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Abstract
We present algorithms for reducing the Dueling
Bandits problem to the conventional (stochas-
tic) Multi-Armed Bandits problem. The Duel-
ing Bandits problem is an online model of learn-
ing with ordinal feedback of the form “A is pre-
ferred to B” (as opposed to cardinal feedback
like “A has value 2.5”), giving it wide appli-
cability in learning from implicit user feedback
and revealed and stated preferences. In con-
trast to existing algorithms for the Dueling Ban-
dits problem, our reductions – named Doubler,
MultiSBM and Sparring – provide a generic
schema for translating the extensive body of
known results about conventional Multi-Armed
Bandit algorithms to the Dueling Bandits set-
ting. For Doubler and MultiSBM we prove
regret upper bounds in both finite and infinite
settings, and conjecture about the performance
of Sparring which empirically outperforms the
other two as well as previous algorithms in our
experiments. In addition, we provide the first
almost optimal regret bound in terms of second
order terms, such as the differences between the
values of the arms.

1. Introduction
When interacting with an online system, users reveal their
preferences through the choices they make. Such a choice –
often termed implicit feedback – may be the click or tap on
a particular link in a web-search ranking, or watching a par-
ticular movie among a set of recommendations. Connect-
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ing to a classic body of work in econometrics and empirical
work in information retrieval (Joachims et al., 2007), such
implicit feedback is typically viewed as an ordinal prefer-
ence between alternatives (i.e., “A is better than B”), but
it does not provide reliable cardinal valuations (i.e., “A is
very good, B is mediocre”).

To formalize the problem of learning from preferences, we
consider the following interactive online learning model,
which we call the Utility-Based Dueling Bandits Prob-
lem (UBDB) similar to (Yue et al., 2012; Yue & Joachims,
2011). At each iteration t, the learning system presents
two actions xt, yt ∈ X to the user, where X is the set
(either finite or infinite) of possible actions. Each of the
two actions has an associated random reward (or utility)
for the user, which we denote by ut and vt, respectively.
The quantity ut (resp. vt) is drawn from a distribution that
depends on xt (resp. yt) only. We assume these utilities
are in [0, 1]. The learning system is rewarded the average
utility Uav

t = (ut + vt)/2 of the two actions it presents,
but it does not observe this reward. Instead, it only ob-
serves the user’s binary choice among the two alternative
actions xt, yt, which depends on the respective utilities ut
and vt. In particular, we model the observed choice as a
{0, 1}-valued random variable bt distributed as

Pr[bt = 0|(ut, vt)] = φ(ut, vt)

Pr[bt = 1|(ut, vt)] = φ(vt, ut) , (1.1)

where φ : [0, 1]× [0, 1] 7→ [0, 1] is a link function. Clearly,
the link function has to satisfy φ(A,B) + φ(B,A) = 1.
Below we concentrate on linear link functions (defined in
Sec. 2). The binary choice is interpreted as a stochas-
tic preference response between the left alternative xt (if
bt = 0) and the right alternative yt (if bt = 1). The
utility Uav captures the overall latent user experience from
the pair of alternatives. A concrete example of this UBDB
game is learning for web search, where X is a set of rank-
ing functions among which the search engine selects two
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for each incoming query; the search engine then presents
an interleaving (Chapelle et al., 2012) of the two rankings,
from which it can sense a stochastic preference between the
two ranking functions based on the user’s clicking behav-
ior.

The purpose of this paper is to show how UBDB can be
reduced to the conventional (cardinal) stochastic Multi-
Armed Bandit (MAB) problem1, which has been studied
since 1952 (Robbins, 1952). In MAB, the system chooses
only a single action xt ∈ X in each round and directly ob-
serves its cardinal reward ut, which is assumed to be drawn
from a latent but fixed distribution attached to xt. The set
X in the traditional MAB game is of finite cardinalityK. In
more general settings (Dani et al., 2008; Mannor & Shamir,
2011), this set can be infinite but structured in some way.
Dani et al. (2008), for example, assume a stochastic setting
in which X is a convex, bounded subset of Rn, and the
expectation µ(x) of the corresponding value distribution is
〈µ, x〉, where µ ∈ Rn is an unknown coefficient vector and
〈·, ·〉 is the inner product with respect to the standard basis.
We refer to this as the linear expected utility setting. We
study here both the finite setting and the infinite setting.

