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Abstract
Algorithms that can efficiently recover principal
components in very high-dimensional, stream-
ing, and/or distributed data settings have become
an important topic in the literature. In this pa-
per, we propose an approach to principal compo-
nent estimation that utilizes projections onto very
sparse random vectors with Bernoulli-generated
nonzero entries. Indeed, our approach is simul-
taneously efficient in memory/storage space, ef-
ficient in computation, and produces accurate PC
estimates, while also allowing for rigorous theo-
retical performance analysis. Moreover, one can
tune the sparsity of the random vectors delib-
erately to achieve a desired point on the trade-
offs between memory, computation, and accu-
racy. We rigorously characterize these trade-
offs and provide statistical performance guaran-
tees. In addition to these very sparse random
vectors, our analysis also applies to more gen-
eral random projections. We present experimen-
tal results demonstrating that this approach al-
lows for simultaneously achieving a substantial
reduction of the computational complexity and
memory/storage space, with little loss in accu-
racy, particularly for very high-dimensional data.

1. Introduction
Principal component analysis (PCA) is a fundamental tool
in unsupervised learning and data analysis that finds the
low-dimensional linear subspace that minimizes the mean-
squared error between the original data and the data pro-
jected onto the subspace. The principal components (PCs)
can be obtained by a singular value decomposition (SVD)
of the data matrix or eigendecomposition of the data’s co-
variance matrix. PCA is frequently used for dimensionality
reduction, feature extraction, and as a pre-processing step
for learning and recognition tasks such as classification.
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There is a wealth of existing literature that develops com-
putationally efficient approaches to computing these PCs.
However, the overwhelming majority of this literature as-
sumes ready access to the stored full data samples.

However, this full data access is not always possible in
modern data settings. Modern data acquisition capabili-
ties have increased massively in recent years, which can
lead to a wealth of rapidly changing high-dimensional data.
Hence, in very large database environments, it may not
be feasible or practical to access all the data in storage
(Muthukrishnan, 2005).

Moreover, in applications such as sensor networks, dis-
tributed databases, and surveillance, data is typically dis-
tributed over many sensors. Accessing all the data at once
requires tremendous communication costs between the sen-
sors and a central processing unit. Algorithms that don’t
require access to all the data can help reduce this commu-
nication cost (Balcan et al., 2013). A third case is streaming
data, where one must acquire and store the data in real time
to have full access, which may not be feasible.

One promising strategy to address these issues in a com-
putationally efficient way, which also allows for rigorous
theoretical analysis, is to use very sparse random pro-
jections. Random projections provide informative lower-
dimensional representations of high-dimensional data,
thereby saving memory and computation. They are widely
used in many applications, including databases and data
stream processing (Li et al., 2006; Indyk, 2006) and com-
pressive sensing (Donoho, 2006).

Initial attempts have been made to perform PCA using only
the information embedded in random projections. Unfortu-
nately, however, theoretical guarantees have generally only
been given for random vectors with i.i.d. entries drawn
from the Gaussian distribution. This common choice is
convenient in terms of theoretical analysis, but undesirable
in practice. Such dense random vectors require relatively
high storage space, and high computation because of the
large amount of floating point arithmetic needed to com-
pute each projection.

In this paper, we instead aim to recover PCs from very
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sparse random projections with Bernoulli entries. These
sparse random projections can be implemented using sim-
ple database operations. For example, this type of random
projection can be obtained by simply adding two small sub-
sets of the entries of a data sample and then subtracting the
results. They thus require little computation or data ac-
cess. For distributed data, this type of sparse Bernoulli pro-
jection could be obtained via localized aggregation in the
network requiring minimal communication (assuming all
sensors can communicate with one another). (If a network
topology must be respected, the sparse random projections
could presumably be adjusted accordingly, but we have not
yet analyzed this case.) In short, very sparse random pro-
jections are or could potentially be extremely practical for
a variety of situations.

Our theoretical analysis begins by assuming a probabilistic
generative model for the data, related to the spiked covari-
ance model. Under this model, we show that PCs computed
from very sparse random projections are close estimators
of the true underlying PCs. Moreover, one can adjust the
sparsity of the random projections as desired to greatly re-
duce memory and computation (at the cost of some ac-
curacy). We give rigorous theoretical analysis of the re-
sulting tradeoffs between memory, computation, and accu-
racy as we vary sparsity, showing that efficiency in mem-
ory and computation may be gained with little sacrifice in
accuracy. In fact, our analysis will also apply more gener-
ally to any random projections with i.i.d. zero mean entries
and bounded second-, fourth-, sixth- and eighth-order mo-
ments, although we focus on the sparse-Bernoulli case.

