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Abstract
It is known that the solution of regularization and
interpolation problems with Hilbertian penalties
can be expressed as a linear combination of the
data. This very useful property, called therep-
resenter theorem, has been widely studied and
applied to machine learning problems. Anal-
ogous optimality conditions have appeared in
other contexts, notably in matrix regularization.
In this paper we propose aunified view, which
generalizes the concept of representer theorems
and extends necessary and sufficient conditions
for such theorems to hold. Our main result shows
a close connection between representer theorems
and certain classes of regularization penalties,
which we callorthomonotone functions. This re-
sult not only subsumes previous representer the-
orems as special cases but also yields a new class
of optimality conditions, which goes beyond the
classical linear combination of the data. More-
over, orthomonotonicity provides a usefulcrite-
rion for testing whether a representer theorem
holds for a specific regularization problem.

1. Introduction

One of the dominant approaches in machine learning and
statistics is to formulate a learning problem as an optimiza-
tion problem to be solved. In particular,regularizationhas
been widely used for learning or estimating functions or
models from input and output data, particularly in super-
vised and semisupervised learning.

Regularization in a Hilbert spaceH frames the problem of
learning from data as a minimization of the type

min{f(〈w,w1〉, . . . , 〈w,wm〉) + γ Ω(w) : w ∈ H} . (1)
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The objective function is the sum of anerror termf which
depends on prescribed data1 w1, . . . , wm ∈ H, and areg-
ularization penaltyΩ, which favors certain desirable prop-
erties of the solution. An optimal solution of problem (1)
yields the desired function or vector, depending on the con-
text of the original learning problem.

It is known that, for a certain class of regularization and
interpolation problems, one of the optimal solutions of (1)
can be expressed as a linear combination of the data. More
specifically, this is the case when the penaltyΩ is a Hilber-
tian norm (or a nondecreasing function of that). This prop-
erty, known as therepresenter theorem, has proven very
useful because it renders many high or infinite dimensional
regularization problems amenable to practical computa-
tion. This “classical” representer theorem was formulated
in various guises in (Girosi, 1998; Kimeldorf & Wahba,
1970; Schölkopf et al., 2001) and has been the topic of ex-
tensive further study (Argyriou et al., 2009; De Vito et al.,
2004; Dinuzzo & Schölkopf, 2012; Dinuzzo et al., 2007;
Gnecco & Sanguineti, 2010; Mukherjee & Wu, 2006;
Steinwart, 2003; Yu et al., 2013). In machine learning,
the representer theorem is the main factor that enables
application of the so-called “kernel trick” and underpins all
of the widely usedkernel methods(Schölkopf & Smola,
2002), such as support vector machines, regularization
networks, etc.

Besides the classical result, more recently new types of
representer theorems have been proven and studied. For
example, it has been realized that analogous optimality
conditions apply to the learning of vector-valued func-
tions (Micchelli & Pontil, 2005), ℓ2-regularized multitask
learning (Evgeniou et al., 2005) and structured prediction
(Lafferty et al., 2004). Further developments occurred
with the advent ofmatrix regularizationproblems used
for multitask learning or collaborative filtering. Thus it
has been shown that a type of representer theorem holds
when the penaltyΩ is a spectral function of matrices

1We use the term “data” in a more general sense than input
vectors in Euclidean space – see Section 3 for examples.
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(Amit et al., 2007; Argyriou et al., 2009; 2010) or opera-
tors (Abernethy et al., 2009). Very recently these results
have been extended to matricizations of tensors as well
(Signoretto et al., 2013). Other related results have ap-
peared in the contexts of domain adaptation (Kulis et al.,
2011), dimensionality reduction (Jain et al., 2010) and met-
ric learning (Jain et al., 2012).

Some variants of the classical theorem were shown in
the contexts of semisupervised learning (Belkin et al.,
2006), semiparametric representer theorems and kernel
PCA (Schölkopf et al., 2001). Moreover, there have ap-
peared alternative approaches which lie outside the scope
of this paper, such as a Bayesian variant of the classical
theorem (Pillai et al., 2007), the theory of reproducing ker-
nel Banach spaces (Zhang & Zhang, 2012) and an algorith-
mic theorem for matrices (Warmuth et al., 2012). Clearly
therefore, representer theorems are important and ubiqui-
tous tools in regularization and underly a wide range of
frequently used machine learning methodologies.

In this paper, we address the topic of representer theorems
from a new and more abstract viewpoint. One of our con-
tributions is to provide aunifying frameworkwhich sub-
sumes the results that have already appeared in the liter-
ature. These include the classical, vector valued, struc-
tured prediction, multitask, tensor, semisupervised, semi-
parametric, dimensionality reduction, domain adaptation,
metric learning results etc. In particular, we show that these
theorems are only examples from a larger family. Each
theorem in this family corresponds to a class of regular-
ization penalties which are characterized by anorthomono-
tonicityproperty that we introduce. Another implication of
our results is that we can now put the study of representer
theorems on aformal basisand provide calculus rules and
recipes for deriving new results. Most commonly used ker-
nel methods (support vector machines, kernel ridge regres-
sion etc.), as well as methods for multitask learning, collab-
orative filtering and metric learning, fall within our frame-
work. As an illustration of the theory, we demonstrate that
regularization problems with a generalized family of ma-
trix penalties, as well as similar problems on the positive
semidefinite cone, admit appropriate representer theorems.
In many practical situations this implies that the number of
degrees of freedom and hence the complexity of solving the
learning problem decreases significantly.2

2. Mathematical Preliminaries

In this section, we introduce the notation and the mathe-
matical concepts necessary for our framework and the main
results of Section3.

2 The research leading to these results has received funding
from the European Union Seventh Framework Programme (FP7
2007-2013) under grant agreement No. 246556.

2.1. Notational conventions

Let H be a real Hilbert space with inner product〈·, ·〉 and
associated norm‖ · ‖. We useL (H) to denote the set of
linear operators fromH to itself. We denote the identity
operator byId ∈ L (H) and the set of linear subspaces of
H byV(H).

Also let Nm denote the set of integers{1, . . . ,m}, Md,n

the set of reald× n matrices andMn the set of realn× n
matrices. Moreover, letSn

+ denote the set ofn×n positive
semidefinite matrices andSn

++ the set of positive definite
ones. We denote thet-th column of a matrixW ∈ Md,n

by wt. We use the following notation for operations on
setsA,B ⊆ H: A + B := {a + b : a ∈ A, b ∈ B},
A − B := {a− b : a ∈ A, b ∈ B} λA := {λa : a ∈ A},
for everyλ ∈ R.

In the following, we will be working withsubspace-valued
mapsS : H → V(H). This choice is natural, since repre-
senter theorems are statements that solutions of certain op-
timization problems belong to certain subspaces. For more
details, see Section3 and our general definition of repre-
senter theorems. Given two subspace-valued mapsS1 and
S2, their sumS1 + S2 maps everyx ∈ H to the sum of
subspacesS1(x) + S2(x).

2.2. Quasilinear Subspace-Valued Maps

To extend the concept of representers, we first introduce a
variant of linearity appropriate for subspace-valued maps.3

Definition 2.1. We call the mapS : H → V(H) quasilin-
earif

S(αx+ βy) ⊆ αS(x) + βS(y)

for everyx, y ∈ H, α, β ∈ R.

Proposition 2.1. Let S denote a quasilinear subspace-
valued map. Then

S(αx) = αS(x) (2)

and
αS(x) ⊆ S(αx+ βy) + βS(y) (3)

for everyx, y ∈ H, α, β ∈ R.

Definition 2.2. We call the mapS : H → V(H) idempo-
tent if

S(S(x)) = S(x), ∀x ∈ H.

Lemma 2.1. Let S be a quasilinear and idempotent
subspace-valued map. Then, for everym ∈ N and every
set{xi : i ∈ Nm} ⊆ H, it holds that

S

(

m
∑

i=1

S(xi)

)

⊆

m
∑

i=1

S(xi).

3Proofs of the lemmas appearing throughout the paper can be
found in the supplement.
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Thus addition of subspaces can be used to generate sub-
spaces invariant underS.

In addition to the quasilinearity and idempotence assump-
tions, we require that sums of images underS are closed.
This ensures thatorthogonal projectionon such subspaces
is feasible, which is a crucial step in the proof of representer
theorems. For simplicity, to satisfy this property we assume
that all images underS are finite dimensional. Another as-
sumption necessary for the proof of our main result is that
any point belongs to its image underS. Summarizing, we
collect all of the above assumptions in the following defi-
nition.

Definition 2.3. Let r ∈ N. We call the subspace-valued
mapS : H → V(H) r-regular quasilinearif it is quasilin-
ear, idempotent and if, for allx ∈ H, S(x) has dimension-
ality at mostr and containsx.

The simplest example of regular quasilinear subspace-
valued mapS is the map that associates a given vector to
its own linear span, which thus has dimensionality one.

Example 2.1. Suppose thatS maps

x 7→ span{x} .

ThenS is 1-regular quasilinear.

More generally, we can map each point to a subspace by
applying a set of linear transformations and taking the lin-
ear subspace spanned by the resulting vectors.

