A Unifying View of Representer Theorems

6. Supplement
6.1. Subspace-Valued Maps

Proposition 6.1. Let S denote a quasilinear subspace-
valued map. Then

S(ax) = aS(x)

and
aS(x) C S(az + By) + BS(y)

foreveryzr,y € H, a, 3 € R.

Proof. The caser = 0 follows directly from the definition.
If a # 0, applying quasilinearity withs +— 0 we obtain
thatS(ax) C aS(z) andS(z) € LS(ax). From these)
follows. (3) follows from (2) and the definition applied to
the difference ofvz + Sy andjy. O

Lemma 6.1. Let S be a quasilinear and idempotent
subspace-valued map. Then, for evetye N and every
set{z; : i € N,,,} C H, it holds that

Vu(z,y) =9z —y) + ¢z —y — B+ ).

Observe that the functiow, (z, y) is lower semicontinuous
and has bounded sublevel sets. Moreover, it is uniquely
minimized forz = y + (3, since

o if 2=y + 3, thenV, (2 d(B) + o(a) = 264(0),
$(0) > 2¢(0),

¢(0)+9(z—y—F+a) >

) =
o if 2> y+4, thenV,(z,y) > d(z—y)+

o if z < y+p,thenV,(z,y) >
2¢(0).

The error function f, is lower semicontinuous with
bounded sublevel sets and uniquely minimized fpr=

yi + B, thus satisfying the hypothesis of part 2 of Theo-
rem3.1, provided thaty; # —/ for somei € N,,. Finally,
observe that

F{w,we), ..., (w,wp), (w,wq), ...

= fU(<w’w1>7 SRR <w7w1)>)

if we choosey,+; = y; + (8 — «) forall i € N,,.

(W, wp))
Yw € H

O

Lemma 6.3. Assume thal’ is a regular binary classifi-
cation loss function. Then, for evepy € N, there exist
output data{y; : ¢ € Ng,} C {—1,+1} and a function
fu : R — R satisfying the hypothesis of Theoréni,

Proof. From quasilinearity and idempotence we obtain that"a"t 2, such that the error functional

S(S(x) +y) € Sx) +
assertion then follows by induction.

S(y) for everyz,y € H. The
O

6.2. Loss Functions Which Lead to Orthomonotonicity

Lemma 6.2. Assume thal” is a regression loss function.
Then, for everyp € N, there exist output datdy, : i €
Ng,} € Rand a functionf,, : R? — RU{+oo} satisfying
the hypothesis of Theore®il, Part 2, such that the error
functional

w = f({w,wr), ... (W, wp), (wyw ), ... (w,wy))
with f defined by(14) for m = 2p, equals the error func-
tional

w = fu((w,wr), ..., (w,wpy)) .

Proof. By the hypothesis o, it follows that the set of
minimizersM = {t € R : ¢(t) = ¢(0)} is closed and
bounded. Ify is uniquely minimized at zero, that is1 =
{0}, we have immediately thgt satisfies the hypothesis of
part 2 of Theoren3.1if we select the output data vector to
be nonzero. Otherwise, let = min M andf = max M,
and consider the error function

w = f((w,wr), ..., (w,wp), (w,awr),. .., (w,aw,))) ,

with f defined by(14) for m = 2p, equals the error func-

tional

w = fu((w,wr),. .., (w,wp)) .

Proof. For anyp € N andy € {—1,+1}?, consider the
error function

P

> valziyi) -

=1

In view of the hypothesis oa, the functionf,, satisfies the
hypothesis of part 2 of Theore11 Moreover, observe
that

f(<wa U)1>, R <U), wp>a <U), OﬂU1>, R <U), O‘wp>) =
:fu(<w7w1>a-'-a<wawp>) Vw e H
if we choosey,;; = —y; foralli € N,,. O

