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6. Supplement

6.1. Subspace-Valued Maps

Proposition 6.1. Let S denote a quasilinear subspace-
valued map. Then

S(αx) = αS(x)

and
αS(x) ⊆ S(αx+ βy) + βS(y)

for everyx, y ∈ H, α, β ∈ R.

Proof. The caseα = 0 follows directly from the definition.
If α 6= 0, applying quasilinearity withβ ← 0 we obtain
thatS(αx) ⊆ αS(x) andS(x) ⊆ 1

α
S(αx). From these (2)

follows. (3) follows from (2) and the definition applied to
the difference ofαx + βy andβy.

Lemma 6.1. Let S be a quasilinear and idempotent
subspace-valued map. Then, for everym ∈ N and every
set{xi : i ∈ Nm} ⊆ H, it holds that

S

(

m
∑

i=1

S(xi)

)

⊆

m
∑

i=1

S(xi).

Proof. From quasilinearity and idempotence we obtain that
S(S(x) + y) ⊆ S(x) + S(y) for everyx, y ∈ H. The
assertion then follows by induction.

6.2. Loss Functions Which Lead to Orthomonotonicity

Lemma 6.2. Assume thatV is a regression loss function.
Then, for everyp ∈ N, there exist output data{yi : i ∈
N2p} ⊂ R and a functionfu : Rp → R∪{+∞} satisfying
the hypothesis of Theorem3.1, Part 2, such that the error
functional

w 7→ f(〈w,w1〉, . . . , 〈w,wp〉, 〈w,w1〉, . . . , 〈w,wp〉) ,

with f defined by(14) for m = 2p, equals the error func-
tional

w 7→ fu(〈w,w1〉, . . . , 〈w,wp〉) .

Proof. By the hypothesis onφ, it follows that the set of
minimizersM = {t ∈ R : φ(t) = φ(0)} is closed and
bounded. Ifφ is uniquely minimized at zero, that isM =
{0}, we have immediately thatf satisfies the hypothesis of
part 2 of Theorem3.1if we select the output data vector to
be nonzero. Otherwise, letα = minM andβ = maxM,
and consider the error function

fu(z) =

p
∑

i=1

Vu(zi, yi) ,

Vu(z, y) = φ(z − y) + φ(z − y − β + α).

Observe that the functionVu(z, y) is lower semicontinuous
and has bounded sublevel sets. Moreover, it is uniquely
minimized forz = y + β, since

• if z = y + β, thenVu(z, y) = φ(β) + φ(α) = 2φ(0),

• if z > y+β, thenVu(z, y) ≥ φ(z−y)+φ(0) > 2φ(0),

• if z < y+β, thenVu(z, y) ≥ φ(0)+φ(z−y−β+α) >
2φ(0).

The error functionfu is lower semicontinuous with
bounded sublevel sets and uniquely minimized forzi =
yi + β, thus satisfying the hypothesis of part 2 of Theo-
rem3.1, provided thatyi 6= −β for somei ∈ Np. Finally,
observe that

f(〈w,w1〉, . . . , 〈w,wp〉, 〈w,w1〉, . . . , 〈w,wp〉)

= fu(〈w,w1〉, . . . , 〈w,wp〉) ∀w ∈ H

if we chooseyp+i = yi + (β − α) for all i ∈ Np.

Lemma 6.3. Assume thatV is a regular binary classifi-
cation loss function. Then, for everyp ∈ N, there exist
output data{yi : i ∈ N2p} ⊆ {−1,+1} and a function
fu : R

p → R satisfying the hypothesis of Theorem3.1,
Part 2, such that the error functional

w 7→ f(〈w,w1〉, . . . , 〈w,wp〉, 〈w,αw1〉, . . . , 〈w,αwp〉)) ,

with f defined by(14) for m = 2p, equals the error func-
tional

w 7→ fu(〈w,w1〉, . . . , 〈w,wp〉) .

Proof. For anyp ∈ N andy ∈ {−1,+1}p, consider the
error function

fu(z) =

p
∑

i=1

ψα(ziyi) .

In view of the hypothesis onφ, the functionfu satisfies the
hypothesis of part 2 of Theorem3.1. Moreover, observe
that

f(〈w,w1〉, . . . , 〈w,wp〉, 〈w,αw1〉, . . . , 〈w,αwp〉) =

= fu(〈w,w1〉, . . . , 〈w,wp〉) ∀w ∈ H

if we chooseyp+i = −yi for all i ∈ Np.

