
Online Stochastic Optimization under Correlated Bandit Feedback

A. Proof of Thm. 1
In this section we report the full proof of the regret bound of HCT-iid.

We begin by introducing some additional notation, required for the analysis of both algorithms. We denote the indicator
function of an event E by IE . For all 1  h  H(t) and t > 0, we denote by Ih(t) the set of all nodes created by the
algorithm at depth h up to time t and by I+

h (t) the subset of Ih(t) including only the internal nodes (i.e., nodes that are not
leaves), which corresponds to nodes at depth h which have been expanded before time t. At each time step t, we denote
by (ht, it) the node selected by the algorithm. For every (h, i) 2 T , we define the set of time steps when (h, i) has been
selected as Ch,i := {t = 1, . . . , n : (ht, it) = (h, i)}. We also define the set of times that a child of (h, i) has been selected
as Cc

h,i := Ch+1,2i�1

S Ch+1,2i. We need to introduce three important steps related to node (h, i):

• ¯th,i := maxt2Ch,i t is the last time (h, i) has been selected,

• ˜th,i := maxt2Cc
h,i

t is the last time when any of the two children of (h, i) has been selected,

• th,i := min{t : Th,i(t) > ⌧h(t)} is the step when (h, i) is expanded.

The choice of ⌧h. The threshold on the the number of pulls needed before expanding a node at depth h is determined so
that, at each time t, the two confidence terms in the definition of U (Eq. 2) are roughly equivalent, that is

⌫
1

⇢h = c

s
log(1/˜�(t+))

⌧h(t)
=) ⌧h(t) =

c2 log(1/˜�(t+))

⌫2
1

⇢�2h.

Furthermore, since t  t+  2t then

c2

⌫2
1

⇢�2h  c2 log(1/˜�(t))

⌫2
1

⇢�2h  ⌧h(t)  c2 log(2/˜�(t))

⌫2
1

⇢�2h, (6)

where we used the fact that 0 < ˜�(t)  1 for all t > 0. As described in Section 3, the idea is that the expansion of a node,
which corresponds to an increase in the resolution of the approximation of f , should not be performed until the empirical
estimate bµh,i of f(xh,i) is accurate enough. Notice that the number of pulls Th,i(t) for an expanded node (h, i) does not
necessarily coincide with ⌧h(t), since t might correspond to a time step when some leaves have not been pulled until ⌧h(t)
and other nodes have not been fully resampled after a refresh phase.

We begin our analysis by bounding the maximum depth of the trees constructed by HCT-iid.

Lemma 1 Given the number of samples ⌧h(t) required for the expansion of nodes at depth h in Eq. 4, the depth H(n) of
the tree Tn is bounded as

H(n)  H
max

(n) =
1

1� ⇢
log

⇣ n⌫2
1

2(c⇢)2

⌘
.

Proof. The deepest tree that can be developed by HCT-iid is a linear tree, where at each depth h only one node is expanded,
that is , |I+

h (n)| = 1 and |Ih(n)| = 2 for all h < H(n). Thus we have
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X
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where inequality (1) follows from the fact that a node (h, i) is expanded at time th,i only when it is pulled enough, i.e.,
Th,i(th,i) � ⌧h(th,i). Since all the elements in the summation over h are positive, then we can lower-bound the sum by its
last element (h = H(n)), which is 1, and obtain

n � 2

(c⇢)2

⌫2
1

H(n)⇢�2H(n) � 2

(c⇢)2
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1
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where we used the fact that H(n) � 1. By solving the previous expression we obtain

⇢�2H(n)  n
⌫2
1

2(c⇢)2
=) H(n)  1

2

log

⇣ n⌫2
1

2(c⇢)2

⌘
/ log(1/⇢).

Finally, the statement follows using log(1/⇢) � 1� ⇢.

We now introduce a high probability event under which the mean reward for all the expanded nodes is within a confidence
interval of the empirical estimates at a fixed time t.

Lemma 3 (High-probability event). We define the set of all the possible nodes in trees of maximum depth H
max

(t) as

Lt =

[

T :Depth(T )H
max

(t)

Nodes(T ).

We introduce the event

Et =
⇢
8(h, i) 2 Lt, 8Th,i(t) = 1..t :
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���  c
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�
,

where xh,i 2 Ph,i is the arm corresponding to node (h, i). If

c = 2

r
1

1� ⇢
and ˜�(t) =

�

t
8

r
⇢

3⌫
1

,

then for any fixed t, the event Et holds with probability at least 1� �/t6.

Proof. We upper bound the probability of the complementary event as

P[Ec
t ] 
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where the first inequality is an application of a union bound and the second inequality follows from the Chernoff-Hoeffding
inequality. We upper bound the number of nodes in Lt by the largest binary tree with a maximum depth H

max

(t), i.e.,
|Lt|  2

H
max

(t)+1. Thus

P[Ec
t ]  2(

˜�(t))2c
2
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We first derive a bound on the the term 2

H
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where we used the upper bound H
max

(t) from Lemma 1 and log

2

(e) > 1. This leads to
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The choice of c and ˜�(t) as in the statement leads to
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which completes the proof.

Recalling the definition the regret from Sect. s:preliminaries, we decompose the regret of HCT-iid in two terms depending
on whether event Et holds or not (i.e., failing confidence intervals). Let the instantaneous regret be �t = f⇤ � rt, then we
rewrite the regret as

Rn =

nX

t=1

�t =

nX

t=1

�tIEt +

nX

t=1

�tIEc
t
= RE

n +REc

n . (7)

We first study the regret in the case of failing confidence intervals.

Lemma 4 (Failing confidence intervals). Given the parameters c and ˜�(t) as in Lemma 3, the regret of HCT-iid when
confidence intervals fail to hold is bounded as

REc

n  p
n,

with probability 1� �
5n2

.

Proof. We first split the time horizon n in two phases: the first phase until
p
n and the rest. Thus the regret becomes

REc

n =
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�tIEc
t
=

p
nX

t=1

�tIEc
t
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nX

t=
p
n+1

�tIEc
t
.

We trivially bound the regret of first term by
p
n. So in order to prove the result it suffices to show that event Ec

t never
happens after

p
n, which implies that the remaining term is zero with high probability. By summing up the probabilities

P[Ec
t ] from

p
n+ 1 to n and applying union bound we deduce
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 n[
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.

In words this result implies that w.p. � 1 � �/(5n2

) we can not have a failing confidence interval after time
p
n. This

combined with the trivial bound of
p
n for the first

p
n steps completes the proof.

We are now ready to prove the main theorem, which only requires to study the regret term under events {Et}.