In Section 2, we present a brief review of related work.
The model assumptions and notation are in Section 3. We
present an overview of the main contributions in Section
4. In Section 5, the main results are stated with some dis-
cussion of their consequences. Proofs are reserved to the
supplementary material. Finally, we present experimental
results demonstrating the performance and efficiency of our
approach compared with prior work in Section 6.

2. Related Work
Algorithms that can efficiently recover PCs from a collec-
tion of full data samples have been an important topic in the
literature for decades. A comprehensive survey of these al-
gorithms can be found in (Halko et al., 2011b; Gilbert et al.,
2012) and the references therein. This includes several
lines of work. The first involves techniques that are based
on dimensionality reduction, sketching, and sub-sampling
for low-rank matrix approximation such as (Halko et al.,
2011a). In these methods, the computational complexity is
typically reduced by performing SVD on the smaller ma-
trix obtained by sketching or subsampling. However, these
methods require accessible storage of all the data samples.
This may not be practical for modern data processing ap-

plications where data samples are too vast or generated too
quickly to be stored accessibly.

The second line of work involves online algorithms specif-
ically tailored to have extremely low-memory complexity
such as (Arora et al., 2012) and the references therein. Typ-
ically, these algorithms assume that the data is streaming
by, that real-time PC estimates are needed, and they ob-
tain these by solving a stochastic optimization problem,
in which each arriving data sample is used to update the
PCs in an iterative procedure. As a couple recent exam-
ples of this line of work, (Mitliagkas et al., 2013) show
that a blockwise stochastic variant of the power method can
recover PCs in this low-memory setting from O(p log p)
samples, although the computational cost is not examined.
Meanwhile, (Arora et al., 2013) bound the generalization
error of PCs learned with their algorithm to new data sam-
ples and also analyze its computational cost.

Our problem lies somewhere between the above two lines
of work. We don’t assume that memory/data access is not a
concern, but at the same time, we also don’t assume the ex-
tremely restrictive setting where one-sample-at-a-time real-
time PC updates are required. Instead, we aim to reduce
both memory and computation simultaneously for PCA
across a broad class of big data settings, e.g. for enormous
databases where loading into local memory may be diffi-
cult or costly, for streaming data when PC estimates do
not have to be real-time, or for distributed data. We also
aim to provide tunable tradeoffs for the amount of accuracy
that will be sacrificed for each given reduction in mem-
ory/computation, in order to aid in choosing a desired bal-
ance point between these.

To do this, we recover PCs from random projections. There
have been some related prior attempts to extract PCs from
random projections of data (Fowler, 2009; Qi and Hughes,
2012). In both, the problem of recovering PCs from ran-
dom projections has been considered only for dense Gaus-
sian random projections. However, dense vectors are un-
desirable for practical applications since they require rela-
tively high storage space and computation (including lots
of floating point arithmetic) as noted in the introduction.
Our work will make use of sparse random vectors with
Bernoulli entries which will be more efficiently imple-
mentable in a large database environment.

Chen et al. (2013) have estimated the covariance ma-
trix of data from general sub-Gaussian random projections
to reduce memory use. However, convergence guaran-
tees are given only for the case of infinite data samples,
making it hard to realistically use these results in mem-
ory/computation vs. accuracy tradeoffs, and computational
cost is not examined. We will address both these issues.

As a final note, we observe that our work also can be
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viewed as an example of emerging ideas in computational
statistics (see (Chandrasekaran and Jordan, 2013)) in which
tradeoffs between computational complexity, dataset size,
and estimation accuracy are explicitly characterized, so that
a user may choose to reduce computation in very high-
dimensional data settings with knowledge of the risk to the
accuracy of the result.

3. Problem Formulation and Notation
In this paper, we focus on a statistical model for the data
that is applicable to various scenarios. Assume that our
original data in Rp are centered at x2Rp and {v

i

}d
i=12

Rp are the d orthonormal PCs. We consider the fol-
lowing probabilistic generative model for the data sam-
ples, x

i

=x +

P

d

j=1 wij

�
j

v

j

+ z

i

, i=1, . . . , n, where
{w

i

}n
i=1 and {z

i

}n
i=1 are drawn i.i.d. from N (0, I

d⇥d

)

and N (0, ✏

2

p

I

p⇥p

), respectively. Also, {�
i

}d
i=1 are scalar

constants reflecting the energy of the data in each prin-
cipal direction such that �1>�2>. . .>�

d

>0. The addi-
tive noise term z

i

allows for some error in our assump-
tions. Note that the underlying covariance matrix of the
data is C

true

,Pd

j=1 �
2
j

v

j

v

T

j

, and the signal-to-noise ra-
tio is SNR= h

✏

2 , where h,Pd

j=1 �
2
j

. In fact, this model is
related to the spiked covariance model (Johnstone, 2001)
in which the data’s covariance matrix is assumed to be a
low-rank perturbation of the identity matrix.

