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1. The strongly convex case
1.1. Proof of Lemma 1

Lemma 1. Let f be p-strongly convex, and let xy11, Yix+1 and A1 be computed as per Alg. 2. Forallx € X andy € ),
and w € ), it holds for k > 0 that

flar) = f(@) + h(yrs+1) — M(y) + (Wi — w, F(wgg1))
< gell3 — 5 A% + 5o [Ak — Appa] + SLAL — Apy] (1)
+%[£k — £k+1] + <(5k, T — 1’)

By the strong convexity of f, we have
flay) = f(2) < (f'(xn), op — x) = Gllog — 23 )
As before, using §;, = f'(z1) — gx; but this time we split the f’(zy) term differently:

(f'(zk), 2k — ) = (gks Th1 — ) + (Ok, Tk — ) + (Gky Tk — Thp1)- (3)

Now for the first part, we just follow the derivation of (Ouyang et al., 2013), before it comes to the critical difference,
namely inequality (9). However, for the reader’s convenience we include all the details below.

From the optimality condition of Line 2, it follows that
(gk + BAT (Azjs1 + Byr — b) — A" Xp + . (whgr — @), @ — 2pg1) >0, Vo€ X,
Rearranging this inequality, we obtain
(gres w1 — ) < (BAT(Azpir + By, = b) — AT, & — @) + - (Thgn — T & — Tppa),
so that a rearrangement similar to (20) yields

(gk, Toy1 — ) < (BAT (Azpqr + Byp — b) — AT M, @ — 2pp1)

5t [l = 2l 1o = w3 = s = wl]
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Combining this inequality with (2) and (3) we then obtain

f(wk) — f(&) < (BAT(Azpy1 + Byr —b) — AT Ay, & — 2p41)

+ g [l = 2ll3 = 2 = 213 = lonsn — zull3) + Oy 2k — @) + {gry Tk — Tpg1) — §llzn — 2[5
As before, adding and subtracting By allows us to rewrite the AL term as

(BAT (Azpir + Byr —b) = AT, @ — xp41) = (AT N + BAT By — yi41), @ — Trep1),

which upon manipulations similar to those followed for (22) lead to

(BA" B(yk — yrs1), © — zpy1) = B(Az — Azgyr, Byp — Byrsa)

= 5 [(I 4z + By, = blI3 — | A2 + Byx+1 = bl13) + (I Awisr + Byesr = b5 — | Azirs + Byy, = b]13)]

< 5 (Il Az + Byx — b5 — | Az + Bygy1 — blj3) + %HAkH — Xell3.

Thus, we obtain the following inequality

f@)+ (AT XNy, 21 — )

flawn) =
< oo [l = ail3 = llz = 2 13 = llwpr — i3]

4)
+ (O, i — ) + {9k, Tk — Tiy1) — &k — 2|3
+ 2 (IlAz + Byx — blf3 — || Az + Bykt1 — blI3) + 55 1Aks1 — Axll3-
To enable cancellation of ||z — 21413, we bound (g, T — +1) using Young’s inequality
(gres @1 = rr1) < Bllgrll3 + - lon — zrra |3 o)
The y terms can be bounded akin to (29) and (30) to obtain
h(yrs1) — h(y) < (Wrs1 — v, BT A1), ©
M1 = A Azipn + By = b) = 55 [IA = Akll3 = 1A = M l13 = [ Mea = All3] -
Adding inequalities (4)—(6) we obtain the overall bound (with Ay, Ay, and L, redefined with )
f@r) = F(@) + hyresr) — h(y) + (Wi — w, Flwggr)) < B [lgell3 — 5% o
+ ﬁ[Ak Ak-i—l] [.A Ak+1] %[ﬁk — [,/H_ﬂ + <5k, Tp — Jj>

1.2. Proof of theorem 2

Theorem 2. Let f be u-strongly convex. Let ny, =
by (23). Let x*, y* be the optimal; then for k > 1,

E[f(Zr) — f(2") + h(gk) — h(y") + pl| ATk + By — blJ2]
2G> B 5 20>

S kD Tk DY T Bk 1)

