz (8). Using the gen-
eralized Least Squares updates (Algorithm 1) withW0 = 0,

2Here and below we refer to parameter free algorithms from
the point of view of optimization: no learning rates, backtracking
constants etc. The overall learning algorithms may still require
setting other parameters, such as the regularizer.
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Algorithm 1 Generalized Least Squares
Input: Initial weight matrixW0, data {(xi, yi)}, Lipschitz

constant L, link g = ∇Φ.

Define the (vector valued) predictions ŷ(t)
i = g(Wtxi)

and the empirical expectations:

Σ̂ = Ê[xix
T
i ] =

1

n

n∑
i=1

xix
T
i

Ê[(ŷ(t) − y)xT ] =
1

n

n∑
i=1

(ŷ
(t)
i − yi)x

T
i

repeat
Update the weight matrix Wt:

WT
t+1 = WT

t −
1

L
Σ̂−1 Ê[(ŷ(t) − y)xT ] (6)

until convergence

then for all t = 1, 2, . . .

`n(Wt)− `n(W ∗) ≤ 2L‖W ∗‖2

t+ 4
.

If, in addition, the link function is µ-strongly monotone (9)
and let κΦ = L/µ. Then

`n(Wt)− `n(W ∗) ≤ L

2

(
κΦ − 1

κΦ + 1

)t
‖W ∗‖2F .

The proof rests on demonstrating that the block-diagonal
matrix formed by copies of LΣ̂ provides a majorization of
the Hessian matrix, along with standard results in convex
optimization (see e.g. (Nesterov, 2004)) and is deferred to
the long version (Agarwal et al., 2013). Also, observe that
the convergence results in Theorem 1 are completely inde-
pendent of the conditioning of the data matrix Σ̂. Indeed
they depend only on the smoothness and strong convexity
properties of Φ which is a function we know ahead of time
and control. This is the primary benefit of these updates
over first-order updates.

In order to understand these issues better, let us quickly
contrast these results to the analogous ones for gradi-
ent descent. In that case, we get qualitatively simi-
lar dependence on the number of iterations. However,
in the case of Lipschitz ∇Φ, the convergence rate is
O
(
L
t σmax

(
XXT

n

)
‖W ∗‖2

)
. Under strong monotonicity,

the rate improves to O
(
L
(
κΦκXXT − 1

κΦκXXT + 1

)t)
. That is, the

convergence rate is slowed down by factors depending on
the singular values of the empirical covariance in both the
cases. Similar comparisons can also be made for acceler-
ated versions of both our and vanilla gradient methods.

Algorithm 2 Calibrated Least Squares
Input: Initial weight matrix W0, set of calibration func-

tions G = {g1, . . . gm} (gi : Rk → Rk)

Initialize the predictions: ŷ(0)
i = W0xi

repeat
Fit the residual:

Wt = arg min
W

n∑
i=1

‖yi − ŷ(t−1)
i −Wxi‖22, and

ỹ
(t)
i = ŷ

(t−1)
i +Wtxi. (10)

Calibrate ỹ(t): Define ui = [g1(ỹ
(t)
i ), . . . , gm(ỹ

(t)
i )]>

W̃t = arg min
W̃∈Rk×mk

n∑
i=1

‖yi − W̃ui‖22, and

ŷ
(t)
i = clip(W̃tui), (11)

where clip(v) is the Euclidean projection of v onto the
probability simplex in Rk.

until convergence

2.3. Unknown Link Function for Multi-class

The more challenging case is when the link function is un-
known. Our approach will generalize the Isotron algorithm
for the binary case (Kalai & Sastry, 2009). In particular
we will iterate between fitting y and finding the best link
function to calibrate our predictions. This raises two main
difficulties: the statistical one of how to restrict the com-
plexity of the class of link functions and the computational
one of ensuring that this procedure convergences globally.