6.3. Properties of Orthomonotone Functions

Proposition 6.2. Let a ∈ H andΩ : H → R ∪ {+∞}
orthomonotone with respect to the mapS : H → V(H).
If S is quasilinear then the functionx 7→ Ω(x + a) is or-
thomonotone with respect to the mapx 7→ S(x) + S(a).
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Proof. Quasilinearity implies thatS(x+a) ⊆ S(x)+S(a),
for everyx ∈ H, and the assertion follows from the defini-
tion of orthomonotonicity.

Proposition 6.3. LetΩ1 : H → R∪{+∞} be orthomono-
tone with respect to a mapS1 : H → V(H) and Ω2 :
H → R ∪ {+∞} be orthomonotone with respect to a map
S2 : H → V(H). Also leth : (R ∪ {+∞})

2
→ R∪{+∞}

be elementwise nondecreasing, that is,h(a′, b′) ≥ h(a, b)
whenevera′ ≥ a andb′ ≥ b. Then the functionΩ : H →
R ∪ {+∞},

Ω(w) = h (Ω1(w),Ω2(w)) ∀w ∈ H,

is orthomonotone with respect to the mapS1 + S2.

Proof. The assertion follows by combining the orthomono-
tonicities of Ω1,Ω2 with the fact that ifw ∈ H, p ∈
(S1 + S2)(w)

⊥ thenp ∈ S1(w)
⊥ ∩ S2(w)

⊥.

Note that such operations enlarge, in general, the class of
orthomonotone functions, since the image ofS1 + S2 at
any fixed point contains those ofS1, S2. Thus, Proposi-
tion 3.3can be used to obtain representer theorems for new
penalties, based on known representer theorems. How-
ever, this technique may not provide the complete class
of orthomonotone penalties for the sum of the maps. An
example of this is the multitask representer theorem (see
Example 4.2) which yields a class of penalties of the
form h(W⊤W ). Applying the “classical” representer the-
orem on the space of matricesMd,n yields the subclass of
the formh(‖W‖2Frob). Considering the mapsSij(X) =
span{XEij}, i ∈ Nd, j ∈ Nn, each of which corre-
sponds to the class of monotone functions of‖wi‖, we
could apply Proposition3.3 and obtain the class of penal-
tiesh(‖w1‖

2, . . . , ‖wn‖
2), which is strictly nested between

the previous two classes.

Proposition 6.4. LetΩ : H → R ∪ {+∞} be orthomono-
tone with respect to a mapS : H → V(H) and let
T ∈ L (H) be a continuous operator. Then the function
Ω ◦ T is orthomonotone with respect toT ∗ ◦ S ◦ T .

Proof. Let x ∈ H, y ∈ (T ∗ ◦ S ◦ T )(x)⊥. ThenTy ∈
S(Tx)⊥ and, by orthomonotonicity ofΩ, we obtain that
Ω(Tx+ Ty) ≥ Ω(Tx).

6.4. Geometric Interpretation of Orthomonotonicity

In the case of convex regularizersΩ, orthomonotonicity
can be rephrased as the property that the affine subspace
x + S(x)⊥ is tangent to the contour passing throughx.
Figure1 illustrates this for both a nonsmoothΩ (top) and a
smoothΩ (bottom). LetΛ be the convex cone tangent to the
contour atx. In the top plot,Λ is delimited by the dashed
lines. In the smooth case,Λ is a halfspace. In both cases,

Figure 1.Interpretation of orthomonotonicity for convex func-
tionsΩ. The curves depict contours ofΩ and the dashed lines
the boundary of the tangent cone.

orthomonotonicity means thatx + S(x)⊥ is contained in
H \ Λ.

6.5. Alternative Regularization Techniques

Example4.1refers to the representer theorem we call “clas-
sical”, that is, to the case of regularizers which are nonde-
creasing functions of the Hilbertian norm. In particular,
the classical theorem applies to the widely used method
of Tikhonov regularization. However alternative ways to
formulate the optimization problem, which are essentially
equivalent to Tikhonov regularization, have also been used.
Let us consider the following optimization problems,

min{Ey(〈w,w1〉, . . . , 〈w,wm〉) + γ ‖w‖2 : w ∈ H}

(T ikhonov)
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min{Ey(〈w,w1〉, . . . , 〈w,wm〉) : ‖w‖ ≤ r, w ∈ H}

(Ivanov)

min{‖w‖2 : Ey(〈w,w1〉, . . . , 〈w,wm〉) ≤ η
2, w ∈ H}

(Phillips)

min{Ey(〈w,w1〉, . . . , 〈w,wm〉) +
(

η
r

)2
‖w‖2 :

Ey(〈w,w1〉, . . . , 〈w,wm〉) ≤ η
2, ‖w‖ ≤ r, w ∈ H}

(Miller)

whereγ, r, η are positive regularization parameters andEy :
z 7→ 1

m
‖z − y‖2 with y ∈ R

m a fixed output vector.

