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Abstract
We introduce a novel algorithm to compute non-
negative sparse principal components of posi-
tive semidefinite (PSD) matrices. Our algorithm
comes with approximation guarantees contingent
on the spectral profile of the input matrix A: the
sharper the eigenvalue decay, the better the qual-
ity of the approximation.

If the eigenvalues decay like any asymptotically
vanishing function, we can approximate nonneg-
ative sparse PCA within any accuracy ε in time
polynomial in the matrix dimension n and de-
sired sparsity k, but not in 1/ε. Further, we ob-
tain a data dependent bound that is computed
by executing an algorithm on a given data set.
This bound is significantly tighter than a-priori
bounds and can be used to show that for all
tested datasets our algorithm is provably within
40%− 90% from the unknown optimum.

Our algorithm is combinatorial and explores a
subspace defined by the leading eigenvectors of
A. We test our scheme on several data sets,
showing that it matches or outperforms the pre-
vious state of the art.

1. Introduction
Given a data matrix S ∈ Rn×m comprising m zero-mean
vectors on n features, the first principal component (PC) is

arg max
‖x‖2=1

xTAx, (1)

where A = 1/m · SST is the n × n positive semidefinite
(PSD) empirical covariance matrix. Subsequent PCs can
be computed after A has been appropriately deflated to re-
move the first eigenvector. PCA is arguably the workhorse
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of high dimensional data analysis and achieves dimension-
ality reduction by computing the directions of maximum
variance. Typically, all n features affect positively or neg-
atively these directions resulting in dense PCs, which ex-
plain the largest possible data variance, but are often not
interpretable.

It has been shown that enforcing nonnegativity on the com-
puted principal components can aid interpretability. This
is particularly true in applications where features inter-
act only in an additive manner. For instance, in bioinfor-
matics, chemical concentrations are nonnegative (Kim &
Park, 2007), or the expression level of genes is typically
attributed to positive or negative influences of those genes,
but not both (Badea & Tilivea, 2005). Here, enforcing non-
negativity, in conjunction with sparsity on the computed
components can assist the discovery of local patterns in
the data. In computer vision, where features may coin-
cide with non negatively valued image pixels, nonnegative
sparse PCA pertains to the extraction of the most informa-
tive image parts (Lee & Seung, 1999). In other applica-
tions, nonnegative weights admit a meaningful probabilis-
tic interpretation.

Sparsity emerges as an additional desirable trait of the com-
puted components because it further helps interpretabil-
ity (Zou et al., 2006; d’Aspremont et al., 2007b), even in-
dependently of nonnegativity. From a machine learning
perspective, enforcing sparsity serves as an unsupervised
feature selection method: the active coordinates in an opti-
mal l0-norm constrained PC should correspond to the most
informative subset of features. Although nonnegativity in-
herently promotes sparsity, an explicit sparsity constraint
enables precise control on the number of selected features.

Nonnegative Sparse PC. Nonnegativity and sparsity can
be directly enforced on the principal component optimiza-
tion by adding constraints to (1). The k-sparse nonnegative
principal component of A is

x? = arg max
x∈Snk

xTAx, (2)
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where Snk = {x ∈ Rn : ‖x‖2 = 1, ‖x‖0 ≤ k,x ≥ 0}, for
a desired sparsity parameter k ∈ [n].

The problem of computing the first eigenvector (1) is eas-
ily solvable, but with the additional sparsity and nonnega-
tivity constraints problem (2) becomes computationally in-
tractable. The cardinality constraint alone renders sparse
PCA NP-hard (Moghaddam et al., 2006b). Even if the l0-
norm constraint is dropped, we show that problem (2) re-
mains computationally intractable by reducing it to check-
ing matrix copositivity, a well known co-NP complete de-
cision problem (Murty & Kabadi, 1987; Parrilo, 2000).
Therefore, each of the constraints x ≥ 0 and ‖x‖0 ≤ k
individually makes the problem intractable.

Our Contribution: We introduce a novel algorithm for
approximating the nonnegative k-sparse principal compo-
nent with provable approximation guarantees.

Given any PSD matrix A ∈ Rn×n, sparsity parameter k,
and accuracy parameter d ∈ [n], our algorithm outputs a
nonnegative, k-sparse, unit norm vector xd that achieves at
least ρd fraction of the maximum objective value in (2), i.e.,

xTdAxd ≥ ρd · x?TAx?, (3)

where

ρd ≥ max

{
k

2n
,

1

1 + 2nkλd+1/λ1

}
. (4)

Here, λi is the ith largest eigenvalue of A, and the accuracy
parameter d specifies the rank of the approximation used
and controls the running time. Specifically, our algorithm
runs in timeO(ndkd+nd+1). As can be seen our result de-
pends on the spectral profile of A: the faster the eigenvalue
decay, the tighter the approximation.