With regards to the former, a natural restriction is to con-
sider the class of link functions realized as the derivative of
a convex function in k-dimensions. This naturally extends
Isotron but, unfortunately, this is an extremely rich class;
the sample complexity of estimating a uniformly bounded
convex, Lipschitz function in k dimensions grows expo-
nentially with k (Bronshtein, 1976). To avoid this curse of
dimensionality, assume that there is a finite basis G such
that g−1 = (∇Φ)−1 ∈ lin(G), (∇Φ)−1 is the functional
inverse of ∇Φ. Without loss of generality, we also assume
that G always contains the identity function. We do not
consider the issue of approximation error here.

Before presenting the algorithm, let us provide some more
intuition about our assumption g−1 = (∇Φ)−1 ∈ lin(G).
Clearly the case of G = g−1 for a fixed function g puts
us in the setting of the previous section. More generally,
let us consider that G is a dictionary of p functions so that
g−1(y) =

∑p
i=1 w̃iGi(y), where Gi : Rk 7→ Rk. In the
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GLM (4), this yields an overall linear-like model3
p∑
i=1

W̃iGi(E[Y |x]) = W ∗x.

If we let p = k and Gi(y) be the ith class indicator yi, then
the above equation boils down to

W̃TE[Y |x] = W ∗x, (12)

meaning that an unknown linear combination of the class-
conditional probabilities is a linear function of the data.
More generally, we consider Gi to also have higher-order
monomials such as y2

i or y3
i so that the LHS is some low-

degree polynomial of the class-conditional probability with
unknown coefficients.

Now, the computational issue is to efficiently form accurate
predictions (as in the binary case (Kalai & Sastry, 2009),
the problem is not convex). We now describe a simple strat-
egy for simultaneously learning the weights as well as the
link function, which not only improves the square loss at
every step, but also converges to the optimal answer, and
empirically in very few steps. The strategy maintains two
sets of weights, Wt ∈ Rk×d and W̃t ∈ Rk×dim(G) and
maintains our current predictions ŷ(t)

i ∈ Rk for each data
point i = 1, 2, . . . , n. After initializing all the predictions
and weights to zero, the updates shown in Algorithm 2 in-
volve two alternating least squares steps. The first step fits
the residual error to x using the weights Wt. The second
step then fits y to functions of updated predictions, i.e. to
G(ỹ(t)). Finally, we project onto the unit simplex to obtain
the new predictions, which can only decrease the squared
error and can be done in O(k) time (Duchi et al., 2008).

In the context of the examples of Gi mentioned above, the
algorithm boils down to predicting the conditional proba-
bility of Y = i given x, based not only on x, but also on
our current predictions for all the classes (and higher de-
gree polynomials in these predictions).

For the analysis of Algorithm 2, we focus on the noiseless
case to understand the optimization issues. Analyzing the
statistical issues, where there is noise, can be handled using
ideas in (Kalai & Sastry, 2009; Kakade et al., 2011).

Theorem 2. Suppose that yi = g(W ∗xi) and that the
link function g = ∇Φ satisfies the Lipschitz and strong
monotonicity conditions (8) and (9) with constants L and
µ respectively. Suppose also that ∇Φ(0) = 11/k. Using
the (calibrated) Least Squares updates (Algorithm 2) with
W0 = 0, for all t = 1, 2, . . . we have the bound

1

n

n∑
i=1

‖ŷ(t)
i − yi‖

2
2 ≤

22kκ2
Φ

t
.

3It is not a linear model since the statistical noise passes
through the functions Gi rather than being additive.

Algorithm 3 Stagewise Regression
Input: data {(xi, yi)}, batch generator GEN, batch size p,

iterations T

Initialize predictions: ŷ(1)
i = 0

for t = 1, . . . , T do
Generate p features from the original ones

{x̃i} = GEN({xi}, p)

Run Algorithm 1 or 2 on {(x̃i, yi − ŷ(t)
i )} and get Wt

Update predictions: ŷ(t+1)
i = ŷ

(t)
i +Wtx̃i

end for

We again emphasize the fact that the updates (10) and (11)
only require the solution of least-squares problems in a sim-
ilar spirit as Algorithm 1. Finally, we note that the rules to
compute predictions in our updates( (10) and (11)) require
previous predictions (i.e. the learned model is not proper in
that it does not actually estimate g, yet it is still guaranteed
to make accurate predictions).