Theorem 1 (Regret bound of HCT-iid). Let � 2 (0, 1), ˜�(t) = 8

p
⇢/(3⌫

1

)�/t, and c = 2

p
1/(1� ⇢). We assume that

assumptions 3–5 hold and that at each step t, the reward rt is independent of all prior random events and E(rt|xt) = f(xt).
Then the regret of HCT-iid after n steps is

Rn  3

✓
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with probability 1� �.
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Proof. Step 1: Decomposition of the regret. We start by further decomposing the regret in two terms. We rewrite the
instantaneous regret �t as

�t = f⇤ � rt = f⇤ � f(xht,it) + f(xht,it)� rt = �ht,it +
b
�t,

which leads to a regret (see Eq. 7)

RE
n =

nX

t=1

�ht,itIEt +

nX

t=1

b
�tIEt 

nX

t=1

�ht,itIEt +

nX

t=1

b
�t =

eRE
n +

bRE
n. (8)

We start bounding the second term. We notice that the sequence {b�t}nt=1

is a bounded martingale difference sequence
since E(b�t|Ft�1

) = 0 and |b�t|  1. Therefore, an immediate application of the Azuma’s inequality leads to

bRE
n =

nX

t=1

b
�t  2

p
n log(4n/�), (9)

with probability 1� �/(4n2

).

Step 2: Preliminary bound on the regret of selected nodes and their parents. We now proceed with the study of the
first term eRE

n, which refers to the regret of the selected nodes as measured by its mean-reward. We start by characterizing
which nodes are actually selected by the algorithm under event Et. Let (ht, it) be the node chosen at time t and Pt be the
path from the root to the selected node. Let (h0, i0) 2 Pt and (h00, i00) be the node which immediately follows (h0, i0) in Pt

(i.e., h00
= h0

+ 1). By definition of B and U values, we have that

Bh0,i0(t)=min

h
Uh0,i0(t);max

�
Bh0

+1,2i0�1

(t);Bh0
+1,2i0(t)

�imax

�
Bh0

+1,2i0�1

(t);Bh0
+1,2i0(t)

�
=Bh00,i00(t), (10)

where the last equality follows from the fact that the OptTraverse function selects the node with the largest B value. By
iterating the previous inequality for all the nodes in Pt until the selected node (ht, it) and its parent (hp

t , i
p
t ), we obtain that

Bh0,i0(t)  Bht,it(t)  Uht,it(t), 8(h0, i0) 2 Pt

Bh0,i0(t)  Bhp
t ,i

p
t
(t)  Uhp

t ,i
p
t
(t), 8(h0, i0) 2 Pt � (ht, it)

by definition of B-values. Thus for any node (h, i) 2 Pt}, we have that Uht,it(t) � Bh,i(t). Furthermore, since the root
node (0, 1) which covers the whole arm space X is in Pt, thus there exists at least one node (h⇤, i⇤) in the set Pt which
includes the maximizer x⇤ (i.e., x⇤ 2 Ph⇤,i⇤ ) and has the the depth h⇤  hp

t < ht.8 Thus

Uht,it(t) � Bh⇤,i⇤(t).

Uhp
t ,i

p
t
(t) � Bh⇤,i⇤(t)

(11)

Notice that in the set Pt we may have multiple nodes (h⇤, i⇤) which contain x⇤ and that for all of them we have the
following sequence of inequalities holds

f⇤ � f(xh⇤,i⇤)  `(x⇤, xh⇤,i⇤)  diam(Ph⇤,i⇤)  ⌫
1

⇢h
⇤
, (12)

where the second inequality holds since x⇤ 2 Ph⇤,i⇤ .

Now we expand the inequality in Eq. 11 on both sides using the high-probability event Et. First we have

Uht,it(t) = bµht,it(t) + ⌫
1

⇢ht
+ c

s
log(1/˜�(t+))

Tht,it(t)
 f(xht,it) + c

s
log(1/˜�(t))

Tht,it(t)
+ ⌫

1

⇢ht
+ c

s
log(1/˜�(t+))

Tht,it(t)

 f(xht,it) + ⌫
1

⇢ht
+ 2c

s
log(1/˜�(t+))

Tht,it(t)
, (13)

8Note that we never pull the root node (0, 1), therefore ht > 0.
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where the first inequality holds on E by definition of U and the second by the fact that t+ � t (and log(1/˜�(t)) 
log(1/˜�(t+))). The same result also holds for (hp

t , i
p
t ) at time t:

Uhp
t ,i

p
t
(t)  f(xhp

t ,i
p
t
) + ⌫

1

⇢h
p
t
+ 2c

s
log(1/˜�(t+))

Thp
t ,i

p
t
(t)

. (14)

We now show that for any node (h⇤, i⇤) such that x⇤ 2 Ph⇤,i⇤ , then Uh⇤,i⇤(t) is a valid upper bound on f⇤:

Uh⇤,i⇤(t) = bµh⇤,i⇤(t) + ⌫
1

⇢h + c

s
log(1/˜�(t+))

Th⇤,i⇤(t)

(1)

� bµh⇤,i⇤(t) + ⌫
1

⇢h
⇤
+ c

s
log(1/˜�(t))

Th⇤,i⇤(t)

(2)

� f(xh⇤,i⇤) + ⌫
1

⇢h
⇤ (3)

� f⇤,

where (1) follows from the fact that t+ � t, on (2) we rely on the fact that the event Et holds at time t and on (3)
we use the regularity of the function w.r.t. the maximum f⇤ from Eq. 12. If an optimal node (h⇤, i⇤) is a leaf, then
Bh⇤,i⇤(t) = Uh⇤,i⇤(t) � f⇤. In the case that (h⇤, i⇤) is not a leaf, there always exists a leaf (h+, i+) such that x⇤ 2 Ph+,i+

for which (h⇤, i⇤) is its ancestor, since all the optimal nodes with h > h⇤ are descendants of (h⇤, i⇤). Now by propagating
the bound backward from (h+, i+) to (h⇤, i⇤) through Eq. 3 (see Eq. 10) we can show that Bh⇤,i⇤(t) is still a valid upper
bound of the optimal value f⇤. Thus for any optimal node (h⇤, i⇤) at time t under the event Et we have

Bh⇤,i⇤(t) � f⇤.

Combining this with Eq. 13, Eq. 14 and Eq. 11 , we obtain that on event Et the selected node (ht, it) and its parent (hp
t , i

p
t )

at any time t is such that

�ht,it = f⇤ � f(xht,it)  ⌫
1

⇢ht
+ 2c

s
log(1/˜�(t+))

Tht,it(t)
.

�hp
t ,i

p
t
= f⇤ � f(xhp

t ,i
p
t
)  ⌫

1

⇢h
p
t
+ 2c

s
log(1/˜�(t+))

Thp
t ,i

p
t
(t)

.

(15)

Furthermore, since HCT-iid only selects nodes with Th,i(t) < ⌧h(t) the previous expression can be further simplified as

�ht,it  3c

s
log(2/˜�(t))

Tht,it(t)
, (16)

where we also used that t+  2t for any t. Although this provides a preliminary bound on the instantaneous regret of the
selected nodes, we need to further refine this bound.

In the case of parent (hp
t , i

p
t ), since Thp

t ,i
p
t
(t) � ⌧hp

t
(t), we deduce

�hp
t ,i

p
t
 ⌫

1

⇢h
p
t
+ 2c

s
log(1/˜�(t+))

⌧hp
t
(t)

= 3⌫
1

⇢h
p
t , (17)

This implies that every selected node (ht, it) has a 3⌫
1

⇢ht�1-optimal parent under the event Et.
Step 3: Bound on the cumulative regret. We first decompose eRE

n over different depths. Let 1  H  H(n) a constant
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to be chosen later, then we have

eRE
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nX
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H(n)X

h=0

X

i2Ih(n)
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| {z }
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(18)

where in (1) we rely on the definition of event Et and Eq. 16 and in (2) we rely on the fact that at any time step t when the
algorithm pulls the arm (h, i), Th,i is incremented by 1 and that by definition of ¯th,i we have that t  ¯th,i . We now bound
the two terms in the RHS of Eq. 18. We first simplify the first term as

(a) =

H(n)X

h=0

X

i2Ih(n)

q
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q
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where the inequality follows from Th,i(n)  ⌧h(n) and ¯th,i  n. We now need to provide a bound on the number of nodes
at each depth h. We first notice that since T is a binary tree, the number of nodes at depth h is at most twice the number
of nodes at depth h � 1 that have been expanded (i.e., the parent nodes), i.e., |Ih(n)|  2|I+

h�1

(n)|. We also recall the
result of Eq. 17 which guarantees that (hp

t , i
p
t ), the parent of the selected node (ht, it), is 3⌫

1

⇢ht�1 optimal, that is, HCT
never selects a node (ht, it) unless its parent is 3⌫

1

⇢ht�1 optimal. From Asm. 5 we have that the number of 3⌫
1
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nodes is bounded by the covering number N (3⌫

1

/⌫
2

", l, ") with " = ⌫
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⇢h. Thus we obtain the bound

|Ih(n)|  2|I+
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where d is the near-optimality dimension of f around x⇤. This bound combined with Eq. 19 implies that
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We now bound the second term of Eq. 18 as

(b)
(1)
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log(2/�(¯th,i))

vuuut
H(n)X

h=H+1

X

i2Ih(n)

Th,i(n)
(2)
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p
n (22)

where in (1) we make use of Cauchy-Schwarz inequality and in (2) we simply bound the total number of samples by n.
We now focus on the summation in the first square root. We recall that we denote by ˜th,i the last time when any of the two
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children of node (h, i) has been pulled. Then we have the following sequence of inequalities.
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h=H

X

i2I+

h (n)

⌧h(˜th,i) �
H(n)�1X

h=H

X

i2I+

h (n)

⇢�2hc2 log(1/˜�(˜t+h,i))

⌫2
1

� c2⇢�2H

⌫2
1

H(n)�1X

h=H

⇢2(H�h)
X

i2I+

h (n)

log(1/˜�(˜t+h,i))
(2)

� c2⇢�2H

⌫2
1

H(n)�1X

h=H

X

i2I+

h (n)

log(1/˜�(˜t+h,i))),

(23)

where in (1) we rely on the fact that, at each time step t, HCT-iid only selects a node when Th,i(t) � ⌧h,i(t) for its parent
and in (2) we used that ⇢2(H�h) � 1 for all h � H . We notice that, by definition of ˜th,i, for any internal node (h, i)
˜th,i = max(

¯th+1,2i�1

, ¯th+1,2i). We also notice that for any t
1

, t
2

> 0 we have that [max(t
1

, t
2

)]

+

= max(t+
1

, t+
2

). This
implies that

n � c2⇢�2H

⌫2
1

H(n)�1X

h=H

X

i2I+

h (n)

log(1/˜�([max(

¯th+1,2i�1

, ¯th+1,2i)]
+

))

(1)

=

c2⇢�2H

⌫2
1

H(n)�1X

h=H

X

i2I+

h (n)

max(log(1/˜�(¯t+h+1,2i�1

)), log(1/˜�(¯t+h+1,2i�1

)))

(2)

� c2⇢�2H

⌫2
1

H(n)�1X

h=H

X

i2I+

h (n)

log(1/˜�(¯t+h+1,2i�1

)) + log(1/˜�(¯t+h+1,2i))

2

(3)

=

c2⇢�2H

2⌫2
1

H(n)X

h0
=H+1

X

i2I+

h0�1

(n)

log(1/˜�(¯t+h0,2i�1

)) + log(1/˜�(¯t+h0,2i))

(4)

=

c2⇢�2H

2⌫2
1

H(n)X

h0
=H+1

X

i02Ih0 (n)

log(1/˜�(¯t+h0,i0)),

(24)

where in (1) we rely on the fact that, for any t > 0, log(1/˜�(t)) is an increasing function of t. Therefore we have that
log(1/˜�(max(t

1

, t
2

))) = max(log(1/˜�(t
1

)), log(1/˜�(t
2

))) for any t
1

, t
2

> 0 . In (2) we rely on the fact that the maximum
of some random variables is always larger than their average. We introduce a new variable h0

= h + 1 to derive (3). For
proving (4) we rely on the argument that, for any h > 0, I+

h (n) covers all the internal nodes at layer h. This implies that
the set of the children of I+

h (n) covers Ih+1

(n). This combined with fact that the inner sum in (3) is essentially taken on
the set of the children of I+

h0�1

(n) proves (4).

