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Abstract

Itis known that the solution of regularization and
interpolation problems with Hilbertian penalties
can be expressed as a linear combination of the
data. This very useful property, called thep-
resenter theoremhas been widely studied and
applied to machine learning problems. Anal-
ogous optimality conditions have appeared in
other contexts, notably in matrix regularization.
In this paper we propose anified view which
generalizes the concept of representer theorems
and extends necessary and sufficient conditions
for such theorems to hold. Our main result shows
a close connection between representer theorems
and certain classes of regularization penalties,
which we callorthomonotone functiong his re-

sult not only subsumes previous representer the-
orems as special cases but also yields a new class
of optimality conditions, which goes beyond the
classical linear combination of the data. More-
over, orthomonotonicity provides a usefrite-

rion for testing whether a representer theorem
holds for a specific regularization problem.

The objective function is the sum of anror term f which
depends on prescribed dhtay, ..., w,, € H, and areg-
ularization penalty2, which favors certain desirable prop-
erties of the solution. An optimal solution of probled) (
yields the desired function or vector, depending on the con-
text of the original learning problem.

It is known that, for a certain class of regularization and
interpolation problems, one of the optimal solutions Bf (
can be expressed as a linear combination of the data. More
specifically, this is the case when the penéltis a Hilber-

tian norm (or a nondecreasing function of that). This prop-
erty, known as theepresenter theorephas proven very
useful because it renders many high or infinite dimensional
regularization problems amenable to practical computa-
tion. This “classical” representer theorem was formulated
in various guises inGirosi, 1998 Kimeldorf & Wahba
197Q Scholkopf et al.2001) and has been the topic of ex-
tensive further studyArgyriou et al, 2009 De Vito et al,
2004 Dinuzzo & Scholkopf 2012 Dinuzzo et al. 2007,
Gnecco & Sanguineti 2010 Mukherjee & Wy 2006
Steinwart 2003 Yu etal, 2013. In machine learning,
the representer theorem is the main factor that enables
application of the so-called “kernel trick” and underpitis a

of the widely usedckernel method¢Scholkopf & Smola
2002, such as support vector machines, regularization

1. Introduction networks, etc.

One of the dominant approaches in machine learning anBesides the classical result, more recently new types of
statistics is to formulate a learning problem as an optimizarepresenter theorems have been proven and studied. For
tion problem to be solved. In particulaegularizationhas  example, it has been realized that analogous optimality
been widely used for learning or estimating functions orconditions apply to the learning of vector-valued func-
models from input and output data, particularly in super-tions (Micchelli & Pontil, 2005, ¢5-regularized multitask
vised and semisupervised learning. learning Evgeniou et a).2005 and structured prediction
f (Lafferty et al, 2004. Further developments occurred
with the advent ofmatrix regularizationproblems used
for multitask learning or collaborative filtering. Thus it
has been shown that a type of representer theorem holds
when the penalty) is a spectral function of matrices

Regularization in a Hilbert spad¢ frames the problem o
learning from data as a minimization of the type

min{ f((w, w1), ..., {(w,wy)) +7Qw) :w e H}. (1)
Proceedings of the31** International Conference on Machine

Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

IWe use the term “data” in a more general sense than input
vectors in Euclidean space — see Section 3 for examples.



A Unifying View of Representer Theorems

(Amit et al, 2007 Argyriou et al, 2009 2010 or opera- 2.1. Notational conventions
tors (Abernethy et al.2009. Very recently these results
have been extended to matricizations of tensors as we
(Signoretto et a).2013. Other related results have ap-
peared in the contexts of domain adaptati&ulis et al,
2011, dimensionality reductionJ@in et al.2010 and met-

ric learning Qain et al.2012.

lietH be a real Hilbert space with inner prodyet-) and
associated norrj - |. We useZ(H) to denote the set of
linear operators fron# to itself. We denote the identity
operator byld € ¥ () and the set of linear subspaces of
H by V(H).