It is easy to see that each of the above optimization prob-
lems can be rephrased as the minimization of a functional
J of the form (4) with appropriate choices off andΩ. For
example, Ivanov regularization is obtained with the choice

f = Ey, Ω : w 7→

{

0 if ‖w‖ ≤ r

+∞ otherwise
. Applying the first

part of Theorem3.1yields a representer theorem for all of
the above regularization problems, which is a known fact
(Gnecco & Sanguineti, 2010; Schölkopf & Smola, 2002).

But in addition, part 2 of Theorem3.1and Lemma3.1 im-
ply thenecessityof radial regularizers in the Tikhonov and
Ivanov formulations. That is, if we replaced‖ · ‖ in the
Tikhonov or Ivanov problems with a penaltyΩ satisfying
the assumptions of Theorem3.1, Part 2, and assumed that
the classical representer theorem holds for any choice of
dataw1, . . . , wm ∈ H and anyγ > 0, thenΩ would have
to be radial ifdimH ≥ 2 (see Example4.1). In fact, for
the Ivanov formulation it suffices to assume that the rep-
resenter theorem holds for asinglevalue ofr > 0 (since
r is a parameter of the regularizerΩ). In contrast, for the
Phillips formulation it remains an open question whether
radial functions are the only regularizers yielding the clas-
sical representer theorem. In this case, the error termf ap-
pears in the constraint and hence does not admit a unique
minimizer as required in part 2 of Theorem3.1. Regard-
ing the Miller formulation, part 2 of Theorem3.1does not
apply directly sinceη and r are parameters off andΩ,
respectively, but would apply with the inclusion of a free
parameterγ > 0 multiplyingΩ.

Finally, let us remark that the above ideas can be extended
in a straightforward way to generalized representer theo-
rems. In other words, representer theorems can be obtained
for regularization problems of Tikhonov, Ivanov, Phillips
or Miller type, in which the regularizerΩ is orthomono-
tone with respect to an arbitrary regular quasilinear mapS

(such as the examples of Section4).

6.6. Tensor Learning

A representer theorem can also be derived for tensor learn-
ing problems. Consider a regularization problem for learn-
ing a 3-way tensor

min{f(〈W,W1〉, . . . , 〈W,Wm〉) + γ1 Ω1(Mat1(W ))

+γ2 Ω2(Mat2(W )) + γ3 Ω3(Mat3(W ))

:W ∈ R
d1×d2×d3}. (16)

HereMati is the operator that maps a tensor to itsi-th ma-
trix unfolding andΩ1 : Md1,d2d3

→ R ∪ {+∞}, Ω2 :
Md2,d1d3

→ R∪{+∞},Ω3 : Md3,d1d2
→ R∪{+∞} are

functions of the form

Ωi(X) = hi(X
⊤X)

with hi a matrix nondecreasing function. Examples of such
penaltiesΩi are spectral functionsof the matricizations,
weighted spectral functionsof the matricizations, group
Lasso typemixed(2, p) normsof the matricizations etc.
Let Ti = Mati andSi similar to Example2.3, for i =
1, 2, 3. The case of spectral penalties on matricizations has
been proposed and studied recently – see (Signoretto et al.,
2013) and references therein.

Applying Propositions3.3 and 3.4, we obtain that the
penalty in (16) is orthomonotone with respect to the map
S′ = T ∗

1 ◦ S1 ◦ T1 + T ∗
2 ◦ S2 ◦ T2 + T ∗

3 ◦ S3 ◦ T3. Since
T ∗

i = Mat−1
i , the mapS′ is idempotent and hence regu-

lar quasilinear. Thus we obtain the following representer
theorem.

Corollary 6.1. If problem (16) admits a minimizer then
there exists a minimizer̂W of the form

Ŵ =

m
∑

i=1

Mat−1
1

(

Mat1(Wi)C
(1)
i

)

+

m
∑

i=1

Mat−1
2

(

Mat2(Wi)C
(i)
2

)

+
m
∑

i=1

Mat−1
3

(

Mat3(Wi)C
(i)
3

)

for someC(1)
i ∈ Md2d3

, C
(2)
i ∈ Md1d3

, C
(3)
i ∈ Md1d2

,
∀i ∈ Nm.

Clearly the result generalizes to tensors of any order. A
related representer theorem for the special case of spectral
penalties has recently appeared in (Signoretto et al., 2013).


