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Abstract
Probabilistic latent-variable models are a power-
ful tool for modelling structured data. However,
traditional expectation-maximization methods of
learning such models are both computationally
expensive and prone to local-minima. In contrast
to these traditional methods, recently developed
learning algorithms based upon the method of
moments are both computationally efficient and
provide strong statistical guarantees. In this work
we provide a unified presentation and empiri-
cal comparison of three general moment-based
methods in the context of modelling stochastic
languages. By rephrasing these methods upon
a common theoretical ground, introducing novel
theoretical results where necessary, we provide
a clear comparison, making explicit the statisti-
cal assumptions upon which each method relies.
With this theoretical grounding, we then provide
an in-depth empirical analysis of the methods on
both real and synthetic data with the goal of elu-
cidating performance trends and highlighting im-
portant implementation details.

1. Introduction
Probabilistic models with latent variables are a powerful
and flexible tool for modelling complex probability dis-
tributions over structured data. Unfortunately, this power
comes at a price: learning and predicting with latent vari-
able models is typically a computationally expensive task,
to the point where obtaining exact solutions can become
intractable. Designing efficient, scalable, and accurate ap-
proximation algorithms for these tasks is an important chal-
lenge that needs to be solved if we want to use these models
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for solving large-scale real world problems.

A classic solution to the problem of learning latent vari-
able models under the maximum likelihood criterion is
the expectation–maximization (EM) algorithm (Dempster
et al., 1977). However, this algorithm suffers from two fun-
damental limitations: there is a high computational cost on
large state spaces, and no statistical guarantees about the
accuracy of the solutions obtained are available. A way
to overcome the limitations of EM is by considering re-
laxed versions of the maximum likelihood principle (Varin,
2008).

A recent alternative line of work consists of designing
learning algorithms for latent variable models exploiting an
entirely different statistical principle: the so-called method
of moments (Pearson, 1894). The key idea underlying this
principle is that, since the low order moments of a distri-
bution are typically easy to estimate, by writing a set of
equations that relate the moments with the parameters of
the distribution and solving these equations using estimated
moments, one can obtain approximations to the parame-
ters of the target distribution. In some cases solving these
equations only involves spectral decompositions of matri-
ces or tensors and basic linear algebra operations (Anand-
kumar et al., 2012d;b). Since moment estimation can be
performed in time linear in the number of examples, and
the required algebraic operations involve dimensions inde-
pendent of the number of training examples, this approach
can provide extremely fast learning algorithms. In addition,
statistical analyses show that these algorithms are robust to
noise and can learn models satisfying some basic assump-
tions from samples of size polynomial in the relevant pa-
rameters (see Hsu et al., 2009; Anandkumar et al., 2012d;
Balle & Mohri, 2012; Hsu & Kakade, 2013, and references
therein).

A witness of the generality of the method of moments is the
wide and ever-growing class of models that can be learned

1These authors contributed equally to this work.
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with this approach. These include multiple probabilistic
models over sequences, such as HMM (Hsu et al., 2009;
Anandkumar et al., 2012d;b), weighted automata (Bailly
et al., 2009; Balle et al., 2012), predictive states repre-
sentations (Boots et al., 2011; Hamilton et al., 2013), and
variants thereof (Siddiqi et al., 2010; Balle et al., 2011;
Stratos et al., 2013; Bailly et al., 2013b). Building on
top of these sequential models, algorithms for learning
context-free formalisms used in natural language process-
ing have been proposed (Bailly et al., 2010; 2013a; Cohen
et al., 2012; 2013; Luque et al., 2012; Dhillon et al., 2012).
Other classes of latent variable models known to be learn-
able using this approach include: multiple classes of tree-
structured graphical models (Parikh et al., 2011; Song et al.,
2013); mixture, admixture, and topic models (Anandkumar
et al., 2012c;a;b;d; Chaganty & Liang, 2013); and commu-
nity detection models (Anandkumar et al., 2013). Further-
more, the method can be extended using features functions
(Boots et al., 2011; Recasens & Quattoni, 2013) and ker-
nelized to deal with continuous observation spaces (Song
et al., 2010; Boots et al., 2013).

Despite the expectations and promises raised by this new
class of methods, their use is far from widespread in applied
domains. In particular, few works in this area report empir-
ical results, and in most cases these address only fairly re-
stricted tasks. Therefore, it is unclear at this point whether
methods of moments can provide truly competitive learn-
ing algorithms for wide ranges of problems and match the
expectations set forward by their theoretical appeal. One
explanation for this is that most of the papers describing
the fundamentals of these methods provide very little or no
implementation details – a notable exception being (Cohen
et al., 2013). In addition, although competitive results have
been obtained using methods of moments in NLP (Cohen
et al., 2013; Balle et al., 2013) and robotics (Boots et al.,
2011), naive implementations tend to perform much worse
than expected, and significant amounts of tuning and opti-
mization are needed to obtain fast and accurate algorithms.

The goal of this paper is to present a unified review of
three different methods of moments in the context of learn-
ing hidden Markov models (HMM) and other probabilistic
models over sequences. We consider the SVD-based al-
gorithm from (Hsu et al., 2009), the convex optimization
approach described in (Balle et al., 2012), and the symmet-
ric tensor decomposition framework of (Anandkumar et al.,
2012b). We choose these three methods because they are
the easiest to present in our context, and in addition, almost
every other algorithm based on the method of moments
uses (variations of) these as a subroutine. Our compari-
son touches upon several aspects of these algorithms that
we believe have been neglected in previous works. First, by
giving a unified presentation we are able to stress the some-
times subtle differences between the three methods and dis-

cuss in which settings is each of them statistically consis-
tent. And using this unified theoretical framework we pro-
vide a novel algebraic proof of consistency for one of the
three methods (symmetric tensor decomposition). Then we
present empirical experiments with synthetic and real data
comparing between these algorithms and EM. By present-
ing results using two different accuracy metrics (word er-
ror rate and perplexity), our experiments unveil some inter-
esting subtleties about the different methods. Finally, we
provide a thorough description of implementation details
required to make each method scalable and accurate.2

2. Stochastic Languages and Automata
2.1. Notation

We use bold letters to denote vectors v ∈ Rd, matrices
M ∈ Rd1×d2 , and third order tensors T ∈ Rd1×d2×d3 .
Given a matrix M we write ‖M‖F for its Frobenius norm
and ‖M‖∗ for its trace/nuclear norm. We use M+ to de-
note the Moore–Penrose pseudