Reducing Dueling Bandits to Cardinal Bandits

Supplement material for ‘“Reducing Dueling Bandits to Cardinal Bandits”

A. Robustness of the UCB algorithm

For completeness, we present a proof of robustness for the
UCB algorithm, presented as Algorithm 1 below. Note that
we did not make an effort to bound the constants in the
proof. We start by presenting Chernoff’s inequality provid-
ing a tail bound for estimations of variables contained in
[0, 1].

Lemma A.1. Let Y1, ..., Y; bei.i.d variables supported in
[0, 1]. Then for any € > 0 it holds that
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Recall that in our setting, there are K arms, each with an
expected reward. For convenience we assume the set of
bandits X is the set {1,..., K} and further assume for the
purpose of the analysis that arm 1 has the largest expected
reward. We denote by A, the difference between the reward
of arm 1 and that of arm .

Proof of Lemma 2.2. For convenience, define 5 = a + 2
where « is the robustness parameter given as input to the
algorithm. For 7 > 1, define

u;(t) = 281n(t) /A7

If at time ¢, arm ¢ where ¢ > 1 (i.e. ¢ is suboptimal) was
chosen, one of the following must be true
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Here, p;(t), p1(t) denote the number of times arms ¢ and 1
(the optimal arm) were pulled up to time ¢. Indeed, if all 3
are false we have
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and the 7’th arm cannot be chosen. Hence, denoting p;(7")
the number of times arm ¢ is queried in a total budget of T'

queries, we have

T
Elp(T) —w(T)) < Y Pr[(2)or (3)]

t=u;(T)+1

To bound the probability of event (2) occurring, we use
Chernoff’s inequality (Lemma A.1)

Pr[(2)] < Pr|3p; € [t] : fis > pi +
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The bound for event (3) is analogous. It follows that the
probability of events (2) or (3) occurring is bounded by
2t1=7 and
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Proving the bound on the expected regret is now a matter
of simple calculation

E[R] = ZE[Az pi(T)] <

i>1
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We proceed to prove the high probability bounds on the
number of pulls of a suboptimal arm. Denote by p3(T") the
number of times arm ¢ was chosen starting from the time
point ¢ > s. Assuming s > 20 ln(T)Ai*Q, by the same
arguments leading to equation A.1 we have
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Assume that arm 7 was chosen at least s times for some

A4(8 + 2)In(T)
A?

Elpi (T) — ui(T)] <
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it follows that p; (1)1 (T) > u;(T)+1. The probability

of this happening is bounded by Markov’s inequality by

Prlpi(T) = 5] < Pr [p; 7N (T) —wi(T) 2 1] <

E o) — ui(1)] <
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The last inequality holds since
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B. Proof of Theorem 3.1

Let B(T') denote the supremum of the expected regret of
the SBM S (defined in linel of Algorithm 2) after T steps,
over all possible utility distributions of the arm set X.

Fix a phase 7 in the algorithm. The length 7} of the phase
is exactly 2¢. For all time steps ¢ inside the phase, the left
bandit x; is drawn from some fixed distribution. Let
denote the common expectation E[u;] = E,, [us|x4] of the
reward of the left arm in all steps ¢ in the phase. Now,
the SBM S (defined in Line 1) is playing a standard MAB
game over the set X with binary rewards. Let b; denote
the binary reward in the ¢’th step (within the phase). By
construction,

— 1
Elbe|vt, us] = % el0,1]. (B.1)
By conditional expectation, for all y € X,
—u +1
Elb|y: = y] = “(y)f’ €0,1]. (B.2)

Note that the arm with highest expected reward is y = z*.
By the definition of the bound function B(T'), the total ex-
pected regret (in the traditional MAB sense) of the SBM .S
in the phase is at most B(7T;) = B(2%). This means, that
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where the summation runs over ¢ in the phase. But this
clearly means, using (B.2), that

. [Z uly) — pa)

5 < B(2Y).