Main results. We provide general reductions from UBDB
to MAB. More precisely, we use a MAB strategy as a
black-box for helping us play the UBDB game. The art
is in exactly how to use a black-box designed for MAB in
order to play UBDB. We present one method, Doubler
(Section 3) which adds an extra O(log T ) factor to the ex-
pected regret function compared to that of the MAB black-
box, assuming the MAB black-box has polylogarithmic (in
T ) regret, where T is the time horizon. When the MAB
black-box has polynomial regret, only an extra O(1) factor
is incurred. This algorithm works for infinite bandit spaces.
We also present a reduction algorithm MultiSBM (Sec-
tion 4) which works for finite bandit spaces and gives an
O(log T ) regret, assuming the MAB black-box enjoys an
O(log T ) expected regret function with some mild higher
moment assumptions. These assumptions are satisfied, for
example, by the seminal UCB algorithm (Auer et al., 2002).
Our analysis in fact shows that for sufficiently large T , the
regret of MultiSBM is asymptotically identical to that of
UCB not only in terms of the time horizon T but in terms of
second order terms such as the differences between the val-
ues of the arms; it follows that MultiSBM is asymptoti-
cally optimal in the second order terms as well as in T . Fi-
nally, we propose a third algorithm Sparring (Section 5)
which we conjecture to enjoy regret bounds comparable to
those of the MAB algorithms hiding in the black boxes it
uses. We base the conjecture on arguments about a related,
but different problem. In experiments (Section 7) compar-

1One armed bandit is a popular slang for slot machines in casi-
nos, and the MAB game describes the problem faced by a gambler
who can choose one machine to play at each instance.

ing our reductions with special-purpose UBDB algorithms,
Sparring performs clearly the best, further supporting our
conjecture.

All results in this extended abstract assume the linear link
function (see Section 2), but we also show preliminary re-
sults for other interesting link functions in Appendix D.2

Contributions in relation to previous work. While spe-
cific algorithms for specific cases of the Dueling Bandits
problem already exist (Yue et al., 2012; Yue & Joachims,
2011; 2009), our reductions provide a general approach to
solving the UBDB. In particular, this paper provides gen-
eral reductions that make it possible to transfer the large
body of MAB work on exploiting structure in X to the
dueling case in a constructive and algorithmic way. Sec-
ond, despite the generality of the reductions their regret is
asymptotically comparable to the tournament elimination
strategies in (Yue et al., 2012; Yue & Joachims, 2011) for
the finite case as T → ∞, and better than the regret of the
online convex optimzation algorithm of (Yue & Joachims,
2009) for the infinite case (albeit in a more restricted set-
ting).

In our setting, the reward and feedback of the agent play-
ing the online game are, in some sense, orthogonal to each
other, or decoupled. A different type of decoupling was
also considered in Avner et al.’s work (Avner et al., 2012),
although this work cannot be compared to theirs. There is
yet more work on bandit games where the algorithm plays
two bandits (or more) in each iteration, e.g. Agarwal et
al. (Agarwal et al., 2010), although there the feedback is
cardinal and not relative in each step. There is much work
on learning from example pairs (Herbrich et al., 2000; Fre-
und et al., 2003; Ailon et al., 2012) as well as noisy sorting
(Karp & Kleinberg, 2007; Feige et al., 1994), which are
not the setting studied here. Finally, our results connect
multi-armed bandits and online optimization to the classic
econometric theory of discrete choice, with its use of pref-
erential or choice information to recover values of goods
(see (Train, 2009) and references therein).

Another important topic related to our work is that of par-
tial monitoring games. The idea was introduced by (Pic-
colboni & Schindelhauer, 2001). The objective in partial
monitoring is to choose at each round an action from some
finite set of actions, and receive a reward based on some
unknown function chosen by an oblivious process. The ob-
served information is defined as some (known) function of
the chosen action and the current choice of the oblivious
process. One extreme setting in which the observed infor-
mation equals the reward captures MAB. In the other ex-
treme, the observed information equals the entire vector of

2Appendices in this version are in a separate supplement ma-
terial document.
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rewards (for all actions), giving rise to the so-called full in-
formation game. Our setting is a strict case of partial mon-
itoring as it falls in neither extremes. Most papers dealing
with partial monitoring either discuss non-stochastic set-
tings or present problem-independent results. In both cases
the regret is lower bounded by

√
T , which is inapplicable

to our setting (see (Antos et al., 2012) for a characteriza-
tion of partial monitoring problems). Bartók et al. (Bartók
et al., 2012) do present problem dependent bounds. Using
their work, a logarithmic (in T ) bound can be deduced for
the dueling bandit problem, at least in the finite case. How-
ever, the dependence on the number of arms is quadratic,
whereas we present a linear one in what follows. Our algo-
rithms are also much simpler and directly take advantage
of the structure of the problem at hand.