Near-Linear time approximation. Our algorithm has a
running time O(ndkd +nd+1), which in the linear sparsity
regime can be as high asO(n2d). This can be non-practical
for large data sets, even if we set the rank parameter d to be
two or three. We present a modification of our algorithm
that can provably approximate the result of the first in near-
linear time. Specifically, for any desired accuracy ε ∈ (0, 1]
it computes a nonnegative, k-sparse, unit norm vector x̂d
such that

x̂TdAx̂d ≥ (1− ε) · ρd · x?TAx?, (5)

where ρd is as described in (4). We show that the running
time of our approximate algorithm is O

(
ε−d · n log n

)
,

which is near-linear in n for any fixed accuracy parameters
d and ε.

Our approximation theorem has several implications.

Exact solution for low-rank matrices. Observe that if the
matrix A has rank d, our algorithm returns the optimal k-
sparse PC for any target sparsity k. The same holds in

the case of the rank-d update matrix A = σI + C, with
rank(C) = d and arbitrary constant σ, since the algorithm
can be equivalently applied on C.

PTAS for any spectral decay. Consider the linear sparsity
regime k = c · n and assume that the eigenvalues follow a
decay law λi ≤ λ1 ·f(i) for any decay function f(i) which
vanishes: f(i)→ 0 as i→∞. Special cases include power
law decay f(i) = 1/iα or even very slow decay functions
like f(i) = 1/ log log i. For all these cases, we can solve
nonnegative sparse PCA for any desired accuracy ε in time
polynomial in n and k, but not in 1/ε. Therefore, we obtain
a polynomial-time approximation scheme (PTAS) for any
spectral decay behavior.

Computable upper bounds. In addition to these theoret-
ical guarantees, our method yields a data dependent upper
bound on the maximum value of (2), that can be computed
by running our algorithm. As it can be seen in Fig. 4-6,
the obtained upper bound, combined with our achievable
point, sandwiches the unknown optimum within a narrow
region. Using this upper bound we are able to show that
our solutions are within 40 − 90% from the optimal in all
the datasets that we examine. To the best of our knowledge,
this framework of data dependent bounds has not been con-
sidered in the previous literature.

1.1. Related Work

There is a substantial volume of work on sparse PCA,
spanning a rich variety of approaches: from early heuris-
tics in (Jolliffe, 1995), to the LASSO based techniques
in (Jolliffe et al., 2003), the elastic net l1-regression in
(Zou et al., 2006), a greedy branch-and-bound technique in
(Moghaddam et al., 2006a), or semidefinite programming
approaches (d’Aspremont et al., 2008; Zhang et al., 2012;
d’Aspremont et al., 2007a). This line of work does not con-
sider or enforce nonnegativity constraints.

When nonnegative components are desired, fundamentally
different approaches have been used. Nonnegative matrix
factorization (Lee & Seung, 1999) and its sparse variants
(Hoyer, 2004; Kim & Park, 2007) fall within that scope:
data is expressed as (sparse) nonnegative linear combina-
tions of (sparse) nonnegative parts. These approaches are
interested in finding a lower dimensionality representation
of the data that reveals latent structure and minimizes a re-
construction error, but are not explicitly concerned with the
statistical significance of individual output vectors.

Nonnegativity as an additional constraint on (sparse) PCA
first appeared in (Zass & Shashua, 2007). The authors sug-
gested a coordinate-descent scheme that jointly computes
a set of nonnegative sparse principal components, maxi-
mizing the cumulative explained variance. An l1-penalty
promotes sparsity of computed components on average,
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but not on each component individually. A second convex
penalty is incorporated to favor orthogonal components.

Similar convex optimization approaches for nonnegative
PCA have been subsequently proposed in the literature. In
(Allen & Maletić-Savatić, 2011) for instance, the authors
suggest an alternating maximization scheme for the com-
putation of the first nonnegative PC, allowing the incorpo-
ration of known structural dependencies.

A competitive algorithm for nonnegative sparse PCA was
established in (Sigg & Buhmann, 2008), with the de-
velopment of a framework stemming from Expectation-
Maximization (EM) for a probabilistic generative model of
PCA. The proposed algorithm, which enforces hard spar-
sity, or nonnegativity, or both constraints simultaneously,
computes the first approximate PC in O(n2), i.e., time
quadratic in the number of features.