But notice that E[v;] = E,, E[v:|y:] = E[n(y:)]. Hence,
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In words, this says that the expected contribution of the
right arm to the regret (in the UDBD game) in phase i is at
most B(2%). It remains to bound the expected contribution
to the regret of the left bandit in phase ¢, which is drawn

by a distribution which assigns to all x € X a probability
proportional to the frequency of = played as the right arm
in the previous phase.'' By the principle of conditional
expectation, and due to the linearity of the link function, the
expected regret incurred by z; (in each step in the phase) is
exactly the average expected regret contributed by the right
bandit in phase i — 1, and hence at most B(2'~1)/2¢~1.
This means that the total expected regret incurred by the
left bandit in phase 4 is bounded by 2¢(B(2i71)/2i71) =
2B(2171). Concluding, for a time horizon of 7" uniquely
decomposable as 2+4+8+ - - - +2F 4 Z for some integers
E>1and 0 < Z < 2Ft1.1, the total expected regret is
given by the following function of 7":

1/243B(2)+3B(4) +---+3B(2¥) + B(Z). (B.3)

The theorem claim is now obtained by simple analysis of
(B.3).

C. Proof of Theorem 4.2

To follow the proof, it is important to understand that in
MultiSBM (Algorithm 3), exactly one SBM is advanced
at each step in Line 6. This means that the internal timer
of each SBM may be (and usually is) strictly behind the
iteration counter of the algorithm, which is measured by
the variable t. Denote by p,(¢) the total number of times
S, was advanced after ¢ iterations of the algorithm, for all
e X.

We now assume that all coin tosses are fixed (obliviously)
in advance. This allows us to discuss the regret of the SBM
S, (line 1) after T” internal steps even if in practice the
value t for which p,(t) = T’ might be much larger than
the total number of arm pulls 7", and in fact, may not even
exist.

Notice that internally, S, sees a world in which the reward
is binary, and the expected reward for bandit y € X is ex-
actly (u(y) — p(x) + 1)/2 at each internal step. This is
because when S, is advanced, the left bandit (in the UBDB
game) is identically x. It follows that in all SBMs, the sub-
optimalities are the same and are A, /2 for arm y.

For x € X and integer T" > 0, let

R(T)=5 Y A,

tipe () <T',z¢=x

In words, this is the contribution of the right bandit choices
to the UBDB regret at all times ¢ for which the left bandit
is chosen as x, and S, ’s internal counter has not surpassed
T’. The expression R, (T”) , by the last discussion, also

"If X is infinite, to be precise we need to say that the distribu-
tion is also supported on the set of arms played on the right side
in the previous phase.
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measures the expected internal regret seen by S, after 7"
internal steps. Similarly, we define

Ryy(T") = #{t : po(t) <T' x4 =z, 0 = y} A, /2

This measures a part of R, (T") for which the right bandit
is y. We start with an observation expressing the regret of
the entire process as a function of the different R;,’s. It
will be useful to define py, (T") = #{t : po(t) < T", 2y =
x,yr =y}, so that Ry (1) = pgy (T7) A /2.

Observation C.1. For any T > 1, the total re-
gret R(T) of MultiSBM after T steps satisfies

R(T) =2, cx yex Ray(pa(1))] 05

We conclude that in order to bound the expected regret
R(T) it suffices to bound the expressions E[R, (p,(T))].
By using the upper bound of p,(T) < T, we get the triv-
ial bound for E[R(T)] of K times the expected regret of
a single machine. The main insight is to exploit the fact
that typically, p,.(T) is order of In T for suboptimal x. We
begin with the observation that for any fixed z,y € X (z
suboptimal), s > 8,

= Pr[Ry,(T) = ((s/2)InT)/(A/2)]
[pay(T) > ((s/2)InT) /(A /2)?]
1

nT)/(A,/2)%) " < (snT)"* (C.1)

This is immediate from the a-robustness of the SBM and
the fact we choose a¢ > 2. For the same assumption on s
and z, y and using the union bound,

Pr|3pe{0,...,[InlnT1} : R,y (eep) >s -p/Ay}

<25 %(C.2)

We now bound the quantity p,,(7) for any nonoptimal fixed
2. Using the (trivial) fact that all z € X satisfy p,(T) < T,
together with the fact that SBM S, is advanced in each
iteration only if  was the right bandit in the previous one,
we have that for all suboptimal z,

Pr[p,(T) > (sK InT)/A2]