We then introduce a very general class of random projec-
tions. Assume that matrices {R

i

}n
i=12Rp⇥m, m<p, are

formed by drawing each of their i.i.d. entries from a distri-
bution whose mean µ1 is assumed to be zero and whose kth
order moments, µ

k

, are assumed finite for k = 2, 4, 6, 8. In
particular, we will be interested in a popular class of sparse
random projections, but our analysis will apply to any dis-
tribution satisfying these assumptions.

Each random projection y

i

2Rm is then obtained by taking
inner products of the data sample x

i

2Rp with the random
vectors comprising the columns of R

i

, i.e. y
i

=R

T

i

x

i

. The
main goal of this paper is to provide theoretical guarantees
for estimating the center and PCs of {x

i

}n
i=1 from these

random projections.

4. Our Contributions
In this paper, we introduce two estimators for the center
and underlying covariance matrix of data {x

i

}n
i=1 from

sparse random projections {y
i

=R

T

i

x

i

}n
i=1. In typical

PCA, the center is estimated using the empirical center
x

emp

=

1
n

P

n

i=1 xi

. PCs are then obtained by eigende-
composition of the empirical covariance matrix C

emp

=

1
n

P

n

i=1(xi

� x

emp

)(x

i

� x

emp

)

T , that typically comes
close to the true covariance matrix (Vershynin, 2012).

Similar to typical PCA, we show that the empirical center
and empirical covariance matrix of the new data samples
{R

i

y

i

}n
i=1 (scaled by a known factor) result in accurate

estimates of the original center x, and the true underlying
covariance matrix C

true

. (Note that R
i

y

i

approximately
represents a projection in Rp of x

i

onto the column space
of R

i

, but we have eliminated a computationally expensive
matrix inverse here.) We will provide rigorous theoretical
analysis for the performance of these estimators in terms of
parameters such as the measurement ratio m/p, number of
samples n, SNR, and moments µ

k

.

Our approach is quite general and we believe it can even-
tually be applicable to various data processing applications
in which the data is very high-dimensional, streaming, or
distributed. Particularly for the case of distributed data, we
may need to adjust the set-up to ensure the random projec-
tions respect network topology, but we believe it could be
done following the strategies in (Wang et al., 2012a;b).

We will be particularly interested in applying our general
distribution results to the case of very sparse measurement
matrices. Achlioptas (2001) first showed that, in the classic
Johnson–Lindenstrauss result on pairwise distance preser-
vation, the dense Gaussian projection matrices can be re-
placed with sparse projection matrices, where each entry
is distributed on {�1, 0, 1} with probabilities { 1

6 ,
2
3 ,

1
6},

achieving a three-fold speedup in processing time. Li et al.
(2006) then drew each entry from {�1, 0, 1} with prob-
abilities { 1

2s , 1 � 1
s

, 1
2s}, achieving a more significant s-

fold speedup in processing time. In this paper, we refer to
this second distribution as a sparse-Bernoulli distribution
with sparsity parameter s. Sparse random projections have
been applied in many other applications to substantially re-
duce computational complexity and memory requirements
(Omidiran and Wainwright, 2010; Zhang et al., 2012).

Motivated by the success of these methods, we propose to
recover PCs from sparse random projections of the data,
in which each entry of {R

i

}n
i=1 is drawn i.i.d. from the

sparse-Bernoulli distribution. In this case, each column of
{R

i

}n
i=1 has p

s

nonzero entries, on average. This choice
has the following properties simultaneously:

• The computation cost for obtaining each projection
is O(

mp

s

) and thus the cost to acquire/access/hold in
memory the data needed for the algorithm is O(

mpn

s

).
Specifically, we are interested in choosing m and s
so that the compression factor �,m

s

<1. In this case,
our framework requires significantly less computation
cost and storage space. First, the computation cost
to acquire/access each data sample is O(�p), �<1, in
contrast to the cost for acquiring each original data
sample O(p). This results in a substantial cost re-
duction for the sensing process, e.g. for streaming
data. Second, once acquired, observe that the pro-
jected data samples {R

i

y

i

}n
i=12Rp will be sparse,

having at most O(�p) nonzero entries each. This re-
sults in a significant reduction, O(�pn) as opposed to
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O(pn), in memory/storage requirements and/or com-
munication cost, e.g. transferring distributed data to a
central processing unit.

• Given the sparse data matrix formed by {R
i

y

i

}n
i=1,

one can make use of efficient algorithms for perform-
ing (partial) SVD on very large sparse matrices, such
as the Lanczos algorithm (Golub and Van Loan, 2012)
and svds in MATLAB. In general, for a p⇥ n matrix,
the computational cost of SVD is O(p2n). However,
for large sparse matrices such as ours, the cost can be
reduced to O(�p2n) (Lin and Gunopulos, 2003).