N(k%Q)’ let x y;, \j be generated by Alg. 2, and Ty, Yy, i computed

Up to (7), our analysis has paralleled the one in (Ouyang et al., 2013). But now come two crucial differences: (i) instead
of using uniform averages of past iterates we use weighted averages; and instead of stepsizes 1, = 1/(uk) we use n =
2/(u(k + 1)). This change is key to making our complexity bound optimal, though under slightly stronger assumptions
on ||B(yx — y*)|l2 and || Ax — A*||2 than (Ouyang et al., 2013) (namely, boundedness at each iteration k, rather than just at
k = 0). But this added assumption is the price one has to often pay for acceleration algorithm (Chambolle & Pock, 2011;
Goldfarb et al., 2012).

Recall the definitions
k—1

—_ . k: .
T = ﬁ Z 0 (j + 1)%‘; = k(k+1) Z Jyg; k = ﬁ Zj:y])\j' ®)

j=
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With definitions (8), as for inequality (41), we obtain
f(@r) = f(@) + h(ge) — h(y) + (0 — w, F(dp))
k—1

< e 20+ D) - +k<k+l>2_1 (y3) = h(y) + (w; = w, F(uy))]

(€))

= 5o DU T DI () = f(@) + hlyje1) = h(y) + (wj1 — w, F(wji1))]-
=0

To this weighted inequality, now apply inequality (7). This yields

f(@y) = f(2) + h(gr) = h(y) + (0 — w, F(wy))
k-1

< i D0 D[ % lokl3 - §Ak+ 5 1A) — Al + §14; - Ajpi] (10)
=0

+ 25L5 = Ljpa] + (85, x5 — 15}}

Let us bound (10) by considering contributions from the different terms one by one.

k—1 . k—1

2 : BG+1) B
=0 S A — Al < 5 E :4,0 Aj
k-1

ZJ 0 ;;;1[5 J+1 = Qﬂzj 0 j-

(an

The A terms require slightly more work. We use 7; = meE=] +2) for 5 > 0. Thus, we have

k—1

> U (1A - Al - 5a,) =D
k—1

=L[10—-2A1) +2(A1 —3A2) + -+ k((k —1)Aj_1 — (K + 1)Ay)]
=400 — k(k+1)Ag] <0.

G+1) (M(J;ﬂ) A — %AJ— _ M(J:‘?) Aj+1)

Using (11) and (12) in (10), and taking expectations we obtain
E[f(Zr) — f(@) + h(Gk) — h(y) + (@ — w, F(wy))]
llgxll3] | 8
_k(k+1)2]0< i‘ + A+ ;C)

where as before E[(d;, ; — x)] = 0. Using our assumption E[||gx||3] < G?, and following the same arguments as in (42)

we finally obtain

E[f(zk) — f(2*) + h(yk) — h(y") + pl|AZ + Byx — b|2]
22 g, 2 (13)

= pwk+1) +2(k+1)Dy+ﬂ(k+1)'

2. The smooth case

We begin with a classic result. Let f be a differentiable function with an L-Lipschitz continuous gradient. Then,

f) < f@)+(Vf(x), y—z)+ Sy — 3. (14)



Towards optimal stochastic ADMM

2.1. Proof of Lemma 3

Lemma 3. Lef x41,Yk+1, 2k+1 be generated by Alg. 3. Forx € X,y € Y and w € Q, and with n, = (L + ak)’l the
following bound holds for all k > 0:

f(@rs1) + Ok[h(Yrt1) — h(Y)] + Ok (Wi 1 — w, Fwgi1))

< (L =) f(xn) + (@) + 35 (A = Appr] + 5o 101115 + 0k, 25 — @) + F35 [Ap — Apra] + 35 [Cr — Liga].

In (14) set y <= x+1 and z + pg; then Line 6 of Alg. 3 yields

f(@es1) < flow) + (VF0r)s Trr — pr) + Sllarsr — pell3 (15)
= f(pr) + (Vf(pr), (1 —)ak + vezrrr — pi) + 5wk — pell3.