Inverting Eq. 24 we have
H(n)X

h=H+1

X

i2Ih(n)

log(1/˜�(¯t+h,i)) 
2⌫2

1

⇢2Hn

c2
. (25)

By plugging Eq. 25 into Eq. 22 we deduce

(b) 

vuuut
H(n)X

h=H+1

X

i2Ih

log(2/˜�(¯t+h,i))
p
n 

vuuut
H(n)X

h=H+1

X

i2Ih

2 log(1/˜�(¯t+h,i))
p
n


s

4⌫2
1

⇢2Hn

c2
p
n =

2

c
⌫
1

⇢Hn.
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This combined with Eq. 21 provides the following bound on eRn:

eRE
n  12⌫

1

"
Cc2⌫�d

2

⇢d log(2/˜�(n))

⌫2
1

(1� ⇢)
⇢�H(d+1)

+ ⇢Hn

#
.

We then choose H to minimize the previous bound. Notably we equalize the two terms in the bound by choosing

⇢H =

✓
c2C⌫�d

2

⇢d

(1� ⇢)⌫2
1

log(2/˜�(n))

n

◆ 1

d+2

,

which, once plugged into the previous regret bound, leads to

eRE
n  24⌫

1

c

✓
c2C⌫�d
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⇢d

(1� ⇢)⌫2
1

◆ 1

d+2 �
log(2/˜�(n))

� 1

d+2n
d+1

d+2 .

Using the values of ˜�(t) and c defined in Lemma 3, the previous expression becomes

eRE
n  3

✓
2

2(d+3)⌫2(d+1)

1

C⌫�d
2

⇢d

(1� ⇢)d/2+3
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✓
log

⇣
2n

�
8

r
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1

⇢

⌘◆ 1

d+2

n
d+1

d+2 .

This combined with the regret bound of Eq. 9 and the result of Lem. 4 and a union bound on all n 2 {1, 2, 3, . . . } proves
the final result with a probability at least 1� �.

B. Correlated Bandit feedback
We begin the analysis of HCT-� by proving some useful concentration inequalities for non-iid random variables under the
mixing assumptions of Sect. 2.

B.1. Concentration Inequality for non-iid Episodic Random Variables

In this section we extend the result in (Azar et al., 2013) and we derive a concentration inequality for averages of non-iid
random variables grouped in episodes. In fact, given the structure of the HCT-� algorithm, the rewards observed from an
arm x are not necessarily consecutive but they are obtained over multiple episodes. This result is of independent interest,
thus we first report it in its general form and we later apply it to HCT-�.

In HCT-�, once an arm is selected, it is pulled for a number of consecutive steps and many steps may pass before it
is selected again. As a result, the rewards observed from one arm are obtained through a series of episodes. Given a
fixed horizon n, let Kn(x) be the total number of episodes when arm x has been selected, we denote by tk(x), with
k = 1, . . . ,Kn(x), the step when k-th episode of arm x has started and by vk(x) the length of episode k. Finally,
Tn(x) =

PKn(x)
k vk(x) is the total number of samples from arm x. The objective is to study the concentration of the

empirical mean built using all the samples

bµn(x) =
1

Tn(x)

Kn(x)X

k=1

tk(x)+vk(x)X

t=tk(x)

rt(x),

towards the mean-reward f(x) of the arm. In order to simplify the notation, in the following we drop the dependency from
n and x and we use K, tk, and vk. We first introduce two quantities. For any t = 1, . . . , n and for any k = 1, . . . ,K, we
define

Mk
t (x) = E

h tk+vkX

t0=tk

rt0
��Ft

i
,
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as the expectation of the sum of rewards within episode k, conditioned on the filtration Ft up to time t (see definition in
Section 2),9 and the residual

"kt (x) = Mk
t (x)�Mk

t�1

(x).

We prove the following.

Lemma 5. For any x 2 X , k = 1, . . . ,K, and t = 1, . . . , n, "kt (x) is a bounded martingale sequence difference, i.e.,
"kt (x)  2�+ 1 and E["kt (x)|Ft�1

] = 0.

Proof. Given the definition of Mk
t (x) we have that

"kt (x) = Mk
t (x)�Mk

t�1

(x) = E
h tk+vkX

t0=tk

rt0
��Ft

i
� E

h tk+vkX

t0=tk

rt0
��Ft�1

i

=

tX

t0=tk

rt0 + E
h tk+vkX

t0=t+1

rt0
��Ft

i
�

t�1X

t0=tk

rt0 � E
h tk+vkX

t0=t

rt0
��Ft�1

i

= rt + E
h tk+vkX

t0=t+1

rt0
��Ft

i
� E

h tk+vkX

t0=t

rt0
��Ft�1

i

= rt � f(x) + E
h tk+vkX

t0=t+1

rt0
��Ft

i
� (tk + vk � t)f(x) + (tk + vk � t+ 1)f(x)� E

h tk+vkX

t0=t

rt0
��Ft�1

i

 1 + �+ �.

Since the previous inequality holds both ways, we obtain that |"kt (x)|  2�+ 1. Furthermore, we have that

E
⇥
"kt (x)|Ft�1

] = E
⇥
Mk

t (x)�Mk
t�1

(x)|Ft�1

⇤

= E

rt + E

h tk+vkX

t0=t+1

rt0
��Ft

i����Ft�1

�
� E

h tk+vkX

t0=t

rt0
��Ft�1

i
= 0.

We can now proceed to derive a high-probability concentration inequality for the average reward of each arm x.

Lemma 6. For any x 2 X pulled K(x) episodes, each of length vk(x), for a total number of T (x) samples, we have that

����
1

T (x)

K(x)X

k=1

tk+vkX

t=tk

rt � f(x)

����  (2�+ 1)

s
2 log(2/�)

T (x)
+

K(x)�

T (x)
, (26)

with probability 1� �.

Proof. We first notice that for any episode k10

tk+vkX

t=tk

rt = Mk
tk+vk

,

since Mk
tk+vk

= E
hPtk+vk

t0=tk
rt0
��Ftk+vk

i
and the filtration completely determines all the rewards. We can further develop

the previous expression using a telescopic expansion which allows us to rewrite the sum of the rewards as a sum of residuals
9Notice that the index t of the filtration can be before, within, or after the k-th episode.

10We drop the dependency of M on x.
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"kt as

tk+vkX

t=tk

rt = Mk
tk+vk

= Mk
tk+vk

�Mk
tk+vk�1

+Mk
tk+vk�1

�Mk
tk+vk�2

+Mk
tk+vk�2

+ · · ·�Mk
tk

+Mk
tk

= "ktk+vk
+ "ktk+vk�1

+ · · ·+ "ktk+1

+Mk
tk

=

tk+vkX

t=tk+1

"kt +Mk
tk
.

Thus we can proceed by bounding

����
K(x)X

k=1

⇣ tk+vkX

t=tk

rt � vkf(x)
⌘���� 

����
K(x)X

k=1

tk+vkX

t=tk+1

"kt

����+
����
K(x)X

k=1

⇣
Mk

tk
� vkf(x)

⌘����


����
K(x)X

k=1

tk+vkX

t=tk+1

"kt

����+K(x)�.