To the best of our knowledge, no prior works provide prov-
able approximation guarantees for the nonnegative sparse
PCA optimization problem. Further, no data dependent up-
per bounds have been present in the previous literature.

Differences from SPCA work. Our work is closely related
to (Karystinos & Liavas, 2010; Asteris et al., 2011; Papail-
iopoulos et al., 2013) that introduced the ideas of solving
low-rank quadratic combinatorial optimization problems
on low-rank PSD matrices using hyperspectral transforma-
tions. Such transformations are called spannograms and
follow a similar architecture. In this paper, we extend the
spannogram framework to nonnegative sparse PCA. The
most important technical issue compared to (Asteris et al.,
2011; Papailiopoulos et al., 2013) is introducing nonnega-
tivity constraints in spannogram algorithms.

To understand how this changes the problem, notice that
in the original sparse PCA problem without nonnegativity
constraints, if the support is known, the optimal principal
component supported on that set can be easily found. How-
ever, under nonnegativity constraints, the problem is hard
even if the optimal support is known. This is the funda-
mental technical problem that we address in this paper. We
show that if the involved subspace is low-dimensional, it is
possible to solve this problem.

2. Algorithm Overview
Given an n × n PSD matrix A, the desired sparsity k, and
an accuracy parameter d ∈ [n], our algorithm computes a
nonnegative, k-sparse, unit norm vector xd approximating
the nonnegative, k-sparse PC of A. We begin with a high-
level description of the main steps of the algorithm.

Step 1. Compute Ad, the rank-d approximation of A. We
compute Ad, the best rank-d approximation of A, zeroing

Algorithm 1 Spannogram Nonnegative Sparse PCA
input A (n× n PSD matrix), k ∈ [n], d ∈ [n].
1: U,Λ← svd(A, d)
2: V = UΛ

1/2 {Ad = VVT }
3: Sd ← Spannogram(V, k) {Algo. 2}
4: Xd ← {} {|Sd| ≤ O(nd)}
5: for all I ∈ Sd do
6: c(I) ← argmax‖c‖2=1

VIc≥0

‖ (VIc) ‖22 {Sec. 5}

7: x
(I)
I ← |VIc|/‖VIc‖, x

(I)
Ic ← 0

8: Xd ← Xd ∪ {x(I)}
9: end for {|Xd| ≤ |Sd|}

output xd ← argmaxx∈Xd xTAdx

out the n− d trailing eigenvalues of A, that is,

Ad =

d∑
i=1

λiuiu
T
i ,

where λi is the ith largest eigenvalue of A and ui the cor-
responding eigenvector.

Step 2. Compute Sd, a set of O(nd) candidate supports.
Enumerating the

(
n
k

)
possible supports for k-sparse vectors

in Rn is computationally intractable. Using our Spanno-
gram technique described in Section 4, we efficiently de-
termine a collection Sd of support sets, with cardinality
|Sd| ≤ 2d

(
n+1
d

)
, that provably contains the support of the

nonnegative, k-sparse PC of Ad.

Step 3. Compute Xd, a set of candidate solutions. For
each candidate support set I ∈ Sd, we compute a candidate
solution x supported only in I:

arg max
‖x‖2=1,x≥0,

supp(x)⊆I

xTAdx. (6)

The constant rank of Ad is essential in solving (6): the
constrained quadratic maximization is in general NP-hard,
even for a given support.

Step 4. Output the best candidate solution in Xd, i.e., the
candidate that maximizes the quadratic form.

If multiple components are desired, the procedure is re-
peated after an appropriate deflation has been applied on
Ad (Mackey, 2008). The steps are formally presented in
Algorithm 1. A detailed description is the subject of subse-
quent sections.

2.1. Approximation Guarantees

Instead of the nonnegative, k-sparse, principal component
x? of A, which attains the optimal value OPT = x?

TAx?,
our algorithm outputs a nonnegative, k-sparse, unit norm
vector xd. We measure the quality of xd as a surrogate of
x? by the approximation factor xd

TAxd/OPT. Clearly,
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the approximation factor takes values in (0, 1], with higher
values implying tighter approximation.
Theorem 1. For any n×n PSD matrix A, sparsity param-
eter k, and accuracy parameter d ∈ [n], Alg. 1 outputs a
nonnegative, k-sparse, unit norm vector xd such that

xd
TAxd ≥ ρd · x?TAx?,

where

ρd ≥ max

{
k

2n
,

1

1 + 2nkλd+1/λ1

}
,

in time O(nd+1 + ndkd).