Example 2.2. Let r ∈ N and suppose thatS maps

x 7→ span{Tix : i ∈ Nr} ,

whereTi ∈ L (H) for all i ∈ Nr. ThenS is quasilinear.
This map isr-regular quasilinear if

• Id ∈ span{Ti : i ∈ Nr},

• TjTℓ ∈ span{Ti : i ∈ Nr} ∀j, ℓ ∈ Nr.

Remark 2.1. It may not hold thatS maps any linear sub-
space ofH to a linear subspace (as illustrated in Example
2.2 when, say,r = 2, andT1x, T2x, T1y, T2y are linearly
independent for somex, y ∈ H). Even when this condition
holds, the image of a linear subspace may be a different
subspace (considerS(x) = H, ∀x 6= 0, andspan{x}).

A special case of Example2.2 is the following, defined for
a space of matrices. As we shall see, this example is rele-
vant to representer theorems for multitask learning.

Example 2.3. LetH = Md,n equipped with the standard
inner product, and suppose thatS maps

X 7→ {XC : C ∈ Mn} .

ThenS ismin{n2, dn}-regular quasilinear.

3. Characterization of the General
Representer Theorem

Our focus of interest is the variational problem of minimiz-
ing, over a Hilbert space, a regularization functional of the
form

J(w) = f(〈w,w1〉, . . . , 〈w,wm〉) + γ Ω(w) . (4)

The functionalJ is the sum of anerror termf : Rm → R∪
{+∞}, which depends on prescribed dataw1, . . . , wm ∈
H, and aregularization termΩ : H → R ∪ {+∞}, which
enforces certain desirable properties on the solution, scaled
by a regularization parameterγ > 0. We allow bothf
andΩ to take the value+∞, so that interpolation problems
and regularization problems of the Ivanov type can also be
taken into account.

Since the same functionalJ might be decomposed into a
form like (4) in multiple ways, we fixm ∈ N and use the
tuple (f,Ω, γ, w1, . . . , wm) to describe such a regulariza-
tion functional.

Example 3.1 (Interpolation in a Hilbert space). Let
w1, . . . , wm ∈ H andy1, . . . , ym ∈ R be prescribed data
and

f(z) =

{

0 if z = y

+∞ otherwise
, ∀z ∈ R

m.

Then the interpolation problem

min {Ω(w) : w ∈ H, 〈w,wi〉 = yi ∀i ∈ Nm} .

is equivalent to the problem of minimizing(4) overH.

Example 3.2 (Ivanov regularization). Ivanov regulariza-
tion amounts to solving a problem of the form

min {f(〈w,w1〉, . . . , 〈w,wm〉) : w ∈ H, ω(w) ≤ 1} ,

whereω : H → R is a prescribed constraining function.
Defining

Ω(w) =

{

0 if ω(w) ≤ 1
+∞ otherwise

,

this problem can be rewritten as the minimization of a func-
tional of the form(4).

Example 3.3(Regularization in an RKHS). Reproducing
Kernel Hilbert Spaces (RKHS) are Hilbert spacesH of
functionsw : X → R defined over a nonempty setX such
that all point-wise evaluation functionals are bounded, that
is, for all x ∈ X there exists a constantCx < +∞ such
that

|w(x)| ≤ Cx‖w‖, ∀w ∈ H.
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It can be shown that RKHS exhibit the so-calledreproduc-
ing propertyw(x) = 〈w,Kx〉, ∀ (x,w) ∈ X×H, where the
representersKx ∈ H are expressible as sections of a sym-
metric and positive semidefinite kernelK : X × X → R

such thatKx(y) = K(x, y), ∀y ∈ X . The reproducing
property of an RKHS allows for rewriting any regulariza-
tion functional of the form

J(w) = f(w(x1), . . . , w(xm)) + γ Ω(w)

in the standard form(4), where the representerswi coin-
cide with the kernel sectionsKxi

.

Example 3.4(Regularization with averaged data). In some
estimation problems, it may be appropriate to assume that
the measured output data are obtained by averaging a func-
tionw (to be estimated) with respect to suitable probability
measures. LetP1, . . . ,Pm denote probability measures on
the measurable space(X ,A), whereA is a σ-algebra of
subsets ofX , and letH denote a Hilbert space of functions
w : X → R. If, for everyi ∈ Nm, the expectation

EPi
(w) =

∫

X

w(x)dPi(x)

is a bounded linear functional overH, then one may con-
sider synthesizing a functionw by minimizing a functional
of the form

J(w) = f(EP1
(w), . . . , EPm

(w)) + γ Ω(w)

which can be rewritten in the form(4) by introducing suit-
able representerswi. In particular, if H is an RKHS
with a bounded reproducing kernel, the representers of
the expectation functionalsEPi

are called kernel mean
embeddings– see, for example, (Muandet et al., 2012;
Sriperumbudur et al., 2010) and references therein – and
can be explicitly expressed as

wi(t) =

∫

X

K(x, t)dPi(x), ∀i ∈ Nm, t ∈ X .

Clearly, we are interested only in cases in which the opti-
mization problem

min{J(w) : w ∈ H}

is well defined, that is, a minimizer ofJ exists. This always
holds by construction in machine learning and statistics ap-
plications. More generally, existence of a minimizer can
be ensured under lower semicontinuity and coercivity con-
ditions onJ . We will avoid specifying such precise con-
ditions since they are not relevant to our purposes, instead
assuming existence of minimizers for each problem of in-
terest.

The main question we address in this paper is to charac-
terize the functionsΩ for which minimizers of the reg-
ularization functional (4) admit certain convenient rep-
resentations. As already mentioned in the introduction,

representer theorems have been proven for regulariza-
tion with the Hilbertian norm, Schattenℓp regularization
(Abernethy et al., 2009; Argyriou et al., 2009; 2010) and in
some other cases. These theorems state that a minimizer
must lie in a subspace which depends on the data points
w1, . . . , wm. This dependence on the data varies according
to the regularization penaltyΩ. For example, in the classi-
cal representer theorem (Ω = ‖·‖H), the subspace is simply
the span of the data points. In the multitask theorem (Ω is
a spectral function on matrices), the subspace is generated
by the columns of the data matrices.

Our goal is to unify this prior work under one framework
and at the same time to extend the applicability of represen-
ter theorems to other regularization problems. The key to
this is to associate representations of minimizers with the
data points in an abstract way, specifically to associate a
subspace to each data point. Hence we assume a subspace-
valued mapS : H → V(H) and require that the represen-
tation for a minimizer of (4) be spanned by the elements of
S(wi), i ∈ Nm.

Definition 3.1. Letm ∈ N, S : H → V(H) be a subspace-
valued map andJ = (f,Ω, γ, w1, . . . , wm) a regulariza-
tion functional of the form(4). ThenJ is said to admit a
representer theoremwith respect toS if there exists a min-
imizerŵ of J such that

ŵ ∈

m
∑

i=1

S(wi).

Definition 3.2. Letm ∈ N, S : H → V(H) be a subspace-
valued map andF a family of regularization functionals of
the form(4). ThenF is said to admit a representer theo-
rem with respect toS if everyJ ∈ F admits a representer
theorem with respect toS.

Our main tool for characterizing regularization function-
als that admit representer theorems is the property defined
below, which we callorthomonotonicity. The connection
between orthomonotonicity and representer theorems has
appeared in (Argyriou et al., 2009) in the context of reg-
ularization with the Hilbertian norm or with orthogonally
invariant matrix penalties. In Theorem3.1, we extend this
connection to a broader class of regularization penaltiesΩ
which arise by varying the choice of the mapS.

Definition 3.3. We call the functionΩ : H → R ∪ {+∞}
orthomonotonewith respect to the mapS : H → V(H), if

Ω(x+ y) ≥ Ω(x), ∀x ∈ H, y ∈ S(x)⊥. (5)

Note that in this definition the left hand side of (5), or even
both sides, may equal+∞.

Theorem 3.1. Let r,m ∈ N, f : R
m → R ∪ {+∞},

Ω : H → R ∪ {+∞} and suppose thatS : H → V(H) is
anr-regular quasilinear map. Then the following hold:
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1. If Ω is orthomonotone w.r.t. S then, for any
w1, . . . , wm ∈ H and anyγ > 0 such that the reg-
ularization functionalJ = (f,Ω, γ, w1, . . . , wm) of
the form(4) admits a minimizer,J admits a represen-
ter theorem w.r.t.S.

2. Let F denote the following family of regularization
functionals of form(4)

F = {(f,Ω, γ, w1, . . . , wm) : w1, . . . , wm ∈ H, γ > 0}
(6)

and assume that

• f is lower semicontinuous, admits a unique min-
imizer ẑ 6= 0, and there existsε > 0 such that
the sublevel set{z ∈ H : f(z) ≤ f(ẑ) + ε} is
bounded.

• Ω is lower semicontinuous and is minimized at0

• r ≤ m.

If F admits a representer theorem w.r.t.S thenΩ is
orthomonotone w.r.t.S.

Proof. The first part of the theorem (sufficiency) can be
proven by adapting a classical orthogonality argument.