2. Definitions
The set of actions (or arms) is denoted by X . In a standard
stochastic MAB (multi-armed bandit) game, each bandit
x ∈ X has an unknown associated expected utlity µ(x) ∈
[0, 1]. At each step t the algorithm chooses some xt ∈ X
and receives from “nature” a random utility ut ∈ [0, 1],
drawn from a distribution of expectation µ(xt). This util-
ity is viewed by the algorithm.3 The regret at time T of
an algorithm is defined as R(T ) =

∑T
t=1(µ(x∗) − ut).

where x∗ is such that µ(x∗) = maxx∈X µ(x) (we assume
the maximum is achievable). Throughout, for x ∈ X we
will let ∆x denote µ(x∗) − µ(x) whenever we deal with
MAB. (We will shortly make reference to some key results
on MAB in Section 2.1.)

In this work we will use MAB algorithms as black boxes.
To that end, we define a Singleton Bandit Machine (SBM)
as a closed computational unit with an internal timer and
memory. A SBM S supports three operations: reset,
advance and feedback. The reset operation simply clears
its state.4 The advance operation returns the next bandit
to play, and feedback is used for simulating a feedback
(the utility). It is assumed that advance and feedback op-
erations are invoked in an alternating fashion. For exam-
ple, if we want to use a SBM to help us play a traditional
MAB game we first invoke reset(S), then invoke and set
x1 ← advance(S), we will play x1 against nature and ob-
serve u1 and then invoke feedback(S, u1). We then invoke
and set x2 ← advance(S), then we’ll play x2 against na-
ture and observe u2, then invoke feedback(S, u2) and so
on. For all SBM’s S that will be used in the algorithms in
this work, we will only invoke the operation feedback(S, ·)
with values in [0, 1].

3It is typically assumed that this distribution depends on xt
only, but this assumption can be relaxed.

4We assume the bandit space X is universally known to all
SBM’s.

In the utility based dueling bandit game (UBDB), the algo-
rithm chooses (xt, yt) ∈ X ×X at each step, and a corre-
sponding pair of random utilities (ut, vt) ∈ [0, 1] are given
rise to, but not observed by the algorithm. We assume ut is
drawn from a distribution of expectation µ(xt) and vt in-
dependently from a distribution of expectation µ(yt). The
algorithm observes a choice variable bt ∈ {0, 1} distributed
according to the law (1.1). This random variable should be
thought of as the outcome of a duel, or match between xt
and yt. The outcome bt = 1 (resp. bt = 0) should be inter-
preted as “yt is chosen’ (resp. “xt is chosen”).5 The link
function φ, which is assumed to be known, quantitatively
determines how to translate the utilities ut, vt to winning
probabilities. The linear link function φlin is defined by

Pr[bt = 1|(ut, vt)] = φlin(ut, vt) :=
1 + vt − ut

2
∈ [0, 1] .

The unobserved reward is Uav
t = (ut + vt)/2, and

the corresponding regret after T steps is Rav(T ) :=∑T
t=1(µ(x∗)− Uav

t ), where x∗ = argmaxx∈X µ(x). This
implies that expected zero regret is achievable by setting
(xt, yt) = (x∗, x∗). In practice, these two identical al-
ternatives would be displayed as one, as would naturally
happen in interleaved retrieval evaluation (Chapelle et al.,
2012). It should be also clear that playing (x∗, x∗) is pure
exploitation, because the feedback is then an unbiased coin
with zero exploratory information.