The approximation guarantee of Theorem 1 relies on estab-
lishing connections among the eigenvalues of A, and the
quadratic forms xd

TAxd and xd
TAdxd. The proof can

be found in the supplemental material. The complexity of
Algorithm 1 follows upon its detailed description.

3. Proposed Scheme
Our algorithm approximates the nonnegative, k-sparse PC
of a PSD matrix A by computing the corresponding PC of
Ad, a rank-d surrogate of the input argument A:

Ad =

d∑
i=1

vivi
T = VVT , (7)

where vi =
√
λiui is the scaled eigenvector corresponding

to the ith largest eigenvalue of A, and V = [v1 · · ·vd] ∈
Rn×d. In this section, we delve into the details of our al-
gorithmic developments and describe how the low rank of
Ad unlocks the computation of the desired PC.

3.1. Rank-1: A simple case

We begin with the rank-1 case because, besides its moti-
vational simplicity, it is a fundamental component of the
algorithmic developments for the rank-d case.

In the rank-1 case, V reduces to a single vector in Rn and
x1, the nonnegative k-sparse PC of A1, is the solution to

max
x∈Snk

xTA1x = max
x∈Snk

(
vTx

)2
. (8)

That is, x1 is the nonnegative, k-sparse, unit length vector
that maximizes (vTx)2. Let I = supp(x1), |I| ≤ k, be the
unknown support of x1. Then, (vTx)2 =

(∑
i∈I vi · xi

)2
.

Since x1 ≥ 0, it should not be hard to see that the active en-
tries of x1 must correspond to nonnegative or nonpositive
entries of v, but not a combination of both. In other words,
vI , the entries of v indexed by I, must satisfy vI ≥ 0 or
vI ≤ 0. In either case, by the Cauchy-Schwarz inequality,(

vTx
)2

=
(
vI

TxI
)2 ≤ ‖vI‖22‖xI‖22,= ‖vI‖22. (9)

Equality in (9) can always be achieved by setting xI =
vI/‖vI‖2 if vI ≥ 0, and xI = −vI/‖vI‖2 if vI ≤ 0.
The support of the optimal solution x1 is the set I for which
‖vI‖22 in (9) is maximized under the restriction that the
entries of vI do not have mixed signs.
Def. 1. Let I+

k (v), 1 ≤ k ≤ n denote the set of indices of
the (at most) k largest nonnegative entries in v ∈ Rn.
Proposition 3.1. Let x1 be the solution to problem (8).
Then, supp (x1) ∈ S1 =

{
I+
k (v) , I+

k (−v)
}
.

The collection S1 and the associated candidate vectors via
(9) are constructed in O(n) . The solution x1 is the candi-
date that maximizes the quadratic.

3.2. Rank-d case

In the rank-d case, xd, the nonnegative, k-sparse PC of Ad

is the solution to the following problem:

max
x∈Snk

xTAdx = max
x∈Snk

‖VTx‖22. (10)

Consider an auxiliary vector c ∈ Rd, with ‖c‖2 = 1. From
the Cauchy-Schwarz inequality,

‖VTx‖22 = ‖c‖22‖VTx‖22 ≥
∣∣cT (VTx

)∣∣2 . (11)

Equality in (11) is achieved if and only if c is colinear to
VTx. Since c spans the entire unit sphere, such a c ex-
ists for every x, yielding an alternative description for the
objective function in (10):

‖VTx‖22 = max
c∈Sd

∣∣∣(Vc)
T
x
∣∣∣2 , (12)

where Sd =
{
c ∈ Rd : ‖c‖2 = 1

}
is the d-dimensional

unit sphere. The maximization in (10) becomes

max
x∈Snk

‖VTx‖22 = max
x∈Snk

max
c∈Sd,

| (Vc)
T
x|2

= max
c∈Sd,

max
x∈Snk

| (Vc)
T
x|2. (13)

The set of candidate supports. A first key observation is
that for fixed c, the product (Vc) is a vector in Rn. Maxi-
mizing | (Vc)

T
x|2 over all vectors x ∈ Snk is a rank-1 in-

stance of the optimization problem, as in (8). Let (cd, xd)
be the optimal solution of (10). By Proposition 3.1, the sup-
port of xd coincides with either I+

k (Vcd) or I+
k (−Vcd).