Take anyw1, . . . , wm ∈ H, γ > 0. Let L =
m
∑

i=1

S(wi)

and letL⊥ denote its orthogonal complement. Due to
the regular quasilinearity ofS, L is a finite dimensional
subspace that containsR = span{w1, . . . , wm}. There-
fore any minimizerŵ of the regularization functionalJ =
(f,Ω, γ, w1, . . . , wm) can be decomposed as

ŵ = u+ v, u ∈ L, v ∈ L⊥ ⊆ R⊥.

Applying Lemma2.1we obtain thatS(u) ⊆ L and hence
thatv ∈ S(u)⊥. If Ω is orthomonotone then

J(ŵ) = f(〈u+ v, w1〉, . . . , 〈u+ v, wm〉) + γ Ω(u+ v)

= f(〈u,w1〉, . . . , 〈u,wm〉) + γ Ω(u+ v)

≥ f(〈u,w1〉, . . . , 〈u,wm〉) + γ Ω(u)

= J(u),

so thatu ∈ L is also a minimizer.

Now, let us prove the second part of the theorem (neces-
sity). Let us fix arbitraryx ∈ H andy ∈ S(x)⊥. The goal
of the proof is to establish orthomonotonicity, namely the
inequality

Ω(x+ y) ≥ Ω(x). (7)

The proof is organized in three cases.

1. First, we observe that forx = 0 the inequality follows
directly from the hypothesis onΩ.

2. Secondly, observe that ifΩ (x+ y) = +∞, inequality
(7) is trivially satisfied.

3. It remains to prove (7) in the case when

x 6= 0 and Ω (x+ y) = C < +∞. (8)

SinceS is r-regular quasilinear andr ≤ m, S(x) has
dimensionalityµ ≤ m. Let us choose a set of vectors
{bi(x) : i ∈ Nm} spanningS(x) in a way such that

〈x, bi(x)〉 = ẑi, ∀i ∈ Nm. (9)

Such a set can always be constructed, sincex ∈ S(x),
x 6= 0 and ẑ 6= 0, as follows. Picku1, . . . , uµ−1 ∈
S(x), such that{u1, . . . , uµ−1, x} forms an orthogo-
nal basis ofS(x). Without loss of generality, we may
assume that̂zm 6= 0. Then we may definebi(x) =
ui +

ẑi
‖x‖2x for 1 ≤ i ≤ µ − 1 andbi(x) = ẑi

‖x‖2x

for µ ≤ i ≤ m. Clearly these vectors spanS(x) and
satisfy (9).

For everyγ > 0, the functionalJγ
x = (f,Ω, γ, b1(x),

. . . , bm(x)) belongs toF . Therefore, by the rep-
resenter theorem w.r.t.S, Jγ

x admits a minimizer

wγ
x ∈

m
∑

i=1

S(bi(x)) ⊆ S(x) (where the last inclusion

follows from the idempotence ofS). Let

zγx = (〈wγ
x , b1(x)〉 . . . 〈w

γ
x , bm(x)〉) .

Using the facts thatf is minimized atẑ, Jγ
x is mini-

mized atwγ
x andy ∈ S(x)⊥, we obtain

f(ẑ) + γ Ω (wγ
x) ≤ f (zγx) + γ Ω (wγ

x) = Jγ
x (w

γ
x)

≤ Jγ
x (x+ y) = f(ẑ) + γ Ω (x+ y) (10)

for all γ > 0. Note thatf(ẑ) is finite sinceẑ is the
unique minimizer off . Hence we conclude that

Ω (x+ y) ≥ Ω (wγ
x) , ∀γ > 0. (11)

In order to conclude the proof, we show thatwγ
x con-

verges tox asγ → 0+. Using (10), (8) and the hy-
pothesis thatΩ is minimized at0, we obtain

0 ≤ f(zγx)− f(ẑ) ≤ γ (Ω (x+ y)− Ω (wγ
x))

= γ (C − Ω (wγ
x))

≤ γ (C − Ω(0))

< +∞, ∀γ > 0.

(12)

Now, let γk denote a sequence of positive real num-
bers such thatlimk→∞ γk = 0. From (12) it follows
that

lim
k→∞

f(zγk

x ) = f(ẑ).
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It follows that there exists an indexM such that, for
all k ≥ M , zγk

x belongs to the bounded set{z ∈ H :
f(z) ≤ f(ẑ) + ε}. Therefore, the sequencezγk

x is
bounded and it has a convergent subsequence. Now,
take an arbitrary convergent subsequence ofzγk

x and
let z̄ denote its limit. Sincef is lower-semicontinuous
andẑ is its only minimizer, it must bēz = ẑ. Hence,
the whole sequencezγk

x converges tôz, namely

lim
k→∞

〈wγk

x , bi(x)〉 = ẑi, ∀i ∈ Nm.