Lines 3 and 6 show that 251 — pr, = Vi (2k+1 — 2k)- Writing f(pr) = (1 — v&) f (px) + v f (px) in (15) we obtain
f@r) < (=) [f(pr) +(Vf(pr), Tk — D))
+ 7kl (k) + (V£ (Pr), 2rt1 — Pi) + 225 [[2kr1 — 2ll3)-

Since f is convex, (1 — i) [f (pr) + (Vf(pr), xr — pr)] < (1 — k) f (k). Let us now bound the terms in the second line
of (16). Denoting the error in the gradient by 5, := V f(px) — g (recall from Line 4 that E[gx] = V f(px)), we obtain

(16)

(Vf(pr), ze+1 — pr) = (Vf(pr), & = pr) + {9k, 241 — @) + (O, 2011 — T).- (17)
To tackle the second term, notice that 2z is computed via Line 5, and thus satisfies the optimality condition
(gk + AT(BOk(Azpt1 + Byp — b) — 0u i) + vemy ' (2ks1 — 21), @ — 2p41) >0, Vo € X.
Rearranging this inequality we bound the (g, 211 — «) term as
(grs 2es1 — o) < BOL(AT (Azjy1 + By, —b) — 0 AT M\, 2 — 2301) + %<Z}C+1 — Zky & — Zk41)- (18)
To enable telescoping, we apply the following identity
(a=b,c—a) =3 (le=bll3 — [l —all3 — [la - blI3) , (19)
to the last term in (18). The leads us to replace (18) by

(grs 2i1 — @) < O (BAT (Azpia + Byp —b) — AT, @ = 2zip1) + 22 [l — 2213 = 12— 24113 = ll2ws1 — 2ell3] -
(20)

Now we work on the first term on the rhs of (20). Add and subtract By, from it and use Line 8 to obtain
Ox(BAT (Az g1 + Byy — b) = AN, @ — 20) = Ok (= AT X1 + BAT By — yps1))s © = zk41). (21

Combining equations (21) and (17) with inequality (20), and plugging into the second part of inequality (16) we obtain

For) + (Vf(pr), 21 — pi) + 225 21 — 2ll3
< F(or) +(VF(r)s = pr) + Ok, 2641 — 2) + 52 [Ap = Apgr — |21 — 23] + Bz — 2ll3 (22)
+ k(= AT N1 + BATB(yy — Y1), © — 2141),

where we wrote Ay, := ||z — 2|3 to simplify notation.

Let us further simplify (22) by first bounding a part of the AL term; following (Ouyang et al., 2013) we have
0k (BAT B(yk — yr11), © — 2i41) = O3(Ax — Aziy1, By — Byi1)
= 52 [(Il1Az + Byx — b]l3 — [[ Az + Byii1 — b]13) + (| Azr41 + Bygs1 = bll5 — | Azis1 + Byx — b]3)]
< 2 (|| Az + Byi — b]3 — | Az + Byrsr — bl3) + 85 [ M — Aell3, (23)
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where the last inequality follows by discarding the negative term and using Line 8

Next we use the stepsize 7, = 1/(L + «y,) to rewrite the last term on the second line of (22) as

o [Ak = Appr = [z — 23] + B2 || 241 — 2113 24
— Bk |2y — 2]l + 2 [Ag — Agga],

It remains to bound the stochastic error (dx, z;4+1 — ); here we use Young’s inequality to write

Ok, Zk+1 — ) = (Ok, Zht1 — 2k) + (Oks 2k — )

< 2~/kak 16513 + 255

241 — 2kll3 + (6, 25 — w).

(25
Adding equation (24) and inequality (25), after cancellation we obtain the inequality
o [Ay — A1c+1 — llzksr — zll3) + 25l 2ksr — 213 + (O 2011 — ) 26)
Frear 10kl3 4 Ok, 26 — ) + 52 [Ag — Apy1]
Using (26) and (23) in inequality (22) and noting that f(px) + (Vf(pr), * — px) < f(z) yields
flor) +{Vf(p ) 21 — o)+ 35 zern — 2l
< f(@) + giar 10k113 + Bk, 20 — @) + 32 [Ak = D] + Ok (21 — @, AT Aigr) (27)
+ 235 (|| Az + Byy, — blf5 — || Az + Byk+1 bl13) + 3511 Ak+1 — Axll3.
Multiplying (27) by ~y; and plugging it back into (16), we therefore obtain the inequality
Flarn) < (U= ) f(en) + 9 f (@) + 5o 10kll5 + 9 Gk, 26 — 2) + 21,’; [Ag = Aga] 08)
+ w00 { 5 (1 Az + By — b3 — |4z + Byy1 — bl13) + 10 — Ml + (st — 2, ATNesn) .

Now let us obtain a bound on the y terms. From convexity of h(y), we have h(yxr1) < h(y)
Therefore, upon using Lines 7 and 8 it follows that

+ (W (Yk1)s Yrs1 — ¥)-

h(yrs1) = h(y) < Ok(ybtr — v, B Ak (29)
Line 6 also yields

(M1 — A, Azpg1 + Bygs1 — b) = 5

55 I = Aell3 = A = Mo l3 = (1M = Axll3] -

(30)
Recall that w? := [z;y; ] and [F(w)]? := [-ATX\; =BT \; Az + By — b]. Thus, combining (28)—(30) we obtain
f@re1) + wlh(yes1) = b)) + YOk (Wit — w, Fwis1))
< (=) f(zg) + o f(w) + 2ak\\5k||2+7k<5k, Zk — >+%[Ak*Ak+l] (1)
+ BB [ Ay — Ajiq] + 7'52'“ (L — Lit1] -
2.2. Proof of key bound: Lemma 4
Lemma 4. Using the notation of Lemma 3, for (1 — ’yk+1)/’y,3+1 < 1/~3, inequality (31) yields
k
S (nen) = f@) + 30 5 (i) = h)] + 5 [(wjen — w, Flwj41))] )
k k k
< =5ER +§Zj:1"4ﬂ+2ﬁzj:1£]+zj 17& ,<5Jazj T).
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Proof. The proof below builds on the nice analysis of (Tseng, 2008), adapted to our stochastic setting. We start by
subtracting f () from both sides of (31) and dividing by v7. This yields

Slf(@rrr) = @)+ 5 Alyer1) = h)] + 2 (w1 — w, Fwgia))]

2
k

< S f () = F@) + gz I00l3 + 5 Ok, 20 — @) + g [Ak — g (33)
53: [Ar = Apia] + 555 [k — £/c+1]-
Since v, = ki it follows that 1731“ % Assuming f(xgy1) > f(x) we then obtain
S f@r) = f@)] € S lf (2ran) — F(2)] (34)

Further assuming that f(z) > f(x) (for all k), inequality (34) allows us to unroll (32) to obtain the bound

SR fon) ~ F@)+ 3 L () — (o) + 2
<

_ k
> 1A/12“/1 [f(xl)_f(x)]+2= {2a 72”6 ||2 P <5j, Z']_x>+ﬁ[A]_A]+l]} (35)
k .
* ijl {2% [Aj = Aja] + Qﬁzyj [£; - Ej—s—ﬂ} .
But ; = 1, so the first term disappears. Combining (33) with the recursive relation (35) we then obtain!
@) = F@I 4D 3 ) = b)) + 5 Lwy = w, Fwj))]

< Z AT 103+ 205, 25 —2) + 7185 — Mgl + 52 14 — Apa] + 55125 — Lyl

(w1 —w, F(wji1))]

J

k

(36)

Let us bound the different parts now. First, consider the part with A; — A ;. From our assumption, we have A; =

llzj — z||3 < R? forall z; € X. Setting n); = +1 we get

k

k
LA A A A (1 1 Ltor p2
Zj:l (277.7’ [AJ A3+1]> < 2m +Zj:2 2 (77.7’ ?71—1) =73 R

?f—’i < 1for j > 2, we obtain
=

k
< 80,4 BA; (6, <8
Z j=1 277 [“A ‘AJJFl —= 2;11 +Z] 9 2 <% ’Yy 1) — Z

where we set 61 = y; = 1 for simplicity. The same manipulation yields

kg,
Zj:l 25J’Yj [ﬁj J+1 - 25 ZJ 1

Putting these bounds back into (36) we obtain the lemma. O]