By Lem. 5 "kt is a bounded martingale sequence difference, thus we can directly apply the Azuma’s inequality and obtain
that

����
K(x)X

k=1

tk+vkX

t=tk+1

"kt

����  (2�+ 1)

p
2T (x) log(2/�).

Grouping all the terms together and dividing by T (x) leads to the statement.

B.2. Proof of Thm. 2

The notation needed in this section is the same as in Section A. We only need to restate the notation about the episodes
from previous section to HCT-�. We denote by Kh,i(n) the number of episodes for node (h, i) up to time n, by th,i(k) the
step when episode k is started, and by vh,i(k) the number of steps of episode k.

We first notice that Lemma 1 holds unchanged also for HCT-�, thus bounding the maximum depth of an HCT tree to
H(n)  H

max

(n) =

1

1�⇢ log

⇣
n⌫2

1

2(c⇢)2

⌘
. We begin the main analysis by applying the result of Lem. 6 to bound the

estimation error of bµh,i(t) at each time step t.

Lemma 2. Under assumptions 1 and 2, for any fixed node (h, i) and step t, we have that

|bµh,i(t)� f(xh,i)|  (3�+ 1)

s

2

log(5/�)

Th,i(t)
+

� log(t)

Th,i(t)
.

with probability 1� �. Furthermore, the previous expression can be conveniently restated for any 0 < "  1 as

P(|bµh,i(t)� f(xh,i)| > ✏)  5t1/3 exp

✓
� Th,i(t)"2

2(3�+ 1)

2

◆
.

Proof. As a direct consequence of Lem. 6 we have w.p. 1� �,

|bµh,i(t)� f(xh,i)|  (2�+ 1)

s
2 log(2/�)

Th,i(t)
+

Kh,i(t)�

Th,i(t)
,

where Kh,i(t) is the number of episodes in which we pull arm xh,i. At each episode in which xh,i is selected, its number
of pulls Th,i is doubled w.r.t. the previous episode, except for those episodes where the current time s becomes larger than
s+, which triggers the termination of the episode. However since s+ doubles whenever s becomes larger than s+, the total
number of times when episodes are interrupted because of s � s+ can be at maximum log

2

(t) withing a time horizon of



Online Stochastic Optimization under Correlated Bandit Feedback

t. This means that the total number of times an episode finishes without doubling Th,i(t) is bounded by log

2

(t). Thus we
have

Th,i(t) �
Kh,i(t)�log

2

(t)�1X

k=1

2

k�1 � 2

Kh,i(t)�log

2

(t)�2,

where in the second inequality we simply keep the last term of the summation. Inverting the previous inequality we obtain
that

Kh,i(t)  log

2

(4Th,i(t)) + log

2

(t),

which bounds the number of episodes w.r.t. the number of pulls and the time horizon t. Combining this result with the
high probability bound of Lem. 6, we obtain

|bµh,i(t)� f(xh,i)|  (2�+ 1)

s
2 log(2/�)

Th,i(t)
+ �

log

2

(4Th,i(t))

Th,i(t)
+ �

log(t)

Th,i(t)
,

with probability 1 � �. The statement of the Lemma is obtained by further simplifying the second term in the right hand
side with the objective of achieving a more homogeneous expression. In particular, we have that

log

2

(4Th,i(t)) = 2 log

2

(2

q
Th,i(t)) = 2(log

2

(

q
Th,i(t)) + 1)  2

q
Th,i(t),

and

|bµh,i(t)� f(xh,i)|  (2�+ 1)

s
2 log(2/�)

Th,i(t)
+

2�

p
Th,i(t)

Th,i(t)
+

� log(t)

Th,i(t)

 (3�+ 1)

s
2 log(5/�)

Th,i(t)
+

� log(t)

Th,i(t)
.

To prove the second statement we choose " := (3�+ 1)

q
2 log(5/�)
Th,i(t)

+

� log(t)
Th,i(t)

and we solve the previous expression w.r.t.
�:

� = 5 exp


�Th,i(t)("� � log(t)/Th,i(t))2

2(3�+ 1)

2

�
.

The following sequence of inequalities then follows

P(|bµh,i(t)� f(xh,i)| > ")  � = 5 exp


�Th,i(t)("� � log(t)/Th,i(t))2

2(3�+ 1)

2

�
 5 exp


�Th,i(t)("2 � 2"� log(t)/Th,i(t))

2(3�+ 1)

2

�

 5 exp


�Th,i(t)("2 � 2� log(t)/Th,i(t))

2(3�+ 1)

2

�
= 5 exp


� Th,i(t)"2

(3�+ 1)

2

+

2� log(t)

2(3�+ 1)

2

�

 5 exp


� Th,i(t)"2

(3�+ 1)

2

+

2� log(t)

12�

�
= 5 exp


� Th,i(t)"2

2(3�+ 1)

2

+ log(t1/6)

�
,

which concludes the proof.

The result of Lem. ?? facilitates the adaption of the previous results of iid case to the case of correlated rewards, since this
bound is similar to those of standard tail’s inequality such as Hoeffding and Azuma’s inequality. Based on this result we
can extend the results of previous section to the case of dependent arms.

We now introduce the high probability event Et,n under which the mean reward for all the selected nodes in the interval
[t, n] is within a confidence interval of the empirical estimates at every time step in the interval. The event Et,n is needed to
concentrate the sum of obtained rewards around the sum of their corresponding arm means. Note that unlike the previous
theorem where we could make use of a simple martingale argument to concentrate the rewards around their means, here
the rewards are not unbiased samples of the arm means. Therefore, we need a more advanced technique than the Azuma’s
inequality for concentration of measure.
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Lemma 7 (High-probability event). We define the set of all the possible nodes in trees of maximum depth H
max

(t) as

Lt =

[

T :Depth(T )H
max

(t)

Nodes(T ).

We introduce the event

⌦t =

⇢
8(h, i) 2 Lt, 8Th,i(t) = 1, . . . , t :

��bµh,i(t)� f(xh,i)
��  c

s
log(1/˜�(t))

Th,i(t)

�
,

where xh,i 2 Ph,i is the arm corresponding to node (h, i), and the event Et,n =

Tn
s=t ⌦s. If

c = 6(3�+ 1)

r
1

1� ⇢
and ˜�(t) =

�

t
9

r
⇢

4⌫
1

,

then for any fixed t, the event ⌦t holds with probability 1 � �/t7 and the joint event Et,n holds with probability at least
1� �/(6t6).