Hence, we can safely claim that supp(xd) appears in

Sd =
⋃
c∈Sd

{
I+
k (Vc)

}
. (14)

Naively, one might think that Sd can contain as many as(
n
k

)
distinct support sets. In Section 4, we show that |Sd| ≤

2d
(
n+1
d

)
and present our Spannogram technique (Alg. 2)

for efficiently constructing Sd in O(nd+1). Each support
in Sd corresponds to a candidate principal component.
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Solving for a given support. We seek a pair (x, c) that
maximizes (13) under the additional constraint that x is
supported only on a given set I. By the Cauchy-Schwarz
inequality, the objective in (13) satisfies

| (Vc)
T
x|2 = | (VIc)

T
xI |2 ≤ ‖ (VIc) ‖22, (15)

where VI is the matrix formed by the rows of V indexed
by I. Equality in (15) is achieved if and only if xI is col-
inear to VIc. However, it is not achievable for arbitrary c,
as xI must be nonnegative. From Proposition 3.1, we infer
that x being supported in I implies that all entries of VIc
have the same sign. Further, whenever the last condition
holds, a nonnegative xI colinear to VIc exists and equal-
ity in (15) can be achieved. Under the additional constraint
that supp(x) = I ∈ Sd, the maximization in (13) becomes

max
c∈Sd

max
x∈Snk

supp(x)⊆I

| (Vc)
T
x|2 = max

c∈Sd
VIc≥0

‖ (VIc) ‖22. (16)

The constraint VIc ≥ 0 in (16), is equivalent to requiring
that all entries in VIc have the same sign, since c and −c
achieve the same objective value.

The optimization problem in (16) is NP-hard. In fact, it en-
compasses the original nonnegative PCA problem as a spe-
cial case. Here, however, the constant dimension d = Θ(1)
of the unknown variable c permits otherwise intractable op-
erations. In Section 5, we outline an O(kd) algorithm for
solving this constrained quadratic maximization.

The algorithm. The previous discussion suggests a two-
step algorithm for solving the rank-d optimization prob-
lem in (10). First, run the Spannogram algorithm to con-
struct Sd, the collection of O(nd) candidate supports for
xd, in O(nd+1). For each I ∈ Sd, solve (16) in O(kd)
to obtain a candidate solution x(I) supported on I. Out-
put the candidate solution that maximizes the quadratic
xTAdx. Efficiently combining the previous steps yields
an O(nd+1 + ndkd) procedure for approximating the non-
negative sparse PC, outlined in Alg. 1.

4. The Nonnegative Spannogram
In this section, we describe how to construct Sd, the collec-
tion of candidate supports, defined in (14) as

Sd =
⋃
c∈Sd

{
I+
k (Vc)

}
,

for a given V ∈ Rn×d. Sd comprises all support sets in-
duced by vectors in the range of V. The Spannogram of
V is a visualization of its range, and a valuable tool in effi-
ciently collecting those supports.

Figure 1. Spannogam of an arbitrary rank-2 matrix V ∈ R4×2.
At a point φ, the values of the curves correspond to the entries of
a vector v(φ) in the range of V and vice versa.

4.1. Constructing S2

We describe the d = 2 case, the simplest nontrivial case, to
facilitate a gentle exposure to the Spannogram technique.
The core ideas generalize to arbitrary d and a detailed de-
scription is provided in the supplemental material.

Spherical variables. Up to scaling, all vectors v in the
range of V ∈ Rn×2, R(V), can be written as v = Vc for
some c ∈ R2 : ‖c‖ = 1. We introduce a variable φ ∈ Φ =
(−π/2, π/2], and set c to be the following function of φ:

c(φ) =
[
sin(φ) cos(φ)

]T
.

The range of V, R(V) = {±v(φ) = ±Vc(φ), φ ∈ Φ}, is
also a function of φ, and in turn S2 can be expressed as

S2 =
⋃
φ∈Φ

{
I+
k (v(φ)) , I+

k (−v(φ))
}
.

Spannogram. The ith entry of v(φ) is a continuous func-
tion of φ generated by the ith row of V: [v(φ)]i =
Vi,1 sin(φ) +Vi,2 cos(φ). Fig. 1 depicts the functions cor-
responding to the rows of an arbitrary matrix V ∈ R4×2.
We call this a spannogram, because at each φ, the values of
the curves coincide with the entries of a vector in the range
of V. A key observation is that the sorting of the curves
at some φ is locally invariant for most points in Φ. In fact,
due to the continuity of the curves, as we move along the
φ-axis, the set I+

k (v(φ)) can only change at points where a
curve intersects with (i) another curve, or (ii) the zero axis;
a change in either the sign of a curve or the relative or-
der of two curves is necessary, although not sufficient, for
I+
k (v(φ)) to change.