In the remainder of this paper, we will characterize the ac-
curacy of the estimated center and PCs in terms of m, p,
n, SNR, moments of the distribution (which for sparse-
Bernoulli will scale with s), etc. As we will see, un-
der certain conditions on the PCs, we may choose � as
low as � / 1

p

for constant accuracy. Hence, assuming
n = O(p) samples, the memory/storage requirements for
our approach can scale with p in contrast to p2 for stan-
dard algorithms that store the full data, and a similar factor
of p savings in computation can be achieved compared with
regular SVD. Less aggressive savings will also be available
for other PC types.

5. Main Results
We present the main results of our work in this section,
with all proofs delayed to the supplemental material. Inter-
estingly, we will see that the shape of the distribution for
each entry of {R

i

}n
i=1 plays an important role in our re-

sults. The kurtosis, defined as ,µ4

µ

2
2
� 3, is a measure of

peakedness and heaviness of tail for a distribution. It can
also be thought of as a measure of non-Gaussianity, since
the kurtosis of the Gaussian distribution is zero. It turns out
that the distribution’s kurtosis is a key factor in determining
PC estimation accuracy. For sparse-Bernoulli, the kurtosis
increases with increasing sparsity parameter s.
5.1. Mean and Variance of Center Estimator
Theorem 1. Assume that {R

i

}n
i=1, {x

i

}n
i=1, {y

i

}n
i=1, m,

n, and µ2 are as defined in Section 3, and define the n-
sample center estimator bx

n

=

1
mµ2

1
n

P

n

i=1 Ri

y

i

. Then, the
mean of the estimator bx

n

is the true center of the original
data x, i.e. E[bx

n

]=x, for all n, including the base case
n=1. Furthermore, as n ! 1, the estimator bx

n

converges
to the true center: lim

n!1 bxn

=x.
We see that the empirical center of {R

i

y

i

}n
i=1 is a (scaled)

unbiased estimator for the true center x. Note that this the-
orem does not depend on the number of projections m or
sparsity parameter s, and thus does not depend on �, as
a sufficiently high number of samples will compensate for
unfavorable values of these parameters. We further note
that, when n ! 1, there is no difference between the
Gaussian, very sparse, or other choices of random projec-
tions. This is consistent with the observation that random

projection matrices consisting of i.i.d. entries must only be
zero mean to preserve pairwise distances in the Johnson-
Lindenstrauss theorem (Li et al., 2006).
Theorem 2. Assume that {R

i

}n
i=1, {x

i

}n
i=1, {y

i

}n
i=1, m,

n, p, µ2, h, and SNR are as defined in Section 3, and kurto-
sis  is as defined above. Then, the variance of the unbiased
center estimator bx

n

=

1
mµ2

1
n

P

n

i=1 Ri

y

i

is

Var
⇣

b

x

n

⌘

=

1

nm

p

✓

h

✓

1 +

1

SNR

◆✓

1 +

m

p
+

+ 1

p

◆

+

✓

1 +

+ 1

p

◆

kxk22
◆

. (5.1)

We see that as the number of samples n and measurement
ratio m/p increase, the variance of this estimator decreases
at rate 1

n

and close to 1
m
/p

. Interestingly, the power of the

signal, i.e. h=
P

d

j=1 �
2
j

, works against the accuracy of the
estimator. The intuition for this is that, for the center es-
timation problem, it is desirable to have all the data sam-
ples close to the center, which happens for small h. For
sparse random projections, we observe that the kurtosis is
=s � 3 and thus +1

p

t s

p

. Hence, variance scales with
increasing sparsity, although sufficient data samples n are
enough to combat this effect. Indeed, when s>p, the vari-
ance increases heavily since many of the random vectors
are zero, and thus the corresponding projections cannot
capture any information about the original data. Overall,
this result shows an explicit tradeoff between reducing n or
increasing s to reduce memory/computation and the vari-
ance of the resulting estimator. Finally, given this mean and
variance, probabilistic error bounds can be immediately ob-
tained via Chebyshev, Bernstein, etc. inequalities.
5.2. Mean and Variance of Covariance Estimator
Theorem 3. Assume that {R