We also consider another form of (unobserved) utility,
which is given as U choice

t := ut(1 − bt) + vtbt. We call
this choice-based utility, since the utility that is obtained
depends on the user’s choice. Accordingly, we define
Rchoice
t := µ(x∗) − U choice

t . In words, the player receives
reward associated with either the left bandit or the right
bandit, whichever was actually chosen. The utility U choice

captures the user’s experience after choosing a result. In
an e-commerce system, U choice may capture conversion,
namely, the monetary value of the choice. Although both
utility modelings Uav and U choice are well motivated by
applications, we avoid dealing with choice based utilities
and regrets for the following reason: regret bounds with
respect to Uav imply similar regret bounds with respect to
U choice.
Observation 2.1. Assuming a link function where u > v
implies φ(u, v) > 1/2, for any xt, yt, E[Rchoice

t |(xt, yt)] ≤
E[Rav

t |(xt, yt)].

(Due to lack of space, the proof can be found in Ap-
pendix E.) The observation’s assumption on the link func-

5 We have just defined a two-level model in which the distribu-
tion of the random variable bt is determined by the outcome two
other random variables ut, vt. For simplicity, the reader is encour-
aged to assume that (ut, vt) is deterministically (µ(xt), µ(yt)).
Most technical difficulties in what follows are already captured
by this simpler case.
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Algorithm 1 UCB algorithm for MAB with |X| = K
arms. Parameter α affects tail of regret per action in X .
∀x ∈ X , set µ̂x =∞
∀x ∈ X , set tx = 0
set t = 1
while true do

let x be the index maximizing µ̂x +
√

(α+2) ln(t)
2tx

play x and update µ̂x as the average of rewards so far
on action x; increment tx by 1.
t← t+ 1

end while

tion in words is: when presented with two items, the
item with the larger utility is more likely to be chosen.
This clearly happens for any reasonable link function. We
henceforth assume utility Uav and regret Rav and will no
longer make references to choice-based versions thereof.

2.1. Classic Stochastic MAB: A Short Review

We review some relevant classic MAB literature. We begin
with the well known UCB policy (Algorithm 1) for MAB
in the finite case. The commonly known analysis of UCB
provides expected regret bounds. For the finite X case, we
need a less known, robust guarantee bounding the probabil-
ity of playing a sub-optimal arm too often. Lemma 2.2 is
implicitly proved in (Auer et al., 2002). For completeness,
we provide an explicit proof in Appendix A.

Lemma 2.2. Assume X is finite. Fix a parameter α >
0. Let H :=

∑
x∈X\{x∗} 1/∆x. When running the UCB

policy (Algorithm 1) with parameter α for T rounds the
expected regret is bounded by

2(α+ 2)H ln(T ) +K
α+ 2

α
= O(αH lnT ) .

Furthermore, lex x ∈ X denote some suboptimal arm and
let s ≥ 4α ln(T )/∆2

x. Denote by ρx(T ) the random vari-
able counting the number of times arm x was chosen up to
time T . Then Pr[ρx(T ) ≥ s] ≤ 2

α · (s/2)−α.

For the infinite case, we will review a well known setting
and result which will later be used to highlight the useful-
ness of Algorithm 2 (and the ensuing Theorem 3.1). In this
setting, the set X of arms is an arbitrary (infinite) convex
set in Rd. Here, the player chooses at each time point a
vector x ∈ X and observes a stochastic reward with an ex-
pected value of 〈µ, x〉, for some unknown vector µ ∈ Rd.6

This setting was dealt with by Dani et al. (2008). They
provide an algorithm for this setting that could be thought
of as linear optimization under noisy feedback. Their al-
gorithm provides (roughly)

√
T regret for general convex

6Affine linear functions can also be dealt with by adding a
coordinate fixed as 1.

bodies and polylog(T ) regret for polytopes. Formally, for
general convex bodies, they prove the following.

Lemma 2.3 (Dani et al. 2008). Algorithm
CONFIDENCEBALL1 (resp. CONFIDENCEBALL2) of
Dani et al. (2008), provides an expected regret of
O
(√

dT log3 T
)

(resp. O
(√

d2T log3 T
)

) for any
convex set of arms.

In case X is a polytope with vertex set V and there is a
unique vertex v∗ ∈ V achieving maxx∈X 〈µ, x〉, and any
other vertex v ∈ V satisfies the gap condition 〈µ, v〉 ≤
〈µ, v∗〉 −∆ for some ∆ > 0, we say we are in the ∆-gap
case.