Proof. We upper bound the probability of complementary event of ⌦t after t steps

P[⌦c
t] =

X

(h,i)2Lt

tX

Th,i(t)=1

P
��bµh,i(t)� f(xh,i)

�� � c

s
log(1/˜�(t))

Th,i(t)

�


X

(h,i)2Lt

tX

Th,i(t)=1

5t1/3 exp

✓
� Th,i(t)c

2

log(1/˜�(t))

(3�+ 1)

2Th,i(t)

◆

 5 exp(�c2/(3�+ 1)

2

log(1/˜�(t)))t4/3|Lt|,
Similar to the proof of Lem. 4, we have that |Lt|  2

H
max

(t)+1. Thus

P[⌦c
t]  5(

˜�(t))(c/(3�+1))

2

t4/32Hmax

(t)+1.

We first derive a bound on the the term 2

H
max

(t) as

2

H
max

(t)  pow

 
2, log

2

✓
t⌫2

1

2(c⇢)2

◆ 1

2 log

2

(e)(1�⇢)

!

✓

t⌫2
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2(c⇢)2

◆ 1
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,

where we used the definition of the upper bound H
max

(t). which leads to

P[⌦c
t]  10t4/3

�
˜�(t)
�
(c/(3�+1))

2

✓
t⌫2

1

2(c⇢)2

◆ 1

2(1�⇢)

.

The choice of c and ˜�(t) as in the statement leads to P[⌦c
t]  �

t7 (steps are similar to Lemma 3) .

The bound on the joint event Et,n follows from a union bound as

P
⇥Ec

t,n

⇤
= P

h n[

s=t

⌦

c
s

i


nX

s=t

P(⌦c
s) 

Z 1

t

�

s7
ds =

�

6t6
.

Recalling the definition of regret from Sect. 2, we decompose the regret of HCT-iid in two terms depending on whether
event Et holds or not (i.e., failing confidence intervals). Let the instantaneous regret be �t = f⇤ � rt, then we rewrite the
regret as

Rn =

nX

t=1

�t =

nX

t=1

�tIEt +

nX

t=1

�tIEc
t
= RE

n +REc

n . (27)

We first study the regret in the case of failing confidence intervals.
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Lemma 8 (Failing confidence intervals). Given the parameters c and ˜�(t) as in Lemma 7, the regret of HCT-iid when
confidence intervals fail to hold is bounded as

REc

n  p
n,

with probability 1� �
30n2

.

Proof. The proof is the same as in Lemma 4 expect for the union bound which is applied to Et,n for t =
p
n, . . . , n.

We are now ready to prove the main theorem, which only requires to study the regret term under events {Et,n}.

Theorem 2 (Regret bound of HCT-�). Let � 2 (0, 1), ˜�(t) = 9

p
⇢/(3⌫

1

)�/t, and c = 6(3�+1)

p
1/(1� ⇢). We assume

that assumptions 1–5 hold and that rewards are generated according to the general model defined in Section 2. Then the
regret of HCT-iid after n steps is

Rn  3

✓
2

2d+7⌫2(d+1)

1

C⌫�d
2

⇢d

(1� ⇢)d+7

◆ 1

d+2

✓
log

⇣
2n

�
8

r
3⌫

1

⇢

⌘◆ 1

d+2

n
d+1

d+2

+ 2

p
n log(4n/�),

with probability 1� �.

Proof. The structure of the proof is exactly the same as in Theorem 1. Thus, here we report only the main differences in
each step.

Step 1: Decomposition of the regret. We first decompose the regret in two terms. We rewrite the instantaneous regret �t

as

�t = f⇤ � rt = f⇤ � f(xht,it) + f(xht,it)� rt = �ht,it +
b
�t,

which leads to a regret

RE
n =

nX

t=1

�ht,itIEt,n +

nX

t=1

b
�tIEt,n =

eRE
n +

bRE
n. (28)

Unlike in Theorem 1, the definition of bRE
n still requires the event IEt,n and the sequence {b�t}nt=1

is no longer a bounded
martingale difference sequence. In fact, E(b�t|Ft�1

) 6= 0 since the expected value of rt does not coincide with the mean-
reward value of the corresponding node f(xht,it). This prevents from directly using the Azuma inequality and extra care
is needed to derive a bound. We have that

bRE
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=
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where (1) follows from the definition of Et,n =

Tn
s=t ⌦s, thus if Et,n holds at time t then ⌦s also holds at s =

¯th,i � t.
Step (2) follows from the definition of bµh,i: First we notice that for the node (hn, in) we have that Thn,in(n)bµhn,in(n) =Pn

t=1

rtI
(ht,it)=(hn,in) since we update the statistics at the end. for every other node we have that the last selection time

¯th,i and the end of last episode coincides together . Now since we update the statistics of the selected node at the end of
every episode, thus, we have that Th,i(¯th,i)bµh,i(¯th,i) =

Pn
t=1

rtI
(ht,it)=(h,i) also for (h, i) 6= (hn, in). Step (3) follows

from the definition of ⌦s. The resulting bound matches the one in Eq. 18 up to constants and it can be bound similarly.

bRE
n  2⌫
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"
Cc2⌫�d

2

⇢d log(2/˜�(n))

⌫2
1

(1� ⇢)
⇢�H(d+1)

+ ⇢Hn

#
.

Step 2: Preliminary bound on the regret of selected nodes. The second step follows exactly the same steps as in the
proof of Theorem 1 with the only difference that here we use the high-probability event Et,n. As a result the following
inequalities hold for the node (ht, it) selected at time t and its parent (hp

t , i
p
t )

�ht,it  3c

s
log(2/˜�(t))

Tht,it(t)
.

�hp
t ,i

p
t
 3⌫

1

⇢ht�1.

(30)

Step 3: Bound on the cumulative regret. Unlike in the proof of Theorem 1, the total regret eRE
n should be analyzed with

extra care since here we do not update the selected arm as well as the statistics Th,i(t) and bµh,i(t) for the the entire length
of episode, whereas in Theorem 1 we update at every step. Thus the development of eRE

n slightly differs from Eq. 18. Let
1  H  H(n) a constant to be chosen later, then we have

eRE
n
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nX
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(ht,it)=(h,i)IEt,n =
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, (31)

where the first sequence of equalities in (1) simply follows from the definition of episodes. In (2) we bound the instan-
taneous regret by Eq. 30. Step (3) follows from the fact that when (h, i) is selected, its statistics, including Th,i, are not
changed until the end of the episode. Step (4) is an immediate application of Lemma 19 in (Jaksch et al., 2010).

Constants apart the terms (a) and (b) coincides with the terms defined in Eq. 18 and similar bounds can be derived.