Some variants of the classical theorem were shown irﬁAISO letN,, denote the set of integefd, ..., m}, Ma,n

the contexts of semisupervised learningelkin etal, € Setofreadl xn matrices anL, the set of reah x n
2009, semiparametric representer theorems and kemépatr_lces_. _Moreov_er, le8Z; denote the set of x T pos'“_"?
PCA (Scholkopf et al. 2007. Moreover, there have ap- semidefinite matrices ardl} , the set of p(_)smve definite
peared alternative approaches which lie outside the sco ges We denote theth co_Iumn of a matrixy” M‘i’"

of this paper, such as a Bayesian variant of the classic y we. We usg the following notation for operations on
theorem Pillai et al, 2007), the theory of reproducing ker- >¢t54: B & H: A+ B == latb:acedbe B
nel Banach spacegltang & Zhang2012 and an algorith- A-B={a—-b:a€Abe B} :={l:ac A}
mic theorem for matrices/farmuth et al.2012. Clearly forevery\ € R.

therefore, representer theorems are important and ubiquin the following, we will be working withsubspace-valued
tous tools in regularization and underly a wide range ofmapsS : # — V(#H). This choice is natural, since repre-
frequently used machine learning methodologies. senter theorems are statements that solutions of certain op

In this paper, we address the topic of representer theorerﬁdgemzat'on problems belong to certain subspaces. For more

from a new and more abstract viewpoint. One of our con- tatuls,thsee Sect|0§_ andtalur gebneral deflrlntl(:jnr;f repdre-
tributions is to provide ainifying frameworkwhich sub- senter Ineorems. LIven iwo subspace-valued Mafas

sumes the results that have already appeared in the Iite}"b’bthelr s;mSl +SSQ maps every € H to the sum of
ature. These include the classical, vector valued, strucsUPSPaces: () + 5 (x).
tured prediction, multitask, tensor, semisupervised,isem

parametric, dimensionality reduction, domain adaptation

metric learning results etc. In particular, we show thaséhe Tg extend the concept of representers, we first introduce a

theorems are only examples from a larger family. Eachyariant of linearity appropriate for subspace-valued nfaps
Fhegrem in this family corresponds .to a class of regular'Definition 2.1. We call the magp : H — V(H) quasilin-
ization penalties which are characterized byahomono- earif

tonicity property that we introduce. Another implication of

our reZEItsFi)s t%/at we can now put the study o?representer Slaz+ By) € aS(z) + B5(y)

theorems on #ormal basisand provide calculus rules and foreveryz,y € H, a, 3 € R.

recipes for deriving new results. Most commonly used kerProposition 2.1. Let S denote a quasilinear subspace-
nel methods (support vector machines, kernel ridge regresralued map. Then
sion etc.), as well as methods for multitask learning, tolla

orative filtering and metric learning, fall within our frame

work. As an illustration of the theory, we demonstrate thatand

regularization problems with a generalized family of ma- aS(z) C S(ax + By) + BS(y) ()
trix penalties, as well as similar problems on the positive
semidefinite cone, admit appropriate representer theoremfsOr _ev.e_rya:, yeH o feR, )
In many practical situations this implies that the number ofDefinition 2.2. We call the mags : H — V(#) idempo-

degrees of freedom and hence the complexity of solving théentif

2.2. Quasilinear Subspace-Valued Maps

S(azx) = aS(x) (2)

learning problem decreases significantly. S(S(z)) = S(z),  VzeH.
Lemma 2.1. Let S be a quasilinear and idempotent
2. Mathematical Preliminaries subspace-valued map. Then, for evetye N and every

set{z; : i € N,,,} C H, it holds that

In this section, we introduce the notation and the mathe- . .
matical concepts necessary for our framework and the main

. S S(z;) | C S(xz;).

results of Sectio3. ; (i) | < ; ()

2 The research leading to these results has received funding

from the European Union Seventh Framework Programme (FP7  3p(qofs of the lemmas appearing throughout the paper can be
2007-2013) under grant agreement No. 246556. found in the supplement.
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Thus addition of subspaces can be used to generate suB- Characterization of the General

spaces invariant undeé.

Representer Theorem

In addition to the quasilinearity and idempotence assumpoyr focus of interest is the variational problem of minimiz-

tions, we require that sums of images undeare closed.