Lemma 2.4 (Dani et al. 2008). Assume the ∆-gap case. Al-
gorithm CONFIDENCEBALL1 (resp. CONFIDENCEBALL2)
of Dani et al. (2008), provides an expected regret of
O
(
∆−1d2 log3 T

)
(resp. O

(
∆−1d3 log3 T

)
).

3. UBDB Strategy for Large or Structured X

In this section we consider UBDB in the case of a large or
possibly infinite set of armsX , and the linear link function.
The setting where X is large typically occurs when some
underlying structure for X exists through which it is pos-
sible to gain information regarding one arm via queries to
another. Our approach, called Doubler, is best explained
by thinking of the UBDB strategy as a competition between
two players, one controlling the choice of the left arm and
the other, the choice of the right one. The objective of each
player is to win as many rounds possible, hence intuitively,
both players should play the arms with the largest approx-
imated value. Since we are working with a stochastic en-
vironment it is not clear how to analyze a game in which
both players are adaptive, and whether such a game would
indeed lead to a low regret dueling match (see also Sec-
tion 5 for a related discussion). For that reason, we make
sure that at all times one player has a fixed stochastic strat-
egy, which is updated infrequently.

We divide the time axis into exponentially growing epochs.
In each epoch, the left player plays according to some fixed
(stochastic) strategy which we define shortly, while the
right one plays adaptively according to a strategy provided
by a SBM. At the beginning of a new epoch, the distribu-
tion governing the left arm changes in a way that mimics
the actions of the right arm in the previous epoch. The for-
mal definition of Doubler is given in Algorithm 2.

The following theorem bounds the expected regret of Al-
gorithm 2 as a function of the total number T of steps and
the expected regret of the SBM that is used.

Theorem 3.1. Consider a UBDB game over a set X . As-
sume the SBM S in Line 1 of Doubler (Algorithm 2)
has an expected regret of c logα T after T steps, for all
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Algorithm 2 (Doubler): Reduction for finite and infinite
X with internal structure.

1: S ← new SBM over X
2: L ← an arbitrary singleton in X
3: i← 1, t← 1
4: while true do
5: reset(S)
6: for j = 1...2i do
7: choose xt uniformly from L
8: yt ← advance(S)
9: play (xt, yt), observe choice bt

10: feedback(S, bt)
11: t← t+ 1
12: end for
13: L ← the multi-set of arms played as yt in the last

for-loop
14: i← i+ 1
15: end while

T . Then the expected regret of Doubler is at most
2c α
α+1 logα+1 T . If the expected regret of the SBM is

bounded by some function f(T ) = Ω(Tα) (with α > 0),
then the expected regret of Doubler is at most O(f(T )).

The proof is deferred to Appendix B. By setting the SBM
S used in Line 1 as the algorithms CONFIDENCEBALL1 or
CONFIDENCEBALL2 of Dani et al. (2008), we obtain the
following:

Corollary 3.2. Consider a UBDB game over a set X . As-
sume that the SBM S in Line 1 of Doubler is algorithm
CONFIDENCEBALL2 (resp. CONFIDENCEBALL1). If X is
a compact convex set, then the expected regret of Doubler

is at most O(
√
dT log3(T )) (resp. O(

√
d2T log3(T ))). In

the ∆-gap setting (see discussion leading to Lemma 2.4),
the expected regret is bounded by O

(
∆−1d2 log4(T )

)
(resp. O

(
∆−1d3 log4(T )

)
).

In the finite case, one may set the SBM S to the standard
UCB, and obtain:

Corollary 3.3. Consider a UBDB game over a finite set
X of cardinality K. Let ∆i be the difference between the
reward of the best arm and the i’th best arm. Assume the
SBM S in Line 1 of Doubler is UCB. Then the expected
regret of Doubler is at most O(H log2(T )) where H :=∑K
i=2 ∆−1i

Memory requirement issues: A possible drawback of
Doubler is its need to store the history of yt from the
last epoch in memory, translating to a possible memory re-
quirement of Ω(T ). This situation can be avoided in many
natural cases. The first is the case where X is embedded
in a real linear space and the expectation µ(x) is a linear

Algorithm 3 (MultiSBM): Reduction for unstructured
finite X by using K SBMs in parallel.