i

}n
i=1, {x

i

}n
i=1, {y

i

}n
i=1, m,

n, p, µ2, h, ✏, and C

true

are as defined in Section 3, and 
is the kurtosis. Moreover, assume that {x

i

}n
i=1 are centered

at x=0. Define the n-sample covariance estimator bC
n

=

1
(m2+m)µ2

2

1
n

P

n

i=1 Ri

y

i

y

T

i

R

T

i

. Then, for all n, the mean

of this estimator is: E[bC
n

]=

b

C

true

+ E, where bC
true

,
C

true

+ ↵I
p⇥p

, ↵, h

m+1 + (



p(m+1) +
(m+p+1)
p(m+1) )✏2, and

E , 

m+1

P

d

j=1 �
2
j

diag(v
j

v

T

j

), where diag(A) denotes
the matrix formed by zeroing all but the diagonal entries of
A. Furthermore, let C1,bC

true

+ E. Then, as n ! 1,
the estimator bC

n

converges to C1: lim
n!1 b

C

n

=C1.
We observe that the limit of the estimator bC

n

has two com-
ponents. The first, bC

true

, has the same eigenvectors with
slightly perturbed eigenvalues (↵ tends to be very small in
high dimensions) and the other, E, is an error perturbation
term. Both ↵ and E scale with the kurtosis, reflecting the
necessary tradeoff between increasing sparsity (decreasing
memory/computation) and maintaining accuracy.

We first consider a simple example to gain some intuition
for this theorem. A set of data samples {x

i

}3000
i=1 2 R1000
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are generated from one PC. We also generate the mea-
surement matrices {R

i

}3000
i=1 2R1000⇥200 (m/p = 0.2) with

i.i.d. entries both for the Gaussian distribution and the
sparse-Bernoulli distribution for various values of the spar-
sity parameter s. In Fig. 5.1, we view two dimensions
(the original PC’s and one other) of the data {x

i

}3000
i=1 and

the scaled projected data 1p
(m2+m)µ2

2

{R
i

y

i

}3000
i=1 , repre-

sented by blue dots and red circles respectively. We see
that the projected data samples are scattered somewhat into
other directions for all four cases. However, the amount of
scattered energy for the Gaussian and sparse-Bernoulli for
s=3 is quite small. This can be easily verified from the
fact that the amount of perturbation depends on the kur-
tosis, and for both cases the kurtosis is =0. As we in-
crease the parameter s, the kurtosis =s � 3 gets larger,
and this is consistent with the observation that the pro-
jected data samples get more scattered into other directions.
We also note the similarity of our findings to (Li et al.,
2006)’s result that the variance of the pairwise distances
in Johnson–Lindenstrauss depends on the kurtosis of the
distribution being used for random projections. Despite the
perturbation, in all cases, the PC can be recovered accu-
rately. Note also that scaling the projected data points by
1/
p

(m2
+m)µ2

2 preserves the energy in the direction of
the PC (i.e. the eigenvalue).

In Theorem 3, we see that C
true

and bC
true

have the same
set of eigenvectors with the eigenvalues of C

true

increased
by ↵=h{ 1

m+1 + (



p(m+1) +

1
p

+

1
m+1 )

1
SNR}. Thus, ↵ is

a decreasing function of p, m/p and SNR, and in particular
goes to 0 as p ! 1 for constant projection ratio m/p. This
is illustrated in Fig. 5.2. Thus, surprisingly, in the high-
dimensional regime, the amount of perturbation of eigen-
values becomes increasingly negligible even for small mea-
surement ratios.

Now, let’s examine the error matrix E. We observe that
E can be viewed as representing a bias of the estimated
PCs towards the nearest canonical basis vectors; it stems
from anisotropy in the distribution for R

i

when this is non-
Gaussian (note  = 0, and thus E = 0, for the Gaussian
case). In later sections, we will use the 2-norm of E, kEk2,
to bound the angle between the estimated and true PCs. In-
deed, we find, for constant � , kEk2

h

, the same angular PC
estimation error is achieved. We now study kEk2, leading
to useful observations, for several types of PCs. (An ex-
panded discussion with full derivations is included in the
supplementary materials.)
(1) Smooth PCs: It has frequently been observed that
sparse-Bernoulli random projections are most effective on
vectors that are “smooth” (Ailon and Chazelle, 2009),
meaning that their maximum entry is of size O(

1p
p

). Large
images, videos, and other natural signals with distributed
energy are obvious examples of this type. (Other sig-
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Figure 5.2. Variation of the parameter ↵

h for (a)  = 0 and (b)  =
200, varying p and measurement ratio m/p, and fixed SNR = 5.

nals are often preconditioned to be smooth via multiplica-
tion with a Hadamard conditioning matrix.) We may eas-
ily observe then that kEk2



m+1µ
2
max

h, or � 

m+1µ
2
max

,
where µ

max

is the mutual coherence (Elad, 2007) between
the PCs and the canonical basis, and we note 

m+1  1
�

.
As we will see in Section 5.3, we will want to keep � small
enough to guarantee a certain fixed angular error ✓0. In fact,
this can be satisfied by requiring ��C(✓0)µ