This ensures thairthogonal projectioron such subspaces
is feasible, which is a crucial step in the proof of represent
theorems. For simplicity, to satisfy this property we assum
that all images unde$ are finite dimensional. Another as-

ing, over a Hilbert space, a regularization functional & th
form

sumption necessary for the proof of our main result is thafThe functional/ is the sum of aerror term f : R™ — RU

any point belongs to its image und€r Summarizing, we

collect all of the above assumptions in the following defi-

nition.

Definition 2.3. Letr € N. We call the subspace-valued
mapsS : H — V(H) r-regular quasilineaif it is quasilin-
ear, idempotent and if, for alt € #, S(x) has dimension-
ality at mostr and containse.

The simplest example of regular quasilinear subspac
its own linear span, which thus has dimensionality one.
Example 2.1. Suppose tha$ maps

x +— span{x} .

ThensS is 1-regular quasilinear.

More generally, we can map each point to a subspace by
applying a set of linear transformations and taking the lin-

ear subspace spanned by the resulting vectors.
Example 2.2. Letr € N and suppose thef maps

x+— span{T;x : i € N,.} |
whereT; € Z(H) for all i € N,.. ThenS is quasilinear.
This map is--regular quasilinear if
e Id espan{T;:ieN,},
° TjT[ S span{Ti 11 E NT} \V/j,é € N,.

Remark 2.1. It may not hold thatS maps any linear sub-
space of to a linear subspace (as illustrated in Example
2.2when, sayr = 2, andTyx, Tyx, T1y, Toy are linearly
independent for some, y € H). Even when this condition

{+o}, which depends on prescribed datg, . .., w,, €
‘H, and aregularization term2 : # — R U {+oo}, which
enforces certain desirable properties on the solutiomedca
by aregularization parametery > 0. We allow bothf
and() to take the value-oo, so that interpolation problems
and regularization problems of the Ivanov type can also be
taken into account.

Since the same functiondl might be decomposed into a

valued mapS is the map that associates a given vector tce)form like (4) in multiple ways, we fxn € N and use the

tuple (f,Q,~,w1,...,w,) to describe such a regulariza-

tion functional.

Example 3.1 (Interpolation in a Hilbert space)lLet
wi, ..., w, € Handyy,...,y, € R be prescribed data

and

Then the interpolation problem

if 2=y
+o0o otherwis€

Vz € R™.

f(2)

min {Q(w) : weH, (w,w;) =y; Vi € Np,} .

is equivalent to the problem of minimizi4) overH.

Example 3.2 (lvanov regularization) lvanov regulariza-
tion amounts to solving a problem of the form

min {f({(w,w1),..., (w,wy)) : weH, ww) <1},

wherew : ‘H — R is a prescribed constraining function.

Defining
Q(w)_{ 0 if ww)<1

+o0o otherwise

holds, the image of a linear subspace may be a different

subspace (considef(z) = H, Vx # 0, andspan{z}).

A special case of Exampk2is the following, defined for

this problem can be rewritten as the minimization of a func-
tional of the form(4).

a space of matrices. As we shall see, this example is relégxample 3.3(Regularization in an RKHS)Reproducing

vant to representer theorems for multitask learning.

Example 2.3. LetH = M, ,, equipped with the standard
inner product, and suppose th&tmaps

X = {XC:CeM,}.

ThenS is min{n?, dn}-regular quasilinear.

Kernel Hilbert Spaces (RKHS) are Hilbert spacHsof
functionsw : X — R defined over a nonempty s&tsuch
that all point-wise evaluation functionals are boundeatth
is, for all z € X there exists a constaidt, < +oo such
that

w(@)] < Collwl, Yw € H.
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It can be shown that RKHS exhibit the so-caltegroduc- representer theorems have been proven for regulariza-
ing propertyw(z) = (w, K,),V (x,w) € XxH,wherethe tion with the Hilbertian norm, Schattef), regularization
representerds, € H are expressible as sections of a sym- (Abernethy et al.2009 Argyriou et al, 2009 2010 and in
metric and positive semidefinite kern€l: X x X — R some other cases. These theorems state that a minimizer
such thatK,(y) = K(z,y), Yy € X. The reproducing must lie in a subspace which depends on the data points
property of an RKHS allows for rewriting any regulariza- ws, ..., w,,. This dependence on the data varies according
tion functional of the form to the regularization penalty. For example, in the classi-
cal representer theorefl = ||-||), the subspace is simply

J(w) = flw(zr),...owzm)) + 72 w) the span of the data points.H I|r|1 the multitask theorenis(
in the standard forn{4), where the representers; coin-  a spectral function on matrices), the subspace is generated
cide with the kernel sections,, . by the columns of the data matrices.