1: For all x ∈ X: Sx ← new SBM over X , reset(Sx)
2: y0 ← arbitrary element of X
3: t← 1
4: while true do
5: xt ← yt−1
6: yt ← advance(Sxt

)
7: play (xt, yt), observe choice bt
8: feedback(Sxt , bt)
9: t← t+ 1

10: end while

function. Here, there is no need to store the entire his-
tory of choices of the left arm but rather the average arm
(recall that here the arms are thought of as vectors in Rd,
hence the average is well defined). Playing the average
arm (as xt) instead of picking an arm uniformly from the
list of chosen arm gives the same result with memory re-
quirements equivalent to storage of one arm. In other cases
(e.g., X is not even geometrically embedded) this cannot
be done. Nevertheless, as long as we are in a ∆-gap case,
as T grows, the arm played as yt is the optimal one with
increasingly higher probability. In more detail, if the regret
incurred in a time epoch is R, then the number of times a
suboptimal arm is played is at mostR/∆. AsR is polylog-
arithmic in T , the required space is polylogarithmic in T as
well. We do not elaborate further on memory requirements
and leave this as future research.

4. UBDB Strategy for Unstructured X

In this section we present and analyze an alternative reduc-
tion strategy, called MultiSBM, particularly suited for
the finite X case where the elements of X typically have
no structure. MultiSBM will not incur an additional log-
arithmic factor as our previous approach did. Unlike the
algorithms in (Yue & Joachims, 2011; Yue et al., 2012),
we will avoid running an elimination tournament, but just
resort to a standard MAB strategy by reduction. Denote
K = |X|. The idea is to use K different SBMs in paral-
lel, where each instance is indexed by an element in X . In
step t we choose a left arm xt ∈ X in a way that will be
explained shortly. The right arm, yt is chosen according to
the suggestion on the SBM indexed by xt, and the binary
choice is fed back to that SBM. In the next round, xt+1 is
set to be yt, namely, the right arm becomes the left one in
the next step. Algorithm 3 describes MultiSBM exactly.

Naively, the regret of the algorithm can be shown to be at
most K times that of a single SBM. However, it turns out
that the regret is in fact asymptotically competitive with
that of a single SBM, without the extra K factor. Specif-
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ically, we show that the total regret is in fact dominated
solely by the regret of the SBM corresponding to the arm
with maximal utility. To achieve this, we assume that the
SBM’s implement a strategy with a certain robustness prop-
erty that implies a bound not only on the expected regret,
but also on the tail of the regret distribution. More pre-
cisely, an inverse polynomial tail distribution is necessary.
Interestingly, the assumption is satisfied by the UCB algo-
rithm (Auer et al., 2002) (as detailed in Lemma 2.2). Recall
that x∗ ∈ X denotes an arm with largest valuation µ(x),
and that ∆x := µ(x∗) − µ(x) for all x ∈ X . Assume
∆x > 0 for all x 6= x∗.7

Definition 4.1. Let Tx be the number of times a (sub-
optimal) arm x ∈ X is played when running the policy
T rounds. A MAB policy is said to be α-robust when it has
the following property: for all s ≥ 4α∆−2x ln(T ), it holds
that Pr[Tx > s] < 2

α (s/2)−α.

Recall that as discussed in Section 2.1, in Auer et al.’s
(2002) classic UCB policy this property can be achieved
by slightly enlarging the confidence region.

Theorem 4.2. The total expected regret of MultiSBM
(Algorithm 3) in the UBDB game is

O
(
Hα lnT +Hα

(
K lnK+K ln lnT −

∑
x6=x∗

ln ∆x

))
,

assuming the policy of the SBMs defined in Line 1 is α-
robust for α = max(3, ln(K)/ ln ln(T )). The robustness
can be ensured by choosing the UCB policy (Algorithm 1)
for the SBM with parameter α.

Note that achieving (α = 3)-robustness requires imple-
menting a variant of UCB with a slight modification of the
confidence interval parameter in each SBM. Therefore, if
the horizon T is large enough so that ln lnT > (lnK)/3,
then the total regret is comparable to that of UCB in the
standard MAB game.

The proof of the theorem is deferred to Appendix C. The
main idea behind the proof is showing that a certain “pos-
itive feedback loop” emerges: if the expected regret in-
curred by the right arm at some time t is low, then there
is a higher chance that x∗ will be played as the left arm at
time t + 1. Conversely, if any fixed arm (in particular, x∗)
is played very often as the left arm, then the expected regret
incurred by the right arm decreases rapidly.