Putting the bounds on bRE
n and eRE

n together leads to

RE
n  2(3

p
(2) + 4)⌫

1

"
Cc2⌫�d

2

⇢d log(2/˜�(n))

⌫2
1

(1� ⇢)
⇢�H(d+1)

+ ⇢Hn

#
.

It is not difficult to prove that for a suitable choice H , we obtain the final bound of O(log(n)1/(d+2)n(d+1)/(d+2)

) on Rn.
This combined with the result of Lem. 7 and a union bound on all n 2 {1, 2, 3, . . . } proves the final result.



Online Stochastic Optimization under Correlated Bandit Feedback

B.3. Proof of Thm. 3

Theorem 3 Let � 2 (0, 1), ˜�(n) = 9

p
⇢/(4⌫

1

)�/n, and c = 3(3�+ 1)

p
1/(1� ⇢). We assume that assumptions 1–5 hold

and that rewards are generated according to the general model defined in Section 2. Then if � = 1/n the space complexity
of HCT-� is

E(Nn) = O(log(n)2/(d+2)nd/(d+2)

).

Proof. We assume that the space requirement for each node (i.e., storing variables such as bµh,i, Th.i) is a unit. Let Bt

denote the event corresponding to the branching/expansion of the node (ht, it) selected at time t, then the space complexity
is Nn =

Pn
t=1

IBt . Similar to the regret analysis, we decompose Nn depending on events Et,n, that is

Nn =

nX

t=1

IBtIEt,n +

nX

t=1

IBtIEc
t,n

= N E
n +N Ec

n . (32)

Since we are targeting the expected space complexity, we take the expectation of the previous expression and the second
term can be easily bounded as

E
⇥N Ec

n

⇤
=

nX

t=1

IBtP[Ec
t,n] 

nX

t=1

P[Ec
t ] 

nX

t=1

�

6t6
 C, (33)

where the last inequality follows from Lemma 7 and C is a constant independent from n. We now focus on the first term
N E

n . We first rewrite it as the total number of nodes |Tn| generated by HCT over n steps. For any depth H > 0 we have

N E
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A bound on term (d) can be recovered through the following sequence of inequalities
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(35)

where (1) follows from the fact that nodes in I+

h (n) have been expanded at time th,i when their number of pulls Th,i(th,i) 
Th,i(n) exceeded the threshold ⌧h,i(th,i). Step (2) follows from Eq. 6, while (3) from the definition of c > 1. Finally, step
(4) follows from the fact that the number of nodes at depth h cannot be larger than twice the parent nodes at depth h � 1.
By inverting the previous inequality, we obtain

(d)  2⌫2
1

n⇢2H .

On other hand, in order to bound (c), we need to use the same the high-probability events Et,n and similar passages as in
Eq. 20, which leads to |Ih(n)|  2|I+

h�1

(n)|  2C(⌫
2

⇢(h�1)

)

�d. Plugging these results back in Eq. 34 leads to
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with high probability. Together with N Ec

n we obtain
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�d
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1
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where H
max

(n) is the upper bound on the depth of the tree in Lemma 1. Optimizing H in the remaining terms leads to the
statement.



Online Stochastic Optimization under Correlated Bandit Feedback

C. Numerical Results
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Figure 3. The garland function.

While our primary contribution is the technical analysis just presented, we also give some preliminary simulation results
to demonstrate some of HCT’s properties.

For our first experiment, we focus on minimizing the regret across repeated function evaluations of the garland function
f(x) = x(1� x)(4�p| sin(60x)|) (see Figure 3 in the supplementary material) relative to repeatedly selecting its global
optima x⇤. Pulling an arm x produces a reward of f(x) + ", where " is drawn randomly from the interval [0, 1]. These
rewards are independent and identically distributed given the selected arm x. We select this function due to its several
interesting properties. First, it contains many local optima. Second, around its global optima x⇤, it is locally smooth:
in particular it behaves as f⇤ � c|x � x⇤|↵, for c = 2 and ↵ = 1/2. And third, it is also possible to show that the
near-optimality dimension d of f equals 0.

In this first example we compare HCT-iid to the truncated hierarchical optimistic optimization (T-HOO) algorithm (Bubeck
et al., 2011a). T-HOO is a state-of-the-art approach for stochastic online optimization, and was developed as a
computationally-efficient approach for optimizing a nonlinear function with iid-noisy observations. We evaluate the per-
formances of each algorithm in terms of the per-step regret, eRn = Rn/n. Each run is n = 10

5 steps and we average the
performance on 10 runs. For both HCT and T-HOO we introduce a tuning parameter used to multiply the upper bounds,
and vary this constant per algorithm to maximize the empirical reward.

In Figure 6 we show the per-step regret, the runtime, and the space requirements of each approach. As predicted by the
theoretical bounds, the per-step regret eRn of both HCT-iid and truncated HOO decrease rapidly with number of steps.
Though the big O theoretical bounds are identical for both approaches, empirically we observe in this example that HCT-
iid outperforms T-HOO by a large margin. Similarly, though the computational complexity of both approaches matches in
the dependence on the number of time steps, empirically we observe that our approach outperforms T-HOO (Figure ??).
Perhaps the most significant expected advantage of HCT-iid over T-HOO for iid settings is in the space requirements. HCT-
iid has a space requirement for this domain that scales logarithmically with the time step n, as predicted by Theorem 3
(since the near-optimality dimension d = 0). In contrast, a brief analysis of T-HOO suggests that its space requirements
can grow polynomially, and indeed in this domain we observe such a polynomial grow in memory usage. These patterns
mean that HCT-iid can achieve a very small regret using a decision tree which contains only few hundred nodes, whereas
truncated HOO requires to build a much larger tree with orders of magnitude more nodes than HCT-iid.

We next consider a simulation for the correlated setting. To do so we create a continuous-state-action Markov decision
problem out of the previously described Garland function. There is now a current state of the environment s. Upon taking
continuous-valued action x, the state of the environment changes deterministically to st+1

= (1 � �)st + �x, where we
set � = 0.2. The agent receives a stochastic reward for being in state s, which is (the Garland function) f(s) + ", where as
before " is drawn randomly fro [0, 1]. The initial state s

0

is also drawn randomly from [0, 1]. A priori, the agent does not
know the transition or reward function, making this a reinforcement learning problem. Though not a standard benchmark
RL instance, this problem has multiple local optima and therefore is a interesting case for policy search. In this setting
we again our HCT-� algorithm to a PoWER, a standard powerful RL policy search algorithm (Kober & Peters, 2011).
PoWER uses an Expectation Maximization approach to optimize the policy parameters and is therefore not guaranteed to
find the global optima. We also compare our algorithm with T-HOO, though this algorithm is specifically designed for iid
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setting and one may expect that it may fail to converge to global optima under correlated bandit feedback. As in the iid
domain, we include tuning parameters for the upper bounds of the stochastic optimization approaches, and for the window
for computing the weighted average in the PoWER method, and optimize over these parameters to maximize performance.