Appending a zero (n + 1)th row to V, the two aforemen-
tioned conditions can be merged into one: I+

k (v(φ)) can
change only at the points where two of the n+ 1 curves in-
tersect. Finding the unique intersection point of two curves
[v(φ)]i and [v(φ)]j for all pairs {i, j} is the key to dis-
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covering all possible candidate support sets. There are ex-
actly

(
n+1

2

)
such points partitioning Φ into

(
n+1

2

)
+1 inter-

vals within which the set of largest k nonnegative entries of
v(φ) and −v(φ) are invariant.

Constructing S2. The point φij where the ith and jth

curves intersect, corresponds to a vector v(φij) ∈ R(V)
whose ith and jth entries are equal. To find it, it suffices
to compute a c 6= 0 such that (ei − ej)

TVc = 0, i.e., a
unit norm vector cij in the one-dimensional nullspace of
(ei − ej)

TV. Then, v(φij) = Vcij .

We compute the candidate support I+
k (v(φij)) at the in-

tersection. Assuming for simplicity that only the ith and
jth curves intersect at φij , the sorting of all curves is un-
changed in a small neighborhood of φij , except the ith and
jth curves whose order changes over φij . If both the ith and
jth entries of v(φij) or none of them is included in the k
largest nonnegative entries, then the set I+

k (v(φ)) in the
two intervals incident to φij is identical. Otherwise, the ith

and jth curve occupy the kth and (k+ 1)th order at φij , and
the change in their relative order implies that one leaves
and one joins the set of k largest nonnegative curves at φij .
The support sets associated with the two adjacent intervals
differ only in one element (one contains index i and the
other contains index j instead), while the remaining k − 1
common indices correspond to the k − 1 largest curves at
the intersection point φij . We include both in S2 and repeat
the above procedure for I+

k (−v(φij)).

Each pairwise intersection is computed in O(1) and the at
most 4 associated candidate supports in O(n). In total, the
collection S2 comprises |S2| ≤ 4

(
n+1

2

)
= O(n2) candidate

supports and can be constructed in O(n3).

The generalized Spannogram algorithm for constructing Sd
runs in O(nd+1) and is formally presented in Alg. 2. A de-
tailed description is provided in the supplemental material.

5. Quadratic Maximization over unit vectors
in the intersection of halfspaces

Each support set I in Sd yields a candidate nonnegative,
k-sparse PC, which can be obtained by solving (16), a
quadratic maximization over the intersection of halfspaces
and the unit sphere:

c? = arg max
c∈Sd
Rc≥0

cTQc, (Pd)

where Q = VT
IVI is a d× d matrix and R is a k × d ma-

trix. Problem (Pd) is NP-hard: for Q PSD and R = Id×d,
it reduces to the original problem in (2). Here, however,
we are interested in the case where the dimension d is a
constant. We outline an O(kd) algorithm, i.e., polynomial
in the number of linear constraints, for solving (Pd). A
detailed proof is available in the supplemental material.

Algorithm 2 Spannogram algorithm for constructing Sd
input V ∈ Rn×d, k ∈ [n].
1: Sd ← {} {Set of candidate supports inR(V)}
2: V̂←

[
VT 0d

]T
{Append zero row; V̂ ∈ Rn+1×d}

3: for all
(
n+1
d

)
sets {i1, . . . , id} ⊆ [n+ 1] do

4: c← Nullspace


 eT

i1 − eT
i2

...
eT
i1 − eT

id

 V̂ ∈ Rd−1×d


5: for α ∈ {+1,−1} do
6: I ← I+k (αVc) {Entries ≥ than the kth one}
7: if |I| ≤ k then
8: Sd ← Sd ∪ {I} {No ambiguity}
9: else

10: A ← {i1, . . . , id}\{n+ 1} {Ambiguous set}
11: T ← I\ {{i1, . . . , id} ∪ {n+ 1}}
12: r ← k − |T |
13: d̂← |A|
14: for all

(
d̂
r

)
r-subsets A(r) ⊆ A} do

15: Î ← T ∪ A(r)

16: Sd ← Sd ∪ {Î} {≤ 2d new candidates}
17: end for
18: end if
19: end for
20: end for
output Sd

The objective of (Pd) is maximized by u1 ∈ Rd, the lead-
ing eigenvector of Q. If u1 or −u1 is feasible, i.e., if it
satisfies all linear constraints, then c? = ±u1. It can be
shown that if none of ±u1 is feasible, at least one of the k
linear constraints is active at the optimal solution c?, that
is, there exists 1 ≤ i ≤ k such that Ri,:c? = 0.