Example 3.4(Regularization with averaged datdj some oy goal is to unify this prior work under one framework
estimation problems, it may be appropriate to assume thajng at the same time to extend the applicability of represen-
the measured output data are obtained by averaging a funce theorems to other regularization problems. The key to
tion w (to be estimated) with respect to suitable probability yhjs js to associate representations of minimizers with the
measures. Leky, ..., P, denote probability measures on gata points in an abstract way, specifically to associate a
the measurable spadet’, A), whereA is ao-algebra of g pspace to each data point. Hence we assume a subspace-
subsets of, and letH denote a Hilbert space of functions 5jed mapsS : # — V() and require that the represen-

w: X — R. If, for everyi € N, the expectation tation for a minimizer of 4) be spanned by the elements of

S(wl), 1€ N,,.
Br.(w) = [ w(a)dPi(a) i
X Definition 3.1. Letm € N, S : H — V(H) be a subspace-
is a bounded linear functional ové, then one may con- Vvalued map and/ = (f,€,~,ws, ..., wy,) & regulariza-
sider synthesizing a functian by minimizing a functional tion functional of the forn{4). Then.J is said to admit a
of the form representer theoremith respect taS if there exists a min-
imizerw of J such that
J(w) = f(Be, (w),..., Br,, (w)) + 7 Qw) -
which can be rewritten in the forif#) by introducing suit- w e Z S(w;).
able representersy;. In particular, if # is an RKHS i=1

with a bounded reproducing kernel, the representers ofyafinition 3.2. Letm €N, S : H — V(H) be a subspace-
the expectation functional&y, are called kemel mean 1,64 map andr a family of regularization functionals of
embeddings- see, for example,Muandetetal. 2012 g form(4). Then.F is said to admit a representer theo-

Sriperumbudur et a.2010 and references therein —and .o, with respect tc5 if every.J € F admits a representer
can be explicitly expressed as theorem with respect t.

w;(t) = / K(z,t)dP;(x), Vi€ Npy,teX. Our main tool for characterizing regularization function-
* als that admit representer theorems is the property defined
Clearly, we are interested only in cases in which the opti2€low, which we calbrthomonotonicity The connection
mization problem between orthomonotonicity and representer theorems has
appeared inArgyriou et al, 2009 in the context of reg-
min{J(w) : w € H} ularization with the Hilbertian norm or with orthogonally
. . ) o ) ] invariant matrix penalties. In Theorednl, we extend this
is well defined, that is, a minimizer ofexists. This always cqnnection to a broader class of regularization penafties
holds by construction in machine learning and statisties apyhich arise by varying the choice of the m&p

plications. More generally, existence of a minimizer Cany i ion 3.3 We call the functior) - H o RU {+o0}

be ensured under lower semicontinuity and coercivity con- . ] :
ditions onJ. We will avoid specifying such precise con- orthomonotonevith respect to the mag - # — V(H), if

ditions since they are not relevant to our purposes, instead Qz + 1) > Qz), VeeH, ye S(x)L_ (5)
assuming existence of minimizers for each problem of in-
terest. Note that in this definition the left hand side & (or even

The main question we address in this paper is to charad20th sides, may equaioo.

terize the functions2 for which minimizers of the reg- Theorem 3.1. Letr,m € N, f : R™ — R U {400},
ularization functional §) admit certain convenient rep- Q :H — R U {+4occ} and suppose thaf : H — V(H) is
resentations. As already mentioned in the introductionanr-regular quasilinear map. Then the following hold:
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1. If Q is orthomonotone w.rt. S then, for any 2. Secondly, observe thatif (x + y) = +o0, inequality
wi,...,w, € H and anyy > 0 such that the reg- (7) is trivially satisfied.
ularization functionalJ = (f,Q,~,w1,...,wy,,) of
the form(4) admits a minimizer/ admits a represen-
ter theorem w.r.tS.

3. Itremains to proved) in the case when

x#0 and Q(z+y)=C < +oc. (8)

2. Let F denote the following family of regularization

functionals of forn(4) SincesS is r-regular quasilinear and < m, S(z) has

dimensionalityu < m. Let us choose a set of vectors
F={(f, 0y, w01,..., W) w1,..., wm €H,7y> 0} {bi(x) : i € Ny, } spanningS(x) in a way such that

(6) . .
and assume that (@, bi(x)) = 2, Vi € Ny (9)

e fis lower semicontinuous, admits a unique min-  Such a set can always be constructed, sineeS(x),
imizer 2 # 0, and there exists > 0 such that r # 0andz # 0, as follows. Pickuy,...,u, 1 €
the sublevel sefz € H : f(z) < f(2) +¢}is S(x), such tha{us,...,u,—1,x} forms an orthogo-
bounded. nal basis ofS(x). Without loss of generality, we may

assume that,, # 0. Then we may defing;(x) =

e Q) is lower semicontinuous and is minimizedat > , 4
u; + ==eforl < i < p—1andb(z) = T

<m. BE
sr=m for u < ¢ < m. Clearly these vectors sp&i{z) and

If 7 admits a representer theorem w.r$. then is satisfy Q).
orthomonotone w.rts. For everyy > 0, the functional7) = (f,Q,~, b (z),

..,bm(z)) belongs toF. Therefore, by the rep-
Proof. The first part of the theorem (sufficiency) can be resenter theorem w.r.t.S, J) admits a minimizer

proven by adapting a classical orthogonah% argument. w) € 3° S(hi(z)) € S(x) (where the last inclusion
=1

Take anyws, ..., wn € H,y > 0. LetL = Z; Sw:) follows from the idempotence df). Let

and let £+ denote its orthogonal complement. Due to

the regular quasilinearity af, £ is a finite dimensional zg = (w3, b1(z)) ... (W3, bm(z))).
subspace that contaif® = span{ws,...,w,,}. There- ) o . .
fore any minimizero of the regularization functional = U§|ng the facts thaf is rTn'm'ZGd gtz, J2 Is mini-
(f,Q,v,w1,...,wy,) can be decomposed as mized atw? andy € S(z)~, we obtain

w=u+v, ue€l, veLltCR- FE) +7Qw]) < f (=) +7Q(w)) = J7 (w])

<Jl@+y)=f2)+vQ(@+y) (10)
Applying Lemma2.1we obtain thatS(u) C £ and hence
thatv € S(u)*. If Q is orthomonotone then for all v > 0. Note thatf(2) is finite sincez is the

unigue minimizer off. Hence we conclude that

J(W) = f((u+v,wi), ..., (u~+v,wn)) +vQ2u+wv)
= f((u,w1), ..., (w, wm)) +vQu+v) Q@+y) 2Qw]), Vy>0.(11)
i JJCEW Wiy (wmp) 7 8w) In order to conclude the proof, we show tha con-

u), verges tar asy — 07. Using (L0), (8) and the hy-

so thatu € £ is also a minimizer pothesis thaf2 is minimized at), we obtain

Now, let us prove the second part of the theorem (neces- 0< f(2) = f(2) < v (Q(z +y) — Q(w]))

sity). Let us fix arbitraryr € H andy € S(x)*. The goal =75 (C=Q(w)))

of the proof is to establish orthomonotonicity, namely the - (12)

. ; <7 (C-9Q(0))

inequality

Qz+7y) = Qa). @ <teo, V>0

The proof is organized in three cases. Now, let v, denote a sequence of positive real num-

bers such thatimy_, ., v+ = 0. From (L2) it follows
1. First, we observe that far = 0 the inequality follows that
directly from the hypothesis of. i f(z50) = f(2).
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It follows that there exists an indeX such that, for
all k > M, z7* belongs to the bounded sgt € H :
f(z) < f(2) + ¢}. Therefore, the sequencé* is

The class of functions defined above includes any loss of
the form¢(t) = [t|P with p > 0 (in particular, square and
absolute loss), the interpolation loss

bounded and it has a convergent subsequence. Now,
take an arbitrary convergent subsequence)ofand
let zZ denote its limit. Since is lower-semicontinuous
andz is its only minimizer, it must be = Z. Hence,
the whole sequence* converges td, namely

0 if t=0
t =
o(t) {+OO otherwise’

as well as thes-insensitive lossp(t) = max{0, [t| — ¢},
which is not uniquely minimized at zero.