5. A Heuristic Approach
In this section we describe a heuristic called Sparring for
playing UBDB, which shows extremely good performance

7If this is not the case, our statements still hold, yet the proof
becomes slightly more technical. As there is no real additional
complication to the problem under this setting, we ignore this
case.

Algorithm 4 (Sparring): Reduction to two SBMs.
1: SL, SR ← two new SBMs over X
2: reset(SL), reset(SR), t← 1
3: while true do
4: xt ← advance(SL); yt ← advance(SR)
5: play (xt, yt), observe choice bt ∈ {0, 1}
6: feedback(SL,1bt=0); feedback(SR,1bt=1)
7: t← t+ 1
8: end while

in our experiments. Unfortunately, as of yet we were un-
able to prove performance bounds that explain its empirical
performance. Sparring uses two SBMs, corresponding to
left and right. In each round the pair of arms is chosen ac-
cording to the strategies of the two corresponding SBMs.
The SBM corresponding to the chosen arm receives a feed-
back of 1 while the other receives 0. The formal algorithm
is described in Algorithm 4.

The intuition for this idea comes from analysis of an adver-
sarial version of UDBD, in which it can be easily shown
that the resulting expected regret of Sparring is at most
a constant times the regret of the two SBMs which emu-
late an algorithm for adversarial MAB. (We omit the exact
discussion and analysis for the adversarial counterpart of
UDBD in this extended abstract.) We conjecture that the
regret of Sparring is asymptotically bounded by the com-
bined regret of the algorithms hiding in the SBM’s, with
(possibly) a small overhead. Proving this conjecture is es-
pecially interesting for settings in which X is infinite and a
MAB algorithm with polylogarithmic regret exists. Indeed,
previous literature based on tournament elimination strate-
gies does not apply to infinite X , and Doubler presented
earlier is probably suboptimal due to the extra log-factor it
incurs.

Proving the conjecture appears to be tricky due to the fact
that the left (resp. right) SBM does not see a stochastic en-
vironment, because its feedback depends on non-stochastic
choices made by the right (resp. left) SBM. Perhaps there
exist bad settings where both strategies would be mutually
‘stuck’ in some sub-optimal state. We leave the analysis of
this approach as an interesting problem for future research.
Our experiments will nevertheless include Sparring.

6. Notes
Lower Bound: Our results contain upper bounds for the
regret of the dueling bandit problem. We note that a match-
ing lower bound, up to logarithmic terms can be shown via
a simple reduction to the MAB problem. This reduction is
the reverse of the others presented here: simulate a SBM by
using a UBDB solver. It is an easy exercise to obtain such
a reduction whose regret w.r.t. the MAB problem is at most
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twice the regret of the dueling bandit problem. It follows
that the same lower bounds of the classic MAB problem
apply to the UBDB problem.

Adversarial Setting: One may also consider an adver-
sarial setting for the UBDB problem. Here, utilities of the
arms that are assumed to be constant in the stochastic case
are assumed to change each round in some arbitrary way.
We do not elaborate on this setting due to space constraints
but mention that (a) a lower bound of

√
KT matching that

of the MAB problem is valid in the UDBD setting, and (b)
the Sparring algorithm, when using SBM solvers for the
adversarial setting, can be shown to obtain the same regret
bounds of said SBM solvers.

7. Experiments
We now present several experiments comparing our algo-
rithms with baselines consisting of the state-of-the-art IN-
TERLEAVED FILTER (IF) (Yue et al., 2012) and BEAT THE
MEAN BANDIT (BTMB) (Yue & Joachims, 2011). Our ex-
periments are exhaustive, as we include scenarios for which
no bounds were derived (e.g. nonlinear link functions), as
well as the much more general scenario in which BTMB
was analyzed (Yue & Joachims, 2011).

Henceforth, the set X of arms is {A,B,C,D,E, F}.
For applications such as the interleaving search engines
(Chapelle et al., 2012), 6 arms is realistic. We considered
5 choices of the expected value function µ(·) and 3 link
functions89.

linear φ(x, y) = (1 + x− y)/2
natural φ(x, y) = x/(x+ y)
logit φ(x, y) = (1 + exp{y − x})−1

Name µ(A) µ(B) µ(C) µ(D) µ(E) µ(F )

1good 0.8 0.2 0.2 0.2 0.2 0.2
2good 0.8 0.7 0.2 0.2 0.2 0.2
3good 0.8 0.7 0.7 0.2 0.2 0.2
arith 0.8 0.7 0.575 0.45 0.325 0.2
geom 0.8 0.7 0.512 0.374 0.274 0.2

For each 15 combinations of arm values and link func-
tion we ran all 5 algorithms IF, BTMB, MultiSBM,
Doubler, and Sparring with random inputs spanning a
time horizon of up to 32000.