Fig. 2 depicts an example for d = 2. The leading eigen-
vector of Q lies outside the feasible region, an arc of the
unit-circle in the intersection of k halfspaces. The optimal
solution coincides with one of the two endpoints of the fea-
sible region, where a linear inequality is active, motivating
a simple algorithm for solving (P2): (i) for each linear in-
equality determine a unit length point where the inequality
becomes active, and (ii) output the point that is feasible and
maximizes the objective.

Figure 2. An instance of (P2): the leading eigenvector u1 of
Q ∈ S2 lies outside the feasible region (highlighted arc). The
maximum of the constrained quadratic optimization problem is
attained at φ1, an endpoint of the feasible interval.
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Back to the general (Pd) problem, if a linear inequality
Ri,:c ≥ 0 for some i ∈ [k] is enforced with equality, the
modified problem can be written as a quadratic maximiza-
tion in the form of (Pd), with dimension reduced to d − 1
and k−1 linear constraints. This observation suggests a re-
cursive algorithm for solving (Pd): If ±u1 is feasible, it is
also the optimal solution. Otherwise, for i = 1, . . . , k, set
the ith inequality constraint active, solve recursively, and
collect candidate solutions. Finally, output the candidate
that maximizes the objective. The O(kd) recursive algo-
rithm is formally presented in the supplemental material.

6. Near-Linear Time Nonnegative SPCA
Alg. 1 approximates the nonnegative, k-sparse PC of a PSD
matrix A by solving the nonnegative sparse PCA problem
exactly on Ad, the best rank-d approximation of A. Albeit
polynomial in n, the running time of Alg. 1 can be imprac-
tical even for moderate values of n.

Instead of pursuing the exact solution to the low-rank non-
negative sparse PCA problem maxx∈Snk xTAdx, we can
compute an approximate solution in near-linear time, with
performance arbitrarily close to optimal. The suggested
procedure is outlined in Algorithm 3, and a detailed dis-
cussion is provided in the supplemental material. Alg. 3
relies on randomly sampling points from the range of Ad

and efficiently solving rank-1 instances of the nonnegative
sparse PCA problem as described in Section 3.1.
Theorem 2. For any n×n PSD matrix A, sparsity param-
eter k, and accuracy parameters d ∈ [n] and ε ∈ (0, 1],
Alg. 3 outputs a nonnegative, k-sparse, unit norm vector
x̂d such that

x̂TdAx̂d ≥ (1− ε) · ρd · x?TAx?,

with probability at least 1 − 1/n, in time O
(
ε−d · n log n

)
plus the time to compute the d leading eigenvectors of A.

7. Experimental Evaluation
We empirically evaluate the performance of our algorithm
on various datasets and compare it to the EM algorithm1 for
sparse and nonnegative PCA of (Sigg & Buhmann, 2008)
which is known to outperform previous algorithms.

CBCL Face Dataset. The CBCL face image dataset
(Sung, 1996), with 2429 gray scale images of size 19× 19
pixels, has been used in the performance evaluation of both
the NSPCA (Zass & Shashua, 2007) and EM (Sigg & Buh-
mann, 2008) algorithms.

Fig. 3 depicts samples from the dataset, as well as six or-
thogonal, nonnegative, k-sparse components (k = 40) suc-
cessively computed by (i) Alg. 3 (d = 3, ε = 0.1) and

1 Matlab implementation available by the author.

Algorithm 3 Approximate Spannogram NSPCA (ε-net)
input A (n× n PSD matrix), k, d ∈ [n], ε ∈ (0, 1]
1: [U,Λ] = svd(A, d)
2: V = UΛ

1/2 {Ad = VVT }
3: Xd = ∅
4: for i = 1 : O(ε−d · logn) do
5: c = randn(d, 1)
6: a = Vc/‖c‖2
7: x = rank1solver(a) {Section 3.1}
8: Xd = Xd ∪ {x}
9: end for

output x̂d = argmaxx∈Xd ‖V
Tx‖22

(ii) the EM algorithm. Features active in one component
are removed from the dataset prior to computing subse-
quent PCs to ensure orthogonality. Fig. 3 reveals the ability
of nonnegative sparse PCA to extract significant parts.