6.3. Properties of Orthomonotone Functions

Proposition 6.2. Leta € H andQ : X — R U {+oo}
orthomonotone with respect to the mép: H — V(H).
If S is quasilinear then the function — Q(x + a) is or-
thomonotone with respect to the map+ S(z) + S(a).
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Proof. Quasilinearity implies that (z+a) C S(z)+S(a),
for everyx € H, and the assertion follows from the defini-
tion of orthomonotonicity. O

Proposition 6.3. LetQ); : H — RU{+oc} be orthomono-
tone with respect to a mag; : X — V(H) and Q; :

H — R U {+oc0} be orthomonotone with respect to a map
Syt H — V(H). Alsoleth : (RU {+o0})* — RU{+00}

be elementwise nondecreasing, thati&;’,b’) > h(a,b)
whenever’ > a andb’ > b. Then the functiof : H —

R U {+o0},

Q(w) = h (1 (w), w(w)) Ve H,

is orthomonotone with respect to the m&p+ Ss.

Proof. The assertion follows by combining the orthomono-
tonicities of Q1,5 with the fact that ifw € H, p €
(S1 + S2)(w)* thenp € Sy (w)* N Sy(w)*t. O

x+8(x)*

Note that such operations enlarge, in general, the class of
orthomonotone functions, since the imageSf+ S, at x
any fixed point contains those ¢f;, S.. Thus, Proposi-
tion 3.3can be used to obtain representer theorems for new
penalties, based on known representer theorems. How-
ever, this technique may not provide the complete class
of orthomonotone penalties for the sum of the maps. An
example of this is the multitask representer theorem (see
Example4.2) which yields a class of penalties of the
form h(WTW). Applying the “classical” representer the-
orem on the space of matricd4, ,, yields the subclass of
the formh(||W|%,.,)- Considering the maps;;(X) =

span{X Ej}, i € Na,j € N,, each of which corre- gy e 1 interpretation of orthomonotonicity for convex func-
sponds to the clas_s_of monotone _funct|ons||0fz-|\, W€ tions (. The curves depict contours 6f and the dashed lines
could apply PropositioB.3 and obtain the class of penal- the boundary of the tangent cone.

tiesh(||w1]?, ..., ||lwn|/?), which s strictly nested between
the previous two classes.

Proposition 6.4. Let : H — R U {+occ} be orthomono-
tone with respect to a map : H — V(H) and let

T € Z(H) be a continuous operator. Then the function
Q o T'is orthomonotone with respect 6" o S o T'.

orthomonotonicity means that+ S(z)* is contained in
H\ A
6.5. Alternative Regularization Techniques

Proof. lLet:zc €M ye (T o S_O_T)(CC)L- ThenTy € Example4.1refers to the representer theorem we call “clas-
S(T'z)~ and, by orthomonotonicity of2, we obtain that  sjcal”, that is, to the case of regularizers which are nonde-

ATz +Ty) > QTx). O creasing functions of the Hilbertian norm. In particular,
the classical theorem applies to the widely used method
6.4. Geometric I nterpretation of Orthomonotonicity of Tikhonov regularization However alternative ways to

formulate the optimization problem, which are essentially
guivalent to Tikhonov regularization, have also been used
ét us consider the following optimization problems,

In the case of convex regularizef orthomonotonicity
can be rephrased as the property that the affine subspaﬁ
x + S(x)* is tangent to the contour passing through
Figurelillustrates this for both a nonsmoadth(top) and a
smooth() (bottom). LetA be the convex cone tangentto the
contour atz. In the top plot,A is delimited by the dashed
lines. In the smooth casd, is a halfspace. In both cases,

min{€, ((w,wn), ., (w, ) + 7 0] w € H)
(T'ikhonov)
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min{&, ((w, w1), ..., (w,wy)) : [|w]| <rwe H} 6.6. Tensor Learning