Lemma 3.1. Assume thal” is a regression loss function.
Then, for everyp € N, there exist output datdy, : i €
Ny, } € Rand a functionf,, : R? — RU{+o0} satisfying
the hypothesis of Theore®l, Part 2, such that the error
functional

lim (w)*,b;i(x)) = 2, Vi € Ny,.
k—o0

In view of (9) we have, for every € N,,,,

lim (w)* —2,b;(x)) = lm (wl*, b;(x)) — 2 =0
k— o0 k— o0

and therefore

khm <U};/k . .I',U) _ 0’ w f(<waw1>a R <wawp>7 <’LU,’LU1>, R <wawp>) )
— 00

Yu € S(x).(13)
with f defined by(14) for m = 2p, equals the error func-

Sincex, w}* € S(x), the sequence]* — z is con-  tional

fined to the subspac®(z). Since S(z) is finite-
dimensional, 13) implies thatw]* converges strongly
to 2. By passing to the limit inferior in1(1) and using
the lower semicontinuity of2, inequality ) follows.

O

w = fu((w,wr), ..., (w,wpy)) .

3.1.2. BNARY CLASSIFICATION LOSS FUNCTIONS

Definition 3.5. We call the functio’V : R x {—1,+1} —

R aregular binary classification loss functidn
Observe that part 1 of Theorefhl (sufficiency of or- V(z,y) = ¢(yz),
thomonotonicity) only requires existence of minimizers of
J, without any specific additional assumptions on the errowhere¢ : R — R is lower semicontinuous, nonincreasing,
term. On the other side, part 2 (necessity of orthomonothere existsy > 0 such that the function
tonicity) holds under additional assumptions pnin the
Ya(t) = ¢(t) + o(—at),

following, we provide examples of functiorfsthat satisfy
dmits a unique minimizer # 0 and there exists > 0

such assumptions, showing that most of the error functionrg

considered in practice do so. The vast majority of erro .
P Jory such that the sublevel st € R : ¢, (t) < min, +¢}is

bounded.

3.1. Loss Functions Which Lead to Orthomonotonicity

functions used aradditively separablenamely of the form

(14) 1t can be seen easily that this definition is satisfied by most
commonly used binary classification loss functions, inelud
ing the logistic lossy(t) = log(1 + e~ *), the exponential
loss¢(t) = e~* and the hinge losg(t) = max{0,1 — ¢}.

To verify the uniqueness of the minimizer for these three
losses, choose for instanae= 1/2.

f(z) = ZV(% Yi),

whereV : R x R — RU{+occ} andy; € R are prescribed
output data.

3.1.1. REGRESSION LOSS FUNCTIONS

In this section we show that, for a broad class of regres!‘emma 3.2. Assume thal’ is a regular binary classifi-

sion loss functions, it is possible to find output data suchc""tt'ont Igsts f“”?“?”- Igl'hen,cfor elveg{e N,dthe}re et>§|st

that, if the family of regularization functionalsyadmitsa  °Y PURP a a{% ' Zt € 2pi‘h— h{_ 7th } anf Tah unction

representer theorem, théhis orthomonotone. fu — R satisfying the YPOINesis o eorén,
o ) Part 2, such that the error functional

Definition 3.4. We call the functiol/ : R x R — R U

{+o0} aregression loss functiah

Vizy) = (2 —y), with f defined by(14) for m = 2p, equals the error func-

where¢ : R — R U {+oc} is lower semicontinuous with ~tional
bounded sublevel sets and minimized at zero.

w = f((w,wr), ..., (w,wp), (w,aws), ..., (w,awy,)) ,

w = fu((w,wr), ..., (w,wpy)) .
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3.2. Properties of Orthomonotone Functions 4. Examples of Representer Theorems

