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1. Valid SGLD Estimators

Definition 1. An estimator f(θ, Z;X), where Z is
a set of auxiliary random variables associated with
the estimator, is said to be a valid SGLD estimator
if EZ [f(θ, Z;X)] = ḡ(θ;X), where EZ denotes expec-
tation w.r.t. the distribution p(Z;X) and it has finite
variance VZ [f(θ, Z;X)] <∞.

Proposition 1.1. For each shard s = 1, . . . , S, given
shard size, Ns, and the normalized shard selection
frequency, qs, such that Ns > 0,

∑S
s=1Ns = N ,

qs ∈ (0, 1), and
∑S

s=1 qs = 1, the following estima-
tor is a valid SGLD estimator,

ḡd(θ;Xn
s )

def
=

Ns

Nqs
ḡ(θt;X

n
s ) (1)

where shard s is sampled by a scheduler h(Q) with fre-
quencies Q = {q1, . . . , qS}.

Proof. We first decompose the expectation of the es-
timator E[ḡd(θ;Xn

s )|X] w.r.t. (1) the shard s and (2)
the minibatch Xn

s conditioned on the shard s, as fol-
lows

E[ḡd(θ;Xn
s )|X] = Es[EXn

s
[ḡd(θ;Xn

s )|s]|X]. (2)

Then, plugging Eqn. (1) in Eqn. (2) and rearranging,
we obtain

= Es

EXn
s

 Ns

nNqs

∑
x∈Xn

s

g(θ;x)

∣∣∣∣s
 ∣∣∣∣X
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 Ns

Nqs
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s
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n

∑
x∈Xn
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g(θ;x)

∣∣∣∣s
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 . (3)

Note here that given X, the inner expectation w.r.t.
the minibatches of shard s, Xn

s , is equal to the mean

score over the shard Xs. That is,

EXn
s

 1

n

∑
x∈Xn

s

g(θ;x)

∣∣∣∣s,X
 =

1

Ns

∑
x∈Xs

g(θ;x). (4)

Substituting this for the inner expectation, in Eqn.
(3), we have

Es

[
Ns

Nqs

1

Ns

∑
x∈Xs

g(θ;x)

]
(5)

=
1

N
Es

[
1

qs

∑
x∈Xs

g(θ;x)

]
(6)

=
1

N

S∑
s=1

p(s)
1

qs

∑
x∈Xs

g(θ;x). (7)

Because we choose a shard s by h(Q), p(s) is equal
to qs. Thus, by plugging p(s) = qs in Eqn. (7) and
rearranging, we obtain

=
1

N

S∑
s=1

qs
1

qs

∑
x∈Xs

g(θ;x)

=
1

N

S∑
s=1

∑
x∈Xs

g(θ;x)

=
1

N

∑
x∈X

g(θ;x)

= ḡ(θ;X). (8)

which completes the proof for the validity of the esti-
mator ḡd,

E[ḡd(θ;Xn
s )|X] = ḡ(θ;X). (9)
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Corollary 1.2. A trajectory sampler with a finite τ ≥
1, obtained by redefining the worker (shard) selection
process h(Q) in Proposition 1.1 by the process h(Q, τ)
below, is a valid SGLD sampler. h(Q, τ) : for chain c
at iteration t, choose the next worker sct+1 by

sct+1 =

{
h̃(Q), if t = kτ for k = 0, 1, 2, . . .

sct , otherwise,
(10)

where h̃(Q) is an arbitrary scheduler with selection
probabilities Q.

Proof. Because the trajectory lengths are all equal to
τ for all workers s = 1, . . . , S and h̃(Q) conforms to the
frequencies Q, the worker (shard) selection frequencies
of the trajectory sampling process h(Q, τ) also satisfies
Q. As a result, in the proof of Proposition 1.1, the
probability p(s) = qs is retained even if we replace
h(Q) in Proposition 1.1 by h(Q, τ). Because changing
the worker selection process only affects p(s) in the
proof of Proposition 1.1, the proof directly applies to
the corollary.

Corollary 1.3. Given τs, where 1 ≤ τs < ∞ for s =
1, . . . , S, the adaptive trajectory sampler, obtained by
redefining the worker (shard) selection process h(Q)
in Proposition 1.1 by the process h(Q, {τs}) below, is
a valid SGLD sampler. h(Q, {τs}) : for chain c at
iteration t, choose the next worker sct+1 by

sct+1 =

{
h̃(1/S), if t = kτsct for k = 0, 1, 2, . . .

sct , otherwise,
(11)

where h̃(1/S) is a scheduler with uniform selection
probabilities.

Proof. Because we select the worker uniformly by
h̃(1/S), only the trajectory lengths {τs1 , . . . , τsC} af-
fect the shard selection frequency of the process
h(Q, {τs}). Since the trajectory length τs is propor-

tional to qs (τs
def
= τ̄Sqs), taking τs consecutive up-

dates for uniformly selected random worker s satisfies
the frequency Q. Therefore, the proof of Proposition
1.1 also directly applies to the corollary.