2
max

, where
C(✓0) is a constant depending on the error ✓0. Hence, for
smooth PCs, we need only have �/ 1

p

, reducing memory
and computation by a rather remarkable factor of p.
(2) All Sparse PCs: In the case of all sparse
PCs, we may write E as E=



m+1Ctrue

+ E0

where kE0k2


m+1

p

1� µ4
min

h and µ
min

,
min1id

max1jp

|hv
i

, e
j

i| represents the close-
ness of the PCs to the canonical basis {e

j

}p
j=1. Thus,

unlike for other sparse-Bernoulli applications, we find that
sparse PCs can still be recovered very well here, although
the eigenvalues may be heavily scaled by the known factor
1 +



m+1 . Doing this, and taking E0 as the resulting error
term, we can let �/

p

1� µ4
min

to maintain constant �.
(3) Neither Sparse nor Smooth PCs: In this case, we can
still apply the analysis for case (1), just with a larger µ2

max

and less aggressive memory/computation savings.
(4) Mixture of PC Types: In this case, we may split E into
two error matrices, associated with each of the sparse and
non-sparse PCs. Recovery of the d-dimensional PC sub-
space still performs well here. However, if the eigenvalues
{�2

j

}d
j=1 do not decay sufficiently fast, scaling of the eigen-

values for the sparse PCs may reorder the individual com-
ponents. Please see the supplementary material for further
discussions and simulations.

Theorem 4. Assume that {R
i

}n
i=1, {x

i

}n
i=1, {y

i

}n
i=1,

m, n, p, µ
k

, h, and SNR are as defined in Sec-
tion 3. Consider the covariance matrix estimator bC
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. Then, the deviation of our
n-sample estimator from its mean value is upper bounded:
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Figure 5.1. Accurate recovery of the PC under random projections using both Gaussian and sparse random projection matrices for
various values of s. In each figure, there are n=3000 data samples uniformly distributed on a line in R1000. {Ri}ni=12Rp⇥m,
m/p=0.2, are generated with i.i.d. entries drawn from (a) N (0, 1) and (b,c,d) the sparse-Bernoulli distribution for s=3, 20, 50. In
each figure, we view two dimensions (the original PC’s and one other) of the data {xi}ni=1 (blue dots) and the scaled projected data
1/

p
(m2 +m)µ2

2{RiR
T
i xi}ni=1 (red circles). We observe that, in all cases, the projected data samples are symmetrically distributed

around the PC, and the inner product magnitude between the PC estimated from the projected data and the true PC is at least 0.998.
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Note that ⇠ has various terms that scale with 1
p

, 1
m
/p

, and
the higher order moments µ8/µ4

2, µ6/µ3
2, and µ4/µ2

2.

We see that as the number of data samples n increases,
the variance decreases at rate 1

n

, converging quickly to the
limit. Moreover, the variance of our estimator is a decreas-
ing function of the measurement ratio m/p and SNR. We
further note that the parameter ⇠ gives us important infor-
mation about the effect of the tails of the distribution on the
convergence rate of the covariance estimator. More pre-
cisely, for sparse random projections, we see that
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. Hence, for
a fixed number of data samples, decreasing the compres-
sion factor � leads to an increase of the variance and a loss
in accuracy, as we will see in Section 6. This is as we
would expect since there is an inherent tradeoff between
saving computation and memory and the accuracy. How-
ever, characterizing this tradeoff allows � to be chosen in
an informed way for large datasets.
5.3. Memory, Computation and PC Accuracy Tradeoffs
We now use the covariance matrix estimator results to
bound the error of its eigenvalues and eigenvectors, using
related results from matrix perturbation theory.

First, note that using the variance of our estimator (Eq. 5.2)
in the Chebyshev inequality yields
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with probability at least 1 � 1
n"

2 (⌧1 � ⌧2)h
2. In fact,

Eq. 5.3 can be used to characterize tradeoffs between mem-
ory, computation, and PC estimation accuracy (as an angle
between estimated subspaces) in terms of our parameters
n, m/p, etc. For simplicity in what follows and to help keep
the intuition clear, we focus on the case where the number
of samples n ! 1 and " ! 0 in Eq. 5.3 above. However,
it is trivial to adjust these results to the case of finite n by
including a nonzero " in the derivations that follow.

For illustrative purposes, we start by analyzing the case of a
single PC and use the following Lemma. In the following,
�(A) and �

i

(A) denote the set of all eigenvalues and the
ith eigenvalue of A, respectively.