We also set out to test our algorithms in a scenario de-
fined in (Yue & Joachims, 2011). We refer to this set-
ting as YJ. Unlike our setting, where choice probabili-
ties are derived from (random) latent utilities together with

8To be precise, the actual expected utility vector µ was a ran-
dom permutation of the one given in the table. This was done to
prevent initialization bias arising from the specific implementa-
tion of the algorithms.

9Note that in row ’arith’, µ(2)..µ(6) form an arithmetic pro-
gression, and in row ’geom’ they form a geometric progression.

a link function, in YJ an underlying unknown fixed ma-
trix (Pxy) is assumed, where Pxy is the probability of
arm x chosen given the pair (x, y). The matrix satisfies
very mild constraints. Following (Yue & Joachims, 2011),
define εxy = (Pxy − Pyx)/2. The main constraint is,
for some unknown total order � over X , the imposition
x � y ⇐⇒ ε(x, y) > 0. The optimal arm x∗ is maximal
in the total order. The regret incurred by playing the pair
(xt, yt) at time t is 1

2 (εx∗xt + εx∗yt).

The BTMB algorithm (Yue & Joachims, 2011) proposed
for YJ is, roughly speaking, a tournament elimination
scheme, in which a working set of candidate arms is main-
tained. Arms are removed from the set whenever there
is high certainty about their suboptimality. Although the
YJ setting is more general than ours, our algorithms can
be executed without any modification, giving rise to an
interesting comparison with BTMB. For this compari-
son, we shall use the same matrix (εxy)x,y∈X as in (Yue &
Joachims, 2011), which was empirically estimated from an
operational search engine.

A B C D E F
A 0 0.05 0.05 0.04 0.11 0.11
B −0.05 0 0.05 0.06 0.08 0.10
C −0.05 −0.05 0 0.04 0.01 0.06
D −0.04 −0.04 −0.04 0 0.04 0
E −0.11 −0.08 −0.01 −0.04 0 0.01
F −0.11 −0.10 −0.06 0 −0.01 0

(Note that x∗ = A � B � C � D � E � F .)

Experiment Results and Analysis Figure 1 contains the
expected regrets of these described scenarios as a function
of the log (to the base 2) of the time, averaged over 400
executions, with one standard deviation confidence bars.
The experiments reveal some interesting results. First, the
heuristic approach is superior to all others in all of the set-
tings. Second, among the other algorithms, the top two are
the algorithms IF and MultiSBM, where MultiSBM
is superior in a wide variety of scenarios.

8. Future work
We dealt with choice in sets of size 2. What happens in
cases where the player chooses from larger sets? We also
analyzed only the linear choice function. See Appendix D
for an extension of the results in Section 4 to other link
functions.

Both algorithms Doubler and MultiSBM treated the
left and right sides asymmetrically. This did not allow us
to consider distinct expected valuation functions for the left
and right positions. 10 Algorithm Sparring is symmetric,

10Such a case is actually motivated in a setting where, say, the
perceived user valuation of items appearing lower in the list are
lower, giving rise to bias toward items appearing at the top.
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Figure 1.
Expected regret plots, averaged over 400 runs for each of the 16 scenarios, and 5 algorithms. The x-axis
is the log to the base 2 of the time, and the y-axis is the regret, averaged over 400 executions (with 1
standard deviation confidence bars).

further motivating the question of proving its performance
guarantees.

Proving (or refuting) the conjecture in Section 5 regard-
ing the regret of Sparring is an interesting open problem.
Much like our proof idea for the guarantee of MultiSBM,
there is clearly a positive feedback loop between the two
SBM’s in Sparring: the more often the left (resp. right)
arm is played optimally, the right (resp. left) arm would
experience an environment which is closer to that of the
standard MAB, and would hence incur expected regret ap-
proximately that of the SBM it implements.
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