In view of (9) we have, for everyi ∈ Nm,

lim
k→∞

〈wγk

x − x, bi(x)〉 = lim
k→∞

〈wγk

x , bi(x)〉 − ẑi = 0

and therefore

lim
k→∞

〈wγk

x − x, u〉 = 0, ∀u ∈ S(x). (13)

Sincex,wγk

x ∈ S(x), the sequencewγk

x − x is con-
fined to the subspaceS(x). SinceS(x) is finite-
dimensional, (13) implies thatwγk

x converges strongly
to x. By passing to the limit inferior in (11) and using
the lower semicontinuity ofΩ, inequality (7) follows.

3.1. Loss Functions Which Lead to Orthomonotonicity

Observe that part 1 of Theorem3.1 (sufficiency of or-
thomonotonicity) only requires existence of minimizers of
J , without any specific additional assumptions on the error
term. On the other side, part 2 (necessity of orthomono-
tonicity) holds under additional assumptions onf . In the
following, we provide examples of functionsf that satisfy
such assumptions, showing that most of the error functions
considered in practice do so. The vast majority of error
functions used areadditively separable, namely of the form

f(z) =

m
∑

i=1

V (zi, yi), (14)

whereV : R×R → R∪{+∞} andyi ∈ R are prescribed
output data.

3.1.1. REGRESSION LOSS FUNCTIONS

In this section we show that, for a broad class of regres-
sion loss functions, it is possible to find output data such
that, if the family of regularization functionals (6) admits a
representer theorem, thenΩ is orthomonotone.

Definition 3.4. We call the functionV : R × R → R ∪
{+∞} a regression loss functionif

V (z, y) = φ(z − y),

whereφ : R → R ∪ {+∞} is lower semicontinuous with
bounded sublevel sets and minimized at zero.

The class of functions defined above includes any loss of
the formφ(t) = |t|p with p > 0 (in particular, square and
absolute loss), the interpolation loss

φ(t) =

{

0 if t = 0

+∞ otherwise
,

as well as theε-insensitive lossφ(t) = max{0, |t| − ε},
which is not uniquely minimized at zero.

Lemma 3.1. Assume thatV is a regression loss function.
Then, for everyp ∈ N, there exist output data{yi : i ∈
N2p} ⊂ R and a functionfu : Rp → R∪{+∞} satisfying
the hypothesis of Theorem3.1, Part 2, such that the error
functional

w 7→ f(〈w,w1〉, . . . , 〈w,wp〉, 〈w,w1〉, . . . , 〈w,wp〉) ,

with f defined by(14) for m = 2p, equals the error func-
tional

w 7→ fu(〈w,w1〉, . . . , 〈w,wp〉) .

3.1.2. BINARY CLASSIFICATION LOSS FUNCTIONS

Definition 3.5. We call the functionV : R× {−1,+1} →
R a regular binary classification loss functionif

V (z, y) = φ(yz),

whereφ : R → R is lower semicontinuous, nonincreasing,
there existsα > 0 such that the function

ψα(t) = φ(t) + φ(−αt),

admits a unique minimizer̂t 6= 0 and there existsε > 0
such that the sublevel set{t ∈ R : ψα(t) ≤ minψα + ε} is
bounded.

It can be seen easily that this definition is satisfied by most
commonly used binary classification loss functions, includ-
ing the logistic lossφ(t) = log(1 + e−t), the exponential
lossφ(t) = e−t and the hinge lossφ(t) = max{0, 1− t}.
To verify the uniqueness of the minimizer for these three
losses, choose for instanceα = 1/2.

Lemma 3.2. Assume thatV is a regular binary classifi-
cation loss function. Then, for everyp ∈ N, there exist
output data{yi : i ∈ N2p} ⊆ {−1,+1} and a function
fu : R

p → R satisfying the hypothesis of Theorem3.1,
Part 2, such that the error functional

w 7→ f(〈w,w1〉, . . . , 〈w,wp〉, 〈w,αw1〉, . . . , 〈w,αwp〉) ,

with f defined by(14) for m = 2p, equals the error func-
tional

w 7→ fu(〈w,w1〉, . . . , 〈w,wp〉) .
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3.2. Properties of Orthomonotone Functions

An obvious first fact about orthomonotone functions is that
nesting of maps preserves orthomonotonicity.