Lemma 5. (Hogben, 2006; Davis and Kahan, 1970) Sup-
pose A is a real symmetric matrix and eA=A + E is the
perturbed matrix. Assume that (e�, ev) is an exact eigenpair
of eA where kevk2 = 1. Then

(a)
�

�

�

e�� �
�

�

�

 kEk2 for some eigenvalue � of A.

(b) Let � be the closest eigenvalue of A to e� and v

be its associated eigenvector with kvk2=1, and let ⌘=

min

�02�(A),�0 6=�

�

�

�

e�� �0

�

�

�

. If ⌘ > 0, then

sin\ (

e

v,v) 
kEk2
⌘

(5.4)

where \ (

e

v,v) denotes the canonical angle between the
two eigenvectors.
We will use this Lemma to bound the angle between the
PC estimate from b

C

n

and the true PC in the single PC
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case. Since C

true

has only one eigenpair (�2,v) with
nonzero eigenvalue, bC

true

has an eigenpair (�2
+↵,v) and

�
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)=↵, i=2, . . . , p. From Lemma 5, we see that
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We then get the following tradeoff between the accuracy of
the estimated eigenvector and the parameters of our model:

sin\ (

e
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1� �
. (5.6)

This equation allows us to characterize the statistical trade-
off between the sparsity parameter s and the accuracy of
the estimated PC. Observe that this is the same �=

kEk2
h

that we discussed in Section 5.2. To ensure fixed maximum
angular error for PC estimation, i.e. sin\(ev,v)sin ✓0,
we should choose � such that � sin ✓0

1+sin ✓0
. For smooth

PCs, we may satisfy this by choosing ��C(✓0)µ
2
max

for
C(✓0), 1+sin ✓0

sin ✓0
, which gives ��O(

1
p

). Hence, the mem-
ory/storage requirements of our method can scale with p
in contrast to standard algorithms that scale with p2, while
the computational complexity of SVD can scale with p2 as
opposed to p3. Although the smooth case is of special in-
terest, less aggressive, but still substantial, savings are also
available for other PC types.

For the general case of d PCs, we consider the eigendecom-
position of the perturbed matrix bC
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The distance between each perturbed eigenvalue
and the corresponding original eigenvalue depends
on the amount of perturbation. We now have that
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Moreover, it is possible to quantify the rotation of eigen-
vectors using the notion of canonical angle matrix defined
in (Davis and Kahan, 1970). Note that V1, eV12Rp⇥d are
the first (true and estimated) PCs. The canonical angles be-
tween them are defined as ✓

i

=arccos ⇢
i

, where {⇢
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}d
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the singular values of (eVT
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/2, in
our case, just eVT

1 V1. The canonical angle matrix is then
defined as ⇥(

e

V1,V1)=diag(✓1, . . . , ✓d). Based on the re-
sults given in (Davis and Kahan, 1970; Gilbert et al., 2012):
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Figure 6.1. Results for synthetic data: (a) normalized estimation
error for the center for varying n and �, (b) magnitude of the inner
product between the estimated and true PC for varying �, (c) nor-
malized estimation error for � for varying �, and (d) computation
time to perform the SVD for the original vs. randomly projected
data for varying �.
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ing the same logic as in 5.5, we find ⌘��2
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� �h. Hence,
choosing s, m, etc. such that � satisfies �<
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h

, the maxi-
mum canonical angle between eV1 and V1 satisfies
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h
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This is the same form we saw in Eq. 5.6. Hence, for smooth
PCs, we may again choose � / 1

p

.
6. Experimental Results
In this section, we examine the tradeoffs between memory,
computation, and accuracy for the sparse random projec-
tions approach on both synthetic and real-world datasets.
First, we synthetically generate samples {x

i

}n
i=12Rp dis-

tributed along one PC with �=20. Each entry of the center
and PC is drawn from the uniform distribution on [0, 20)
and [0, 1), respectively. The PC is then normalized to have
unit `2-norm. We consider a relatively noisy situation with
SNR=1. We then estimate the center of the original data
from the sparse random projections, where m/p=0.2, for
varying n and compression factors �. Our results are av-
eraged over 10 independent trials. Fig. 6.1(a) shows the
accuracy for the estimated center, where the error is the
distance between the estimated and the true center normal-
ized by the true center’s norm. As expected, when n or di-
mension p increase, the compression factor � can be tuned
to achieve a substantial reduction of storage space while
obtaining accurate estimates. This is desirable for high-
dimensional data stream processing.

