Supplementary Material: Distributed Stochastic Gradient MCMC

Sungjin Ahn SUNGJIA@ICS.UCI.EDU

Department of Computer Science, University of California, Irvine

Babak Shahbaba BABAKS@uci.edu

Department of Statistics, University of California, Irvine

Max Welling M.Welling@uva.nl

Machine Learning Group, University of Amsterdam

1. Valid SGLD Estimators

Definition 1. An estimator $f(\theta, Z; X)$, where Z is a set of auxiliary random variables associated with the estimator, is said to be a *valid SGLD estimator* if $\mathbb{E}_Z[f(\theta, Z; X)] = \bar{g}(\theta; X)$, where \mathbb{E}_Z denotes expectation w.r.t. the distribution p(Z; X) and it has finite variance $\mathbb{V}_Z[f(\theta, Z; X)] < \infty$.

Proposition 1.1. For each shard s = 1, ..., S, given shard size, N_s , and the normalized shard selection frequency, q_s , such that $N_s > 0$, $\sum_{s=1}^S N_s = N$, $q_s \in (0,1)$, and $\sum_{s=1}^S q_s = 1$, the following estimator is a valid SGLD estimator,

$$\bar{g}_d(\theta; X_s^n) \stackrel{def}{=} \frac{N_s}{Nq_s} \bar{g}(\theta_t; X_s^n) \tag{1}$$

where shard s is sampled by a scheduler h(Q) with frequencies $Q = \{q_1, \ldots, q_S\}$.

Proof. We first decompose the expectation of the estimator $\mathbb{E}[\bar{g}_d(\theta;X^n_s)|X]$ w.r.t. (1) the shard s and (2) the minibatch X^n_s conditioned on the shard s, as follows

$$\mathbb{E}[\bar{g}_d(\theta; X_s^n)|X] = \mathbb{E}_s[\mathbb{E}_{X_s^n}[\bar{g}_d(\theta; X_s^n)|s]|X]. \tag{2}$$

Then, plugging Eqn. (1) in Eqn. (2) and rearranging, we obtain

$$= \mathbb{E}_{s} \left[\mathbb{E}_{X_{s}^{n}} \left[\frac{N_{s}}{nNq_{s}} \sum_{x \in X_{s}^{n}} g(\theta; x) \middle| s \right] \middle| X \right]$$

$$= \mathbb{E}_{s} \left[\frac{N_{s}}{Nq_{s}} \mathbb{E}_{X_{s}^{n}} \left[\frac{1}{n} \sum_{x \in X_{s}^{n}} g(\theta; x) \middle| s \right] \middle| X \right]. \tag{3}$$

Note here that given X, the inner expectation w.r.t. the minibatches of shard s, X_s^n , is equal to the mean

score over the shard X_s . That is,

$$\mathbb{E}_{X_s^n} \left[\frac{1}{n} \sum_{x \in X_s^n} g(\theta; x) \middle| s, X \right] = \frac{1}{N_s} \sum_{x \in X_s} g(\theta; x). \tag{4}$$

Substituting this for the inner expectation, in Eqn. (3), we have

$$\mathbb{E}_{s} \left[\frac{N_{s}}{Nq_{s}} \frac{1}{N_{s}} \sum_{x \in X} g(\theta; x) \right]$$
 (5)

$$= \frac{1}{N} \mathbb{E}_s \left[\frac{1}{q_s} \sum_{x \in X} g(\theta; x) \right]$$
 (6)

$$= \frac{1}{N} \sum_{s=1}^{S} p(s) \frac{1}{q_s} \sum_{x \in X_s} g(\theta; x).$$
 (7)

Because we choose a shard s by $h(\mathcal{Q})$, p(s) is equal to q_s . Thus, by plugging $p(s) = q_s$ in Eqn. (7) and rearranging, we obtain

$$= \frac{1}{N} \sum_{s=1}^{S} q_s \frac{1}{q_s} \sum_{x \in X_s} g(\theta; x)$$

$$= \frac{1}{N} \sum_{s=1}^{S} \sum_{x \in X_s} g(\theta; x)$$

$$= \frac{1}{N} \sum_{x \in X} g(\theta; x)$$

$$= \bar{g}(\theta; X). \tag{8}$$

which completes the proof for the validity of the estimator \bar{g}_d ,

$$\mathbb{E}[\bar{g}_d(\theta; X_s^n)|X] = \bar{g}(\theta; X). \tag{9}$$

Corollary 1.2. A trajectory sampler with a finite $\tau \geq 1$, obtained by redefining the worker (shard) selection process h(Q) in Proposition 1.1 by the process $h(Q, \tau)$ below, is a valid SGLD sampler. $h(Q, \tau)$: for chain c at iteration t, choose the next worker s_{t+1}^c by

$$s_{t+1}^c = \begin{cases} \tilde{h}(\mathcal{Q}), & \text{if } t = k\tau \text{ for } k = 0, 1, 2, \dots \\ s_t^c, & \text{otherwise,} \end{cases}$$
 (10)

where $\tilde{h}(Q)$ is an arbitrary scheduler with selection probabilities Q.

Proof. Because the trajectory lengths are all equal to τ for all workers $s=1,\ldots,S$ and $\tilde{h}(\mathcal{Q})$ conforms to the frequencies \mathcal{Q} , the worker (shard) selection frequencies of the trajectory sampling process $h(\mathcal{Q},\tau)$ also satisfies \mathcal{Q} . As a result, in the proof of Proposition 1.1, the probability $p(s)=q_s$ is retained even if we replace $h(\mathcal{Q})$ in Proposition 1.1 by $h(\mathcal{Q},\tau)$. Because changing the worker selection process only affects p(s) in the proof of Proposition 1.1, the proof directly applies to the corollary.

Corollary 1.3. Given τ_s , where $1 \leq \tau_s < \infty$ for s = 1, ..., S, the adaptive trajectory sampler, obtained by redefining the worker (shard) selection process $h(\mathcal{Q})$ in Proposition 1.1 by the process $h(\mathcal{Q}, \{\tau_s\})$ below, is a valid SGLD sampler. $h(\mathcal{Q}, \{\tau_s\})$: for chain c at iteration t, choose the next worker s_{t+1}^c by

$$s_{t+1}^c = \begin{cases} \tilde{h}(1/S), & \text{if } t = k\tau_{s_t^c} \text{ for } k = 0, 1, 2, \dots \\ s_t^c, & \text{otherwise,} \end{cases}$$
 (11)

where $\tilde{h}(1/S)$ is a scheduler with uniform selection probabilities.

Proof. Because we select the worker uniformly by $\tilde{h}(1/S)$, only the trajectory lengths $\{\tau_{s^1}, \ldots, \tau_{s^C}\}$ affect the shard selection frequency of the process $h(\mathcal{Q}, \{\tau_s\})$. Since the trajectory length τ_s is proportional to q_s ($\tau_s \stackrel{\text{def}}{=} \bar{\tau} S q_s$), taking τ_s consecutive updates for uniformly selected random worker s satisfies the frequency \mathcal{Q} . Therefore, the proof of Proposition 1.1 also directly applies to the corollary.