Proposition 3.1. If S, S′ : H → V(H) are such that
S(x) ⊆ S′(x) for all x ∈ H, then anyΩ : H → R∪{+∞}
orthomonotone with respect toS is also orthomonotone
with respect toS′.

Thus, enlarging the mapS enlarges the class of orthomono-
tone functions as well. In the extreme case whenS maps
every point toH, the orthomonotone class includes all
functions. At the other extreme,S maps every point to
{0} and the orthomonotone class equals the set of constant
functions.

A convenient way to obtain new orthomonotone functions
(and hence new representer theorems) is by applying sim-
ple operations to known orthomonotone functions. For
example, shifting the argument inside an orthomonotone
function yields an orthomonotone function with respect to a
larger map. This fact implies that Theorem3.1can be mod-
ified to apply to functionsΩ that are minimized at points
other than0.

Proposition 3.2. Let a ∈ H andΩ : H → R ∪ {+∞}
orthomonotone with respect to the mapS : H → V(H).
If S is quasilinear then the functionx 7→ Ω(x + a) is or-
thomonotone with respect to the mapx 7→ S(x) + S(a).

Another useful rule combines functions which are or-
thomonotone with respect to different maps.

Proposition 3.3. LetΩ1 : H → R∪{+∞} be orthomono-
tone with respect to a mapS1 : H → V(H) and Ω2 :
H → R ∪ {+∞} be orthomonotone with respect to a map
S2 : H → V(H). Also leth : (R ∪ {+∞})

2
→ R∪{+∞}

be elementwise nondecreasing, that is,h(a′, b′) ≥ h(a, b)
whenevera′ ≥ a andb′ ≥ b. Then the functionΩ : H →
R ∪ {+∞},

Ω(w) = h (Ω1(w),Ω2(w)) , ∀w ∈ H,

is orthomonotone with respect to the mapS1 + S2.

This rule holds more generally for any finite number of
orthomonotone functions. In particular, any nonnegative
linear combination of orthomonotone functions is also or-
thomonotone with respect to the sum of the corresponding
maps. The same applies to the maximum and to the mini-
mum of orthomonotone functions.

Finally, there is a composition rule for orthomonotone
functions, similar to the chain rule for differentiation.

Proposition 3.4. LetΩ : H → R ∪ {+∞} be orthomono-
tone with respect to a mapS : H → V(H) and let
T ∈ L (H) be a continuous operator. Then the function
Ω ◦ T is orthomonotone with respect toT ∗ ◦ S ◦ T .

4. Examples of Representer Theorems

We now proceed to describe the set of orthomonotone func-
tions for specific regularization problems of interest. For
each problem, we describe the mapS, provide a class of
orthomonotone functions and state the resulting represen-
ter theorem.

Example 4.1. Assume that the dimension ofH is at least
two and letS be defined as in Example2.1. Then, the def-
inition of representer theorem3.1 reduces to the classical
linear combination of the representers

ŵ =

m
∑

i=1

ciwi,

whereci ∈ R and the definition of orthomonotonicity(5)
reduces to

Ω(x+ y) ≥ Ω(x), ∀x, y ∈ H : 〈x, y〉 = 0.

If Ω is lower-semicontinuous, this last condition is satisfied
if and only if

Ω(w) = h(‖w‖)

with h : R → R ∪ {+∞} nondecreasing.

See Theorem 1 of (Dinuzzo & Schölkopf, 2012) and
(Argyriou et al., 2009; Yu et al., 2013) for related results.
This is a generalized version of the well known “classical”
representer theorem (Girosi, 1998; Kimeldorf & Wahba,
1970; Schölkopf et al., 2001) which has found wide appli-
cation to regularization methods in Hilbert spaces.

The case of regularization with abias termcan be recov-
ered easily by choosing the error functionf as a minimum
with respect to the bias variable. This technique also yields
semiparametric theorems(Schölkopf & Smola, 2002).

Example 4.2. LetH andS be defined as in Example2.3.
Then the representer theorem3.1reduces to

Ŵ =

m
∑

i=1

WiCi ,

whereCi are matrices inMn and the definition of or-
thomonotonicity(5) reduces to

Ω(X + Y ) ≥ Ω(X), ∀X,Y ∈ Md,n : XTY = 0.