We then fix n=2p, and plot the inner product magnitude
between the estimated and true PC in Fig. 6.1(b) and the



Efficient PCA via Very Sparse Random Projections

2 4 6 8 10

0.2

0.3

0.4

0.5

Number of PCs

E
xp

la
in

e
d

 V
a

ri
a

n
ce

 

SVD on Original Data

Our Method,γ=1/20

Our Method,γ=1/40

BSOI

(a)

2 4 6 8 10
10

0

10
1

10
2

10
3

Number of PCs

T
im

e
 in

 s
e

c.
 (

lo
g

 s
ca

le
)

 

 

(b)
Figure 6.2. Results for the MNIST dataset. Our proposed ap-
proach is compared with two methods: (1) performing MAT-
LAB’s svds on the full original data, (2) BSOI (Mitliagkas et al.,
2013). Plot of (a) performance accuracy based on the explained
variance and (b) computation time for performing SVD. We see
that our approach performs as well as SVD on the original data
and outperforms BSOI with significantly less computation time.

computation time in Fig. 6.1(d) for varying �. We observe
that, despite saving nearly two orders of magnitude in com-
putation time and also in memory (note � =

1
50 ,

1
100 ,

1
200 )

compared to PCA on the full data, the PC is well-estimated.
Moreover, the approach remains increasingly effective for
higher dimensions, which is of crucial importance for mod-
ern data processing applications. We further note that, as
the dimension increases, we can decrease the compression
factor � while still achieving a desired performance. For
example, �= 1

100 for p=4⇥103 and �= 1
200 for p=10

4 have
almost the same accuracy. This is consistent with the ob-
servation �/ 1

p

from before.

We also plot the estimation error for the singular value � in
Fig. 6.1(c). The error is the distance between the singular
value obtained by performing SVD on {R

i

y

i

}n
i=1 and on

the original data {x
i

}n
i=1, normalized by the latter value.

Finally, we consider the MNIST dataset to see a real-
world application outside the spiked covariance model.
This dataset contains 70,000 samples of handwritten dig-
its, which we have resized to 40⇥40 pixels. Hence, we have
70,000 samples in R1600. To evaluate the performance of
our method, we use the explained variance described in
(Mitliagkas et al., 2013). Given estimates of d PCs eV2
Rp⇥d and the data matrix X, the fraction of explained vari-
ance is defined as tr(eVT

XX

T

e

V)/tr(XX

T

). We compare
the performance of our approach with (1) performing SVD
(using MATLAB svds) on the original data that are fully
acquired and stored, and as a useful point of comparison,
with (2) the online algorithm Block-Stochastic Orthogonal
Iteration (BSOI) (Mitliagkas et al., 2013), where the data
samples are fully acquired but not stored. We show the re-
sults in Fig. 6.2 for the measurement ratio m/p=0.1.

In terms of accuracy, our approach performs about as well
as SVD on the original data, and has slightly better perfor-
mance compared to BSOI. The sparse random projections
result in a significant reduction of computational complex-
ity, with one order and two orders of magnitude speedup

compared to the original SVD and BSOI, respectively. In
terms of memory requirements, 340 MB is needed to store
the original data. However, the required memory for our
framework is 44 MB for �= 1

20 and 24 MB for �= 1
40 . The

projected data thus can easily reside in the main memory.

Moreover, we have compared our method with the fast ran-
domized SVD algorithm in (Halko et al., 2011a). The es-
timation accuracy of this method is very close to SVD on
the original data, and the computation time is about 1.2
seconds, which is slightly less than the computation time of
our method. This is as we would expect, since fast random-
ized SVD is designed specifically for low-computational
complexity. However, (Halko et al., 2011a) is a full data
method, meaning that it is assumed that the full data is
available for computation and does not require time or cost
to access. Our approach performs approximately as well in
similar computation time while also allowing a reduction in
memory (or data access or data communication costs) by a
factor of �, in this case 1

20 and 1
40 . This can be a signif-

icant advantage in the case where data is stored in a large
database system or distributed network.

This example indicates that our approach results in a sig-
nificant simultaneous reduction of memory and/or compu-
tational cost with little loss in accuracy.

7. Conclusions
We have presented a memory- and computation-efficient
approach for estimation of PCs via very sparse random pro-
jections. This approach simultaneously reduces substan-
tially the required memory and computation for PC estima-
tion, while still providing high accuracy. More importantly,
it allows us to rigorously analyze each of memory, compu-
tation, and accuracy in terms of the sparsity of the projec-
tion, for various PC models. Thus, we have been able to
give provable tradeoffs between memory, computation, and
accuracy. Furthermore, a user of this approach could even
use the sparsity of the projections to tune to any desired
point on this three-way tradeoff. We believe that this ap-
proach could be valuable for various important modern data
processing applications such as massive databases, dis-
tributed networks, and high-dimensional data stream pro-
cessing, although we have not focused on the specific de-
tails of these in favor of more theoretical analysis. Indeed,
we observe that our approach performs well in initial prac-
tical simulations, e.g. for the MNIST dataset, with large
reduction of both memory and computation without sacri-
ficing accuracy.
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