< Y Pr[R.(T) > (snT)/A,] < K/(sInT)",
zeX (C3)

where the rightmost inequality is by union bound and (C.1).
Fix some z,y € X (x suboptimal). The last two inequali-
ties give rise to a random variable Z defined as the minimal
scalar for which we have

2 oM In(T)]

VT € le,ee” ... e 1,

pe(T) < (ZKInT)/A2, Ryy(T') < (ZInT")/A,

By (C.2)-(C.3) we have that for all s > 8«, Pr[Z >
s] < 257 + K(slnT)~®. Also, conditioned on the
event that {Z < s} we have that Ry, (p,(T)) <
Ry, = s -e- ln((sKlnT)/Ai)/Ay, which is
O (sA,' (InInT +In K +1Ins+1In(1/A,))). Combin-
ing, E[R,,(ps(T))] is bounded above by:

RN+ T RITH(2(8a+ i) + K((8a+i)InT)™*) .
i=0

For o = max{3,2 + (In K)/InlnT)}, it is easy to verify

that the last expression converges to O(Rig), hence

E[Rq4y(p2(T))] = O (@A, (InInT +In K +In(1/A,))) .

Concluding, the total expected regret E[R] is at most 0.5 +
E[Ru + 32, yex\ (a+} Fayl, clearly proving the theorem.

D. Extension to more General Models

Assume the setting of Section 4. In this section we as-
sume for simplicity that for any ¢ and any choice of x¢, ¢,
the utilities are deterministically u; = p(z:), v = p(ye).
In (Yue & Joachims, 2011), the dueling bandit problem is
presented where a more relaxed assumption is made on the
probabilities of the outcomes of duels. Each pair of arm
x,y is assigned a parameter A(z, y) such that the probabil-
ity of x being chosen when dueling with y is 0.5+ A(z, y).
It is assumed that there exists some order > over the arms
and the A’s hold two properties.

e (Relaxed) Stochastic Transitivity: For some v > 1
and any pair z* > x > y we have yA(z*,y) >
max{A(z*, z), A(z,y)}.

o (Relaxed) Stochastic Triangle Inequality: For some
~ > 1 and any pair x* > x > y we have YA (z*,y) <
Az*,z) + Az, y).

We have analyzed MultiSBM (Algorithm 3) under the
assumption that A(x,y) = (u(x) — p(y))/2. It can be
easliy verified that our proof holds for arbitrary A’s under
the following assumption:

o (Relaxed) Extended Stochastic Triangle Inequality.
For some v > 1, and any pair z, y (where it does not
necessarily hold that z > y) it holds that YA (z*,y) <
Ax* z) + Az, y).

This property is clearly held for A(z,y) = (u(z) —
1(y))/2. However, it holds for a wider family of A’s. For
example, it holds for A(z,y) = u(z)/(u(z) + u(y)), as-
suming all 4’s are in the region [1/+, 1]. The effect of 7 to
the regret is given in the following theorem:
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Theorem D.1. Assume the probability for the outcome of
a duel is defined according to A(x,y), where A has the
Relaxed Extended Stochastic Triangle Inequality with pa-
rameter . The total expected regret of MultiSBM in the
UBDB game is asymptotic to

yHo | KIn(K) + KInln(T) + Z In(1/A,) | +
zeX\{z*}

In(T)Ha

assuming the invoked MAB policy is «-robust for o« =
max(3, In(K)/Inln(T)).

Notice that -y does not enter the summand of In(7"), mean-
ing that for large values of T, the regret is unaffected by ~.
We defer the proof of the theorem to the full version of the

paper.
E. Proof of Observation 2.1
By definition,

E[R{ | (4, ye)] = p(x™) — BIU | (e, 1)) -

But now note that by the definition of the link function and
of Utchoice

ut—i—vt

E[U (@4, ye)] = d(ue, ve)ug + d(vg, ug)vy > 5

where we used the assumption that for v > v, ¢(u,v) >
1/2. Now notice that the expression on the right is exactly
E[U*|(z¢, y:)]. Hence,

E[R{™|(we, yo)] < p(a*) = E[UF|(ze, ye)] = E[R;"] -