An obvious first fact about orthomonotone functions is thatwe now proceed to describe the set of orthomonotone func-
nesting of maps preserves orthomonotonicity. tions for specific regularization problems of interest. For
Proposition 3.1. If $,5" : % — V(H) are such that €ach problem, we describe the méipprovide a class of
S(z) C §'(x)forall z € H,thenany) : H — RU{+o00}  Orthomonotone functions and state the resulting represen-
orthomonotone with respect 6 is also orthomonotone ter theorem.

with respect toS”. Example 4.1. Assume that the dimension#fis at least

two and letS be defined as in Exampkl Then, the def-
inition of representer theorer®.1 reduces to the classical
linear combination of the representers

Thus, enlarging the mag enlarges the class of orthomono-
tone functions as well. In the extreme case wisemaps
every point to#, the orthomonotone class includes all

functions. At the other extreme§ maps every point to m
{0} and the orthomonotone class equals the set of constant W= Z cw;,
functions. i=1

A convenient way to obtain new orthomonotone functionswherec; € R and the definition of orthomonotonicit$)
(and hence new representer theorems) is by applying sinteduces to

ple operations to known orthomonotone functions. For

example, shifting the argument inside an orthomonotone  Q(x +y) > Q(x), Ve,y e H: (x,y) =0.
function yields an orthomonotone function with respect to a

larger map. This factimplies that Theor@d.can be mod- If Q is lower-semicontinuous, this last condition is satisfied
ified to apply to function$? that are minimized at points if and only if

other tharD. Q(w) = h(||lw|)

Proposition 3.2. Leta € H andQ : X — R U {+oo}
orthomonotone with respect to the mép: H — V(H).

If S'is quasilinegr then the function — Q(z +a)isor-  goo Theorem 1 of Diinuzzo & Scholkopf 2013 and
thomonotone with respect to the map-> S(z) + S(a). (Argyriou et al, 2009 Yu et al, 2013 for related results.

Another useful rule combines functions which are or- This is a generalized version of the well known “classical”
thomonotone with respect to different maps. representer theorenG(rosi, 1998 Kimeldorf & Wahba
197Q Scholkopf et al.2007) which has found wide appli-
cation to regularization methods in Hilbert spaces.

with 7 : R — R U {400} nondecreasing.

Proposition 3.3. LetQ); : H — RU{+oc} be orthomono-
tone with respect to a maf; : X — V(H) and Qs :
‘H — R U {+0o0} be orthomonotone with respect to a map The case of regularization withlkdas termcan be recov-
Syt H — V(H). Alsoleth : (RU {+c0})* — RU{+oc0} ered easily by choosing the error functiéras a minimum
be elementwise nondecreasing, thatiig’, b') > h(a,b)  With respect to the bias variable. This technique also gield
whenever’ > @ andd’ > b. Then the functiof? : H — semiparametric theoren{Scholkopf & Smola2002.

R U {+o0}, Example 4.2. LetH and S be defined as in Examp3.
Q(w) = h (1 (w), W(w), Ywe H, Then the representer theoredril reduces to

is orthomonotone with respect to the méip+ Ss. W Z WiC

This rule holds more generally for any finite number of i=1

orthomonotone functions. In particular, any nonnegativevhere C; are matrices inM,, and the definition of or-
linear combination of orthomonotone functions is also or-thomonotonicity5) reduces to

thomonotone with respect to the sum of the corresponding

maps. The same applies to the maximum and to the mini2(X +Y) > Q(X), VXY € Mg,: X'Y =0.

mum of orthomonotone functions. o o )
) ] - Moreover, in this case the orthomonotonicity property is
Finally, there is a composition rule for orthomonotoneequiva|em to

functions, similar to the chain rule for differentiation.

Proposition 3.4. LetQ) : # — R U {+occ} be orthomono-

tone with respect to a mag’ : H — V() and let  with b : S — R U {400} being amatrix nondecreas-

T € Z(H) be a continuous operator. Then the function jng function (with respect to the partial order of positive
Q o T'is orthomonotone with respect 6" o S o T'. semidefinite matrices).

QW) = h(W™W)
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See Argyriouetal, 2009 Yuetal, 2013 as well which is satisfied by all functions such that
as @mitetal, 2007 Argyriouetal, 2008 201Q

Evgeniou et al. 2005 for special cases. The above QW) = h(WTW,Www?),
representation extends the classical representer theore . : .
topmatrix learningproblems, such as regF:JIarization with y%ereh $ 8% > Sd+ — RU{+oo} is matrix nondecreasing
penalties involving the Frobenius norm, the trace norm" each matrix argument.
and general spectral penalties.  These methods havg,q ¢amily of regularizers described in the last example
been used for mult|tas_k Iearmng, collaborative f'lte”ng'includes, for instance, functions of the form

kernel learning, domain adaptation and other problems.

Problems like multitask learning benefit substantially QW) = QW] + |[WR] ,

from the representer theorem since in those cases the data

matrices are rank-one (and in collaborative filtering theywhere]| - || is any orthogonally invariant norm. Such penal-
are also sparse). Indeed, whenever the data matrices aiies are of considerable interest in many matrix learning
rank-one, that isf; = a;b, we can lety; = b7'C; and  problems, since they allow for incorporating information
about both row and column dependencies, by designing the
= matrices andR. This can be applied, for instance, to col-
problem with substantially fewer degrees of freedom carlaborative filtering problems when side information about
be obtained. This last representation ensures #jais(  both users and items is available. When the data matri-
equivalent to an optimization problem whose number ofces are rank-one (such as in multi-task learning and collab-
variables ismn, which can be much smaller thain, the  orative filtering problems), the representer theorem above
size of matrixiV. makes it again possible to obtain a significant reduction in

It can also be seen that for other penalties of the typéhe number of degrees offre?ndom,smce the soldfocan
QW) = g(R"W™GWR), with R € M,, , G € S¢,  berewritten in the formV = 3" (a;0] +u;b7), where the
andg matrlx nondecreasing, other represent_ertheorems camber of variablesp(n + cZ),lcan be much smaller than
be derived from the a]bove result, by applying the chang%d the size ofil’

of variable W’ = GzW. These apply, for example, ' '

to spectral functions oW R, with ) € M, 4, which .

have been proposed for multi-task learniBinuzzq 2013 5. Conclusion

Dinuzzo & Fukumizy2011).

N m
write W = Y a;v], so that an equivalent optimization

We have presented a framework which unifies existing re-
In addition, Example4.2 relates to certain optimiza- sults about representer theorems for regularization prob-

tion problems with positive semidefinitematrix vari- lems and allows for a more formal study of these results.
ables. Indeed, problemd with X = M,, Q(W) =  We introduced a new definition of representer theorem to
g(RTWTW R), g matrix nondecreasing and rank-one data,include a broader family of representation results. We
yields a problem of the type showed that each theorem in this family corresponds to a

regular quasilinear subspace-valued map. Moreover, we
characterized the class of regularization penalties eorre
sponding to each representer theorem via the orthomono-
tonicity property. Orthomonotone functions exhibit siepl
calculus rules, which can be used to obtain new representer
§/he0rems by combining existing ones.

min{ f(y{ Zx1,...,ypZxm) +v9(R"ZR) : Z € S™ }
(15)
by the change of variablg = W TIV. Thus a representer
theorem for this family of problems follows directly from
Example4.2. Some results for special cases &), ap-
plied to metric and semisupervised learning, have alread

appeared inJain et al.201Q 2012. Our new framework opens a number of possibilities for fur-
Example 4.3. Assume{ = My ,, equipped with the stan- ther investigation. First of all, it calls for more detailed
dard inner product, and Suppoge thgitmaps characterizations of regular quasilinear subspace-dalue

maps and orthomonotone functions, given theirimportance
X = {XC+DX:CeM,,DecMa}. in the mathematical construction that leads to the repre-

Thens is nd-regular quasilinear. For this map, definition Senter theorems. Secondly, it can lead to the derivation of
3.1reads new families of regularization penalties and correspogdin
methodologies, for example, for matrix and tensor regular-
ization. Finally, it lays the foundation for a new and more
general class of kernel methods, obtained by plugging the
expression of the generalized representer theorem into the
XTy =0 objective functional/l and considering the resulting opti-
XYT =0 ° mization problem.

W =Y (W:Ci + D;W;)
=1
and the definition of orthomonotonicity) reduces to

QX4Y) > Q(X), VX,V €Mq,: {
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