2.4. A Scalable Wrapper Algorithm

When the number of features is large, any optimization al-
gorithm that scales superlinearly with the problem dimen-
sion faces serious computational issues. Here we propose
a simple way to scale the previous algorithms to high di-
mensional problems. We adopt a block coordinate descent
style approach. To keep the presentation fairly general, we
assume that we have an algorithm GEN that returns a small
set of m features, where m is small enough so that least
squares fitting with m features is efficient (e.g. we typi-
cally use m ≈ 1000). The GEN procedure can be as sim-
ple as sampling m of the original features (with or with-
out replacement) or other schemes such as random Fourier
features (Rahimi & Recht, 2007). We call GEN and fit a
model on the m features using either Algorithm 1 or Al-
gorithm 2. We then compute residuals and repeat the pro-
cess on a fresh batch of m features returned by GEN. In
Algorithm 3 we provide pseudocode for this stagewise re-
gression procedure. We stress that this algorithm is purely
a computational convenience. It can be thought as the algo-
rithm that would result by a block-diagonal approximation
of the second moment matrix Σ (not just across classes, but
also groups of features). Algorithm 3 bears some resem-
blance to boosting and related coordinate descent methods,
with the crucial difference that GEN is not restricted to
searching for the best set of features. Indeed, in our exper-
iments GEN is either sampling from the features without
replacement or randomly projecting the data in m dimen-
sions and transforming each of the m dimension by a sim-
ple non-linearity. Despite its simplicity, more work needs
to be done to theoretically understand the properties of this



Least Squares Revisited

6 7 8 9 10 11 12 13

0.012

0.014

0.016

0.018

0.02

0.022

0.024

C
la

ss
ifi

ca
tio

n 
er

ro
r

Runtime log2(seconds)

 

 

calibrate block 512
calibrate block 1024
linear block 512
linear block 1024
logistic block 512
logistic block 1024

Figure 1. Runtime versus test error for different algorithms

variant as clearly as those of Algorithm 1 or Algorithm 2.
Practically, stagewise regression can have useful regular-
ization properties but these can be subtle and greatly de-
pend on the GEN procedure. In text classification, for ex-
ample, fitting the most frequent words first leads to better
models than fitting the least frequent words first.

3. Experiments
We consider four datasets MNIST, CIFAR-10, 20 News-
groups, and RCV1 that capture many of the challenges en-
countered in real-world learning tasks. We believe that the
lessons gleaned from our analysis and comparisons of per-
formance on these datasets apply more broadly.

For MNIST, we compare our algorithms with a variety of
standard algorithms. Both in terms of classification ac-
curacy and optimization speed, we achieve close to state
of the art performance among permutation-invariant meth-
ods (1.1% accuracy, improving upon methods such as the
“dropout” neural net). For CIFAR-10, we also obtain
nearly state of the art accuracy (> 85%) using standard
features. Here, we emphasize that it is the computational
efficiency of our algorithms which enables us to achieve
higher accuracy without novel feature-generation.

The story is rather different for the two text datasets, where
the performance of our methods is less competitive with
online approaches, though we do demonstrate substantial
reduction in error rate in one of the problems. As men-
tioned in the introduction, second order learning is less ap-
pealing for well conditioned datasets such as text.

3.1. MNIST

Nonlinear classifiers are needed to achieve state-of-the-art
performance in MNIST dataset. Although it only con-
tains 60K data points, the requirement for nonlinearity
makes this dataset computationally challenging. For in-
stance, a nonlinear support vector machine with a Gaus-

sian RBF kernel needs to manipulate a 60K×60K kernel
matrix; requiring substantial computation and memory in
most modern desktop machines. Hence we use an explicit
feature representation and train our classifiers in the pri-
mal space. Specifically we construct random fourier fea-
tures which are known to approximate the Gaussian kernel
k(x, x′) = exp(−‖x − x′‖2/s) (Rahimi & Recht, 2007)
(more details in the long version (Agarwal et al., 2013)).