Moreover, in this case the orthomonotonicity property is
equivalent to

Ω(W ) = h(W⊤W )

with h : Sn
+ → R ∪ {+∞} being amatrix nondecreas-

ing function (with respect to the partial order of positive
semidefinite matrices).
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See (Argyriou et al., 2009; Yu et al., 2013) as well
as (Amit et al., 2007; Argyriou et al., 2008; 2010;
Evgeniou et al., 2005) for special cases. The above
representation extends the classical representer theorem
to matrix learningproblems, such as regularization with
penalties involving the Frobenius norm, the trace norm
and general spectral penalties. These methods have
been used for multitask learning, collaborative filtering,
kernel learning, domain adaptation and other problems.
Problems like multitask learning benefit substantially
from the representer theorem since in those cases the data
matrices are rank-one (and in collaborative filtering they
are also sparse). Indeed, whenever the data matrices are
rank-one, that is,Wi = aib

T
i , we can letvi = bTi Ci and

write Ŵ =
m
∑

i=1

aiv
T
i , so that an equivalent optimization

problem with substantially fewer degrees of freedom can
be obtained. This last representation ensures that (4) is
equivalent to an optimization problem whose number of
variables ismn, which can be much smaller thandn, the
size of matrixW .

It can also be seen that for other penalties of the type
Ω(W ) = g(R⊤W⊤GWR), with R ∈ Mn,k, G ∈ S

d
++

andgmatrix nondecreasing, other representer theorems can
be derived from the above result, by applying the change
of variableW ′ = G

1

2W . These apply, for example,
to spectral functions ofQWR, with Q ∈ Mℓ,d, which
have been proposed for multi-task learning (Dinuzzo, 2013;
Dinuzzo & Fukumizu, 2011).

In addition, Example4.2 relates to certain optimiza-
tion problems with positive semidefinitematrix vari-
ables. Indeed, problem (4) with H = Mn, Ω(W ) =
g(R⊤W⊤WR), g matrix nondecreasing and rank-one data,
yields a problem of the type

min{f(y⊤

1 Zx1, . . . , y
⊤

mZxm) + γg(R⊤ZR) : Z ∈ S
n
+}
(15)

by the change of variableZ = W⊤W . Thus a representer
theorem for this family of problems follows directly from
Example4.2. Some results for special cases of (15), ap-
plied to metric and semisupervised learning, have already
appeared in (Jain et al., 2010; 2012).

Example 4.3. AssumeH = Md,n equipped with the stan-
dard inner product, and suppose thatS maps

X 7→ {XC +DX : C ∈ Mn, D ∈ Md} .

ThenS is nd-regular quasilinear. For this map, definition
3.1reads

Ŵ =

m
∑

i=1

(WiCi +DiWi) ,

and the definition of orthomonotonicity(5) reduces to

Ω(X+Y ) ≥ Ω(X), ∀X,Y ∈ Md,n :

{

XTY = 0
XY T = 0

,

which is satisfied by all functions such that

Ω(W ) = h(WTW,WWT ),

whereh : Sn
+×S

d
+ → R∪{+∞} is matrix nondecreasing

in each matrix argument.

The family of regularizers described in the last example
includes, for instance, functions of the form

Ω(W ) = ‖QW‖+ ‖WR‖ ,

where‖ · ‖ is any orthogonally invariant norm. Such penal-
ties are of considerable interest in many matrix learning
problems, since they allow for incorporating information
about both row and column dependencies, by designing the
matricesQ andR. This can be applied, for instance, to col-
laborative filtering problems when side information about
both users and items is available. When the data matri-
ces are rank-one (such as in multi-task learning and collab-
orative filtering problems), the representer theorem above
makes it again possible to obtain a significant reduction in
the number of degrees of freedom, since the solutionŴ can

be rewritten in the formŴ =
m
∑

i=1

(aiv
T
i +uib

T
i ), where the

number of variables,m(n + d), can be much smaller than
nd, the size ofW .

5. Conclusion

We have presented a framework which unifies existing re-
sults about representer theorems for regularization prob-
lems and allows for a more formal study of these results.
We introduced a new definition of representer theorem to
include a broader family of representation results. We
showed that each theorem in this family corresponds to a
regular quasilinear subspace-valued map. Moreover, we
characterized the class of regularization penalties corre-
sponding to each representer theorem via the orthomono-
tonicity property. Orthomonotone functions exhibit simple
calculus rules, which can be used to obtain new representer
theorems by combining existing ones.

Our new framework opens a number of possibilities for fur-
ther investigation. First of all, it calls for more detailed
characterizations of regular quasilinear subspace-valued
maps and orthomonotone functions, given their importance
in the mathematical construction that leads to the repre-
senter theorems. Secondly, it can lead to the derivation of
new families of regularization penalties and corresponding
methodologies, for example, for matrix and tensor regular-
ization. Finally, it lays the foundation for a new and more
general class of kernel methods, obtained by plugging the
expression of the generalized representer theorem into the
objective functionalJ and considering the resulting opti-
mization problem.
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