Figure 6 shows per-step regret of the 3 approaches in the MDP. Only HCT-� succeeds in finding the globally optimal policy,
as is evident because only in the case of HCT-� does the average regret tends to converge to zero (which is as predicted
from Theorem 2). The PoWER method finds worse solutions than both stochastic optimization approaches for the same
amount of computational time, likely due to using EM which is known to be susceptible to local optima. It’s primary
advantage is that it has a very small memory requirement. Overall this suggests the benefit of our proposed approach to be
used for online MDP policy search, since it quickly (as a function of samples and runtime) can find a global optima, and
is, to our knowledge, one of the only policy search methods guaranteed to do so.

D. Application of HCT to Policy Search in Markov Decision Problems
As we discussed in Sect. 1, HCT may be used for optimization in problems where there exists a strong correlation among
the rewards, arm pulls and contexts, at different time steps. An important problem for which HCT may be used, is the
problem of policy search in infinite-horizon Markov decision processes.A Markov decision process (MDP) M is defined
as a tuple hS,A, P i where S is the set of states, A is the set of actions, P : S⇥A ! M(S⇥ [0, 1]) is the transition kernel
mapping each state-action pair to a distribution over states and rewards. A policy ⇡ : S ! A is a mapping from states
to actions. Policy search algorithms (Scherrer & Geist, 2013; Azar et al., 2013; Kober & Peters, 2011) aim at finding the
best policy in a policy set with the goal of optimizing some long-term performance measure such as the time average of
rewards. Formally, a policy search algorithm operates on the kernel class G corresponding to the class of probability kernels
mapping the state space S to the space of probability measures on A.These methods often assume that every g 2 G can be
represented by a set of parameters ✓ 2 ⇥, where ⇥ is a measurable set. Formally, this assumption corresponds to the fact
that there exists a policy kernel ⇡✓ 2 G mapping the space of states S to the set of actions A for any given ✓ 2 ⇥ and vice
versa. The learner selects the action u 2 A according to the probability distribution ⇡✓(·|s) given its current state s 2 S and
the policy parameter ✓ 2 ⇥. Any policy ⇡✓ 2 G induces a state-reward transition kernel T : M(X )⇥⇥ ! M(X ⇥ [0, 1]).
T relates to the state-reward-action transition kernel P and the policy kernel ⇡✓ as follows

T (s0, r|s, ✓) :=
Z

u2A
P (s0, r|s, u)⇡✓(u|s)du,

for all s, s0 2 S , r 2 [0, 1] and ✓ 2 ⇥. For any ⇡✓ 2 G and the initial state s
0

2 S, the time-average reward µ⇡
✓ (s0, n)

obtained over n steps for a given parameter ✓ is defined as

µ⇡✓
(s

0

, n) := E
h
1

n

nX

t=1

rt
i
,

where r
1

, r
2

, . . . , rn is the sequence of rewards observed by running the policy ⇡(·|·; ✓) from time t = 0 to t = n � 1

staring at s
0

. The random process (µ⇡✓
(s

0

, n))n converges to a fixed point, which is independent of initial state s
0

, under
the assumption that the Markov reward process induced by the policy ⇡ 2 G is ergodic:

µ(✓) := lim

n!1
µ⇡✓

(s
0

, n),

where ✓ 2 ⇥ is the set of parameters which represents the policy ⇡✓ 2 G. The goal is to find the best ✓⇤ 2 ⇥ which
maximizes µ(✓), that is, ✓⇤ 2 {argmax✓2⇥

µ(✓)}. The corresponding best policy is denoted by ⇡⇤
⇥

. 11

This setting is a special case of the general scenario considered in Sect. 2. The adaptation of notation and assumptions
from Sect. 2 to cover the MDP notation is rather straightforward: the parameter space ✓ 2 ⇥ corresponds to the space of
arms X , since in the policy search we want to explore the parameter space ⇥ to learn the best parameter ✓⇤. Also the state
space S in MDP setting is the special from of context space of Sect. 2 where here the contexts evolve according to some
controlled Markov process. Further the transition kernel T , which at each time step t determines the distribution on the
current state and reward given the last state and ✓ is again a special case of of the more general (Qt)t which may depend
on the entire history of prior observations. Likewise µ(✓), µ⇤

⇥

and ✓⇤ translate into f(✓), f⇤ and x⇤, respectively, using
11We note that ⇡⇤

⇥

may be considered optimal only w.r.t. the policies in the policy class G. In general the optimal policy of the MDP,
⇡⇤, can be different from ⇡⇤

⇥

, since G may not include ⇡⇤.
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the notation of Sect. 2. The Asm. 1 and 2 in Sect. 2 are also the general version of the standard ergodicity and mixing
assumption in MDPs, in which the notion of filtration in assumptions of Sect. 2 is simply replaced by the the initial state
s
0

2 S .

Based on this adaptation one can simply use HCT-� algorithm to find the best policy ⇡⇤
⇥

2 G. The advantage of HCT-�
algorithm to prior works in policy search literature is that, to the best of our knowledge, it is the first policy search algorithm
which provides finite sample guarantees in the form of regret bounds on the performance loss of policy search in MDPs, as
has been proved in Thm.2. This result guarantees that HCT-� poses a small sub-linear regret w.r.t. ⇡⇤

⇥

along the way. Also
it is not difficult to prove that the policy induced by HCT-� has a small simple regret, that is, its average reward converges
to µ(✓⇤) with a polynomial rate.12

In the context of MDPs, another work somehow related to HCT-� is the UCCRL algorithm by Ortner & Ryabko (2012),
which extends the original UCRL algorithm (Jaksch et al., 2010) to continuous state spaces. Although a direct comparison
between the two methods is not possible, it is interesting to notice that the assumptions used in UCCRL are stronger than
for HCT-�, since they require both the dynamics and the reward function to be globally Lipschitz. Furthermore, UCCRL
requires the action space to be finite, while HCT-� can deal with any continuous policy space. Finally, while HCT-� is
guaranteed to minimize the regret against the best policy in the policy class G, UCCRL targets the performance of the
actual optimal policy of the MDP at hand.

12The reader is referred to Bubeck et al. (2011a); Munos (2013) for details of transforming bounds on accumulated regret to simple
regret bounds.