We start by comparing linear regression with Algorithm 1
(Logistic), and Algorithm 2 (Calibration). For Calibration,
we use a basis G(y) consisting of y, y2 and y3 (applied
elementwise to the vector y). We compare these algorithms
on raw pixel features, as well as small number of random
Fourier features described above. As seen in Table 1, the
performance of Logistic and Calibration seems similar and
consistently superior to plain linear regression.

Next, we move to improve accuracy by using Algorithm 3,
which allows us to scale up to larger number of random
Fourier features. Concretely, we fit blocks of features (ei-
ther 512 and 1024) with Algorithm 3 with three alternative
update rules on each stage: linear regression, Calibration,
and Logistic (50 inner loop iterations). Our calibrated vari-
ant again uses the functions y, y2 and y3 of previous pre-
dictions as additional features in our new batch of features.

Our next experiment demonstrates that all three (extremely
simple and parameter free) algorithms quickly achieve state
of the art performance. Figure 1 shows the relation between
feature block size, classification test error, and runtime for
these algorithm variants. Importantly, while the linear and
Calibration algorithms do not achieve as low an error for a
fixed feature size (cf. Table 1), they are faster to optimize
and are more effective overall. Recall that we used 50 in-
ner loop iterations for Logistic hence it appears to not make
as much progress as the other methods. Given enough
time however, Logistic can reach a test error of 1.1% (not
shown). In general we find that linear regression and rel-
atively small size feature batches achieves better runtime
and error trade-off than logistic regression while Calibra-
tion further improves upon these results.

In our next experiment, we compare the previous three vari-
ants to other state-of-the-art algorithms in terms of classifi-
cation test error and runtime (Figure 2(a) and (b)). We used
the default convergence criteria for these other implemen-
tations. Perhaps, given enough time, they could also reach

Table 1. Linear Regression vs. logistic regression vs. (polyno-
mial) calibration. For the polynomial calibration, we refit our
predictions with ŷ, ŷ2 and ŷ3.

Algorithm Linear Logistic (poly.) Calibration
Raw pixels 14.1% 7.8% 8.1%
4000 dims 1.83 % 1.48 % 1.54 %
8000 dims 1.48% 1.33% 1.36%
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Figure 2. (a) Error comparison between our variants, VW and six variants of Liblinear: L2-regularized logistic regression, L2-regularized
L2-loss support vector classification (dual), L2-regularized L2-loss support vector classification (primal), L2-regularized L1-loss support
vector classification (dual), multi-class support vector classification by Crammer and Singer, L1-regularized L2-loss support vector
classification. Dotted line is 1.1% test error. For competing methods, we picked best value of regularization parameter. (b) Runtime
comparison in log time.

the same quality solutions that our methods achieve, but
they seem to have been tuned for well-conditioned prob-
lems. The comparison includes VW, and six algorithms
implemented in Liblinear (Fan et al., 2008) (see figure cap-
tion). We searched for regularization paremeters. We timed
these algorithms to measure their computation time, rather
than their loading of the features (which can be rather large,
making it very time consuming to run these experiments);
our stagewise algorithms generate new features on the fly
so this is not an issue (further discussion in the long ver-
sion).

From Figure 2 (a) and (b), Logistic is competitive with all
the other algorithms, in terms of its error (while for lower
dimensions linear and Calibration fared a little worse). In
comparison to VW and Liblinear, the generalization error
of our methods drops quickly as more features are added.
We suspect that more features make the conditioning of
the data worse and the first order methods have to give up
almost all of the improvement in approximation error as
excess optimization error. This raises an interesting issue
as sometimes these methods are believed to be “exact” (in
contrast to our stagewise approach which is obviously an
approximate optimizer). In practice, bad enough condition-
ing can completely defeat first order methods, which may
be forced to terminate early based on lack of progress. Fi-
nally, all of our algorithms were substantially faster. (Note
the logarithmic scaling of the runtime axes).

In conclusion, our methods produce models with a test er-
ror of 1.1% while none of the competitors achieve this test
error (only L1-L2 SVM comes close) Runtime wise, the
stagewise linear and Calibration variants are extremely fast,
consistently at least 10 times faster than the other highly

optimized algorithms. This is particularly notable given the
simplicity of this approach.