In Fig. 4, we plot the variance explained by the computed
approximate nonnegative, k-sparse PC (normalized by the
leading eigenvalue) versus the sparsity parameter k. Alg. 3
for d = 3 and ε = 0.1, and the EM algorithm exhibit
nearly identical performance. For this dataset, we also
compute the leading component using the NSPCA algo-
rithm of (Zass & Shashua, 2007). Note that NSPCA does
not allow for a precise control of the sparsity of its output;
an appropriate sparsity penalty β was determined via bi-
nary search for each target sparsity k. We plot the explained
variance only for those values of k for which a k-sparse
component was successfully extracted. Finally, note that
both the EM and NSPCA algorithms are randomly initial-
ized. All depicted values are the best results over multiple
random restarts.

Our theory allows us to obtain provable approximation
guarantees: based on Theorem 2 and the output of Alg. 3,
we compute a data dependent upper bound on the maxi-
mum variance, which provably lies in the shaded area. For
instance, for k = 180, the extracted component explains
at least 58% of the variance explained by the true nonneg-
ative, k-sparse PC. The quality of the bound depends on
the accuracy parameters d and ε, and the eigenvalue decay
of the empirical covariance matrix of the data. There exist

(a)

(b)

(c)

Figure 3. We plot (a) six samples from the dataset, and the six
leading orthogonal, nonnegative, k-sparse PCs for k = 40 ex-
tracted by (b) Alg. 3 (d = 3, ε = 0.1), and (c) the EM algorithm.
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Figure 4. CBCL dataset (Sung, 1996). We plot the normalized
variance explained by the approximate nonnegative, k-sparse PC
versus the sparsity k. Our theory yields a provable data dependent
approximation guarantee: the true unknown optimum provably
lies in the shaded area.

datasets on which our algorithm provably achieves 70% or
even 90% of the optimal.

Leukemia Dataset. The Leukemia dataset (Armstrong
et al., 2001) contains 72 samples, each consisting of ex-
pression values for 12582 probe sets. The dataset was used
in the evaluation of (Sigg & Buhmann, 2008). In Fig. 5,
we plot the normalized variance explained by the computed
nonnegative, k-sparse PC versus the sparsity parameter k.
For low values of k, Alg. 3 outperforms the EM algorithm
in terms of explained variance. For larger values, the two
algorithms exhibit similar performance.

The approximation guarantees accompanying our algo-
rithm allow us to upper bound the optimal performance.
For k as small as 50, which roughly amounts to 0.4% of the
features, the extracted component captures at least 44.6%
of the variance corresponding to the true nonnegative k-
sparse PC. The obtained upper bound is a significant im-
provement compared to the trivial bound given by λ1.

Low Resolution Spectrometer Dataset. The Low Reso-
lution Spectrometer (LRS) dataset, available in (Bache &
Lichman, 2013), originates from the Infra-Red Astronomy
Satellite Project. It contains 531 high quality spectra (sam-
ples) measured in 93 bands. Fig. 6 depicts the normalized
variance explained by the computed nonnegative, k-sparse
PC versus the sparsity parameter k. The empirical covari-
ance matrix of this dataset exhibits sharper decay in the
spectrum than the previous examples, yielding tighter ap-
proximation guarantees according to our theory. For in-
stance, for k = 20, the extracted nonnegative component
captures at least 86% of the maximum variance. For values
closer to k = 90, where the computed PC is nonnegative
but no longer sparse, this value climbs to nearly 93%.
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Figure 5. Leukemia dataset (Armstrong et al., 2001). We plot the
normalized variance explained by the output of Alg. 3 (d = 3, ε =
0.1) versus the sparsity k, and compare with the EM algorithm
of (Sigg & Buhmann, 2008). By our approximation guarantees,
the maximum variance provably lies in the shaded area.

8. Conclusions
We introduced a novel algorithm for nonnegative sparse
PCA, expanding the spannogram theory to nonnegative
quadratic optimization. We observe that the performance
of our algorithm often matches and sometimes outperforms
the previous state of the art (Sigg & Buhmann, 2008). Even
though the theoretical running time of Alg. 3 scales better
than EM, in practice we observed similar speed, both in
the order of a few seconds. Our approach has the benefit
of provable approximation, giving both theoretical a-priori
guarantees and data dependent bounds that can be used to
estimate the variance explained by nonnegative sparse PCs,
as shown in our experiments.
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Figure 6. LRS dataset (Bache & Lichman, 2013). We plot the
normalized explained variance versus the sparsity k. Alg. 3 (d =
3, ε = 0.1) and the EM algorithm exhibit similar performance.
The optimum value of the objective in (2) provably lies in the
shaded area, which in this case is particularly tight.
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