(Tvanov) A representer theorem can also be derived for tensor learn-
ing problems. Consider a regularization problem for learn-
ing a 3-way tensor

min[[w|* : &, ((w,w1),.... (w,wm)) < 0*,w € H} ,
(thllzps) mln{f(<Wa W1>7 R <W, Wm)) +m Q1 (Nlatl (W))
42 Q9 (Matg (W)) + 73 Q3 (Matg(W))
W e R xdaxdsy (16)
. 2
min{&, ((w, w1), ..., (w, wm)) + (2) [Jw]? : HereMat, is the operator that maps a tensor taiith ma-
Ey((wywr), .., (w,wm)) < 0 lw|| < 7w e H} trix unfolding and€, : My, 4,4, — R U {400}, Q2 :
(Miller) Md27d1d3 — RU {+OO}, Q3 : Md37d1d2 — RU {+OO} are
functions of the form
wherey, r, ) are positive regularization parameters &pd Q:(X) = hi(XTX)

2+ Lz — y|? with y € R™ a fixed output vector.
b\!vith h; a matrix nondecreasing function. Examples of such

It is easy to see that each of the above optimization pro i ) L
a?enaltlesﬂi are spectral functionf the matricizations,

lems can be rephrased as the minimization of a functionat ™. _ S
weighted spectral functionsf the matricizations, group

J of the f ith iate choi dQ. F ; L
of the form &) with appropriate choices gf an o |asso typemixed (2, p) normsof the matricizations etc.

example, lvanov regularization is obtained with the choice .
P g it [|uwl| < Let T; = Mat,; and S; similar to Example2.3, for i =
wl <r

. Applying the first 1,2, 3. The case of spectral penalties on matricizations has

+oo otherwise been proposed and studied recently — Sigr(oretto et aJ.
part of Theoren8.1yields a representer theorem for all of 2013 and references therein.

the above regularization problems, which is a known fact

(Gnecco & Sanguinet?01Q Scholkopf & Smola2002). Applying Propositions3.3 and 3.4, we obtain that the
penalty in (L6) is orthomonotone with respect to the map

But in addition, part 2 of Theore®.1and Lemma3.1im- S' =T} oS 0Ty +T5o0Sy0Ty+TfoS30Ts. Since
ply the necessityf radial regularizers in the Tikhonov and TF = Mat;1, the mapsS’ is idempotent and hence regu-
Ivanov formulations. That is, if we replacdd- || in the  |ar quasilinear. Thus we obtain the following representer
Tikhonov or Ivanov problems with a penalfy satisfying  theorem.
the assumpnons of Theoreful, Part 2, and assumed t_hat orollary 6.1. If problem (16) admits a minimizer then
the classical representer theorem holds for any choice q ; g

ere exists a minimizdi” of the form

F=E,Q: 0w

dataws, ..., w,, € H and anyy > 0, thenQ) would have

to be radial ifdimH > 2 (see Exampld.l). In fact, for . m

the Ilvanov formulation it suffices to assume that the rep- W = Z Matl_1 (Matl(Wi)Ci(l))
resenter theorem holds forsinglevalue ofr > 0 (since i=1

r is a parameter of the regulariz®). In contrast, for the m . @
Phillips formulation it remains an open question whether + ZMat2 (Mat2(Wi)02 )
radial functions are the only regularizers yielding thesela =1
sical representer theorem. In this case, the error jeap-
pears in the constraint and hence does not admit a unique
minimizer as required in part 2 of Theore3rl. Regard-
ing the Miller formulation, part 2 of Theore®.1does not
apply directly sincep andr are parameters of and (2,
respectively, but would apply with the inclusion of a free

parametety > 0 multiplying €. Clearly the result generalizes to tensors of any order. A

Finally, let us remark that the above ideas can be extendd@'ated representer theorem for the special case of spectra
in a straightforward way to generalized representer theoP€nalties has recently appearedSighoretto et a)2013.

rems. In other words, representer theorems can be obtained
for regularization problems of Tikhonov, Ivanov, Phillips

or Miller type, in which the regularizef is orthomono-
tone with respect to an arbitrary regular quasilinear fiap
(such as the examples of Sectidn

+ Zm: Matz ! (Mats (W:)C5”)
=1

for someC™" € My,q,,C? € Myq,,C® € My,q,,
Vi € Np,.