3.2. CIFAR-10

The CIFAR-10 dataset is more challenging and many im-
age recognition algorithms have been tested (primarily il-
lustrating different methods of feature generation; our work
instead focuses on the optimization component). Algo-
rithms such as the “dropout” and “maxout” (Hinton et al.,
2012; Goodfellow et al., 2013) achieve accuracies of 84%
and 87% without dataset augmentation (through jitter or
other transformations). We are able to robustly achieve
over 85% accuracy with linear regression on standard con-
volution features without dataset augmentation.

Figure 3 illustrates the performance when we use two types
of features: convolutions with random masks, or K-means
masks (as in (Coates et al., 2011), though we do not use
contrast normalization). The induced representations are
ill-conditioned and fitting them with Liblinear is extremely
slow. Our methods are simple and easy to embed in a tight
loop together with this (or any) feature generation.

We find that using only about 400 filters, along with poly-
nomial features, is sufficient to obtain over 80% accuracy
very quickly. Hence, using thousands of generated fea-
tures, it is rather fast to build multiple models with disjoint
features and model average them, obtaining 85% accuracy.

3.3. Well-Conditioned Problems

We close by observing that in certain cases, it might be
wasteful to employ our methods. To illustrate, we exam-
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Figure 3. CIFAR-10 results using two types of convolutional features random masks and masks derived from K-means masks. (a)
Generalization vs least square iterations. (b) Generalization vs number of models averaged.
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Figure 4. The fraction of the sum of the top 1000 singular values
that is captured by the top x singular values.

ine two popular multiclass text datasets: 20 newsgroups4

(henceforth NEWS20), which is a 20 class dataset and
a four class version of Reuters Corpus Volume 1 (Lewis
et al., 2004) (henceforth RCV1). We use a (log) term fre-
quency representation of the data (more details in the long
version). These data are sparse and very well conditioned:
The ratio of the 2nd singular value to the 1000th one (as a
proxy for the condition number) is 19.8 for NEWS20 and
14 for RCV1. In contrast, for MNIST, this number is about
72000 (computed with 3000 random Fourier features). Fig-
ure 4 shows the respective normalized spectra.

As expected, online first-order methods (VW) fare far more
favorably in this setting, as seen in Table 2. We use a simple
greedy procedure for our stagewise ordering (as discussed
in the long version, though random also works well). Note
that this data is well suited for online methods: it is sparse
(making the updates cheap) and well conditioned (mak-
ing the gap in convergence between first and second order
methods small). Developing hybrid approaches applicable
to both cases is an interesting direction.

4http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

Table 2. Running times and test errors in text datasets for VW,
Liblinear, and Stagewise regression

NEWS20 RCV1
Method Time %Error Time %Error

VW 2.5 12.4 2.5 2.75
Liblinear 27 13.8 120 2.73
Stagewise 40 11.7 240 2.77

4. Discussion
We presented a suite of fast and simple algorithms for tack-
ling large-scale multiclass prediction problems. We stress
that the key upshot of the methods developed in this work
is their conceptual simplicity and ease of implementation.
Indeed these properties make the methods quite versatile
and easy to extend in various ways. We showed an instance
of this in Algorithm 2. Similarly, it is straightforward to
develop accelerated variants (Nesterov, 2004), by using the
distances defined by the matrix Σ̂ as the prox-function in
Nesterov’s work. These variants enjoy the usual improve-
ments of O(1/t2) iteration complexity in the smooth and√
κΦ dependence in the strongly convex setting, while re-

taining the metric-free nature of Algorithm 1.

It is also easy to extend the algorithms to multi-label set-
tings, with the only difference being that the vector y
now lives on the hypercube instead of the simplex. This
amounts to a minor modification of (11) in Algorithm 2.

Overall, we believe that our approach revisits many old and
deep ideas to develop algorithms that are practically very
effective. We believe that it will be quite fruitful to under-
stand these methods better both theoretically and empiri-
cally in further research.
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