Similarly processing the A; = A4; — A;; terms, and using 0 < :—J —

2.3. Proof of Theorem 5

Recall that we define the averaged solution vectors

k k _ k
T 1= Tpt1, Yk = E g ViYL Bk E g V%L A = E i1 ViAj. (37)

Theorem 5. Let Ty, Zk, yir, and A\ be as defined in (37). Then, for 0, = 1, for k > 0,

— * — * = — 2 IBD2 2 QL ,2 k
FEIF (@) = F(@7) + hGe) = h(y") + ol Az + By — blla) < HE + 552 + S5 + 245 4023 0

2o "
=1 ;%

!The key to realizing this is to notice that we set up a recursion cx417x+1 < cxrr + 0. Unroll this; and then later as per (33) use
dirrt1 < ciri + 05 and apply the recursive bound to ¢y to obtain (36).
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Proof. Multiplying both sides of (32) by 72, invoking the assumption ||d;]|3 < o2, and taking expectations, we obtain

Elf(zri1) = f(2)] + Z i1 2 Bly) = h(y) + (wjs = w, Fwj))]

k k
L+a
< 2K { L2 1 83 A+ Y L+ 3 Sl L0, 2 - o)

Now invoke independence of d; and zj, and unbiasedness of the stochastic gradients to conclude E[(Jy, z — x)] = 0. But

(38)

to proceed from (38) to the final result, some work is needed. Recall the weighted averages (37). Set v; = % as
the weights for g (note that Zlf: v; = 1). With this definition, using convexity of h we have
h(gk) — h(y) < k+1)(k+2) Z (J+ D[r(y;+1) — ] <k Z (A (yj+1) — h(y)]. (39
Since F' is skew-symmetric and monotone and the duality gap is always nonnegative, using (; = 2726, /v;, we obtain
k
<’lI)k — w, F(w)> = Zj*l <U}J+1 —w, F < Z] 1 ’YJ w]+1 w, F(wj+1)). (40)
Combining the above results, we obtain the inequality
f(@k) + h(yr) = f(z) = hly) + (@r —w, F(w))
(41)

< fl@r) — f(z) + Zj L 7’” (W+1) = h(y) + (W)t —w, F(w;41))].

Before we can translate (41) to obtain the theorem, we need to control the dual variable \. For that, we fol-
low (Ouyang et al., 2013) and note that key inequality (38) holds for A € R", so it also holds within the norm-ball
B = {\ | ||All2 < p}. This ball allows us to then find the worst case value that the left-hand-side of (41) may attain at
optimal z = z* and y = y*. Since Az* + By* = b (feasibility), it then follows that

ilelg{f(a’?k) + (k) — f(2) = hy) + (@r — w, F(w))}

= §telg{f (Z) — f(@) + h(Gk) — h(y) + (A, Az* + By* —b) — (X, Az, + By, — b)} (42)

= f(@k) — f(z) + h(Gk) — My) + pllAZk + By — bll2.
Using (42) in conjunction with (41) and (38) then yields

L/ (5) — F(0)+ h5) ~ ) + A5+ B~ bla) < o2 |5 12 4 00 (By 4 565) + 30 Ao 1os18].
Using z = z*, y = y*, 2* = 2%, and \; € B, we see that

Aj = || 42" + By; = bll3 = [|B(y; =y )3 < D3, E[max L] <29
With these bounds we obtain

E[f(2x) — f(2*) + k(@) — hly") + pll Az + By — blla] < 1R L2 + BE D3 4 22 4 TRl 252 Z

17047

Now set o = ¢~ o(j + 1)3/2 (for a tunable constant ¢) and y; = 2/(j + 1) we finally obtain

_ % _ 2 28D?2 o(e c
E[f(zx) — f(2") + h(@k) — h(y") + pll Az + Bk — bllo] < 2555 + 2028 + 588 + 2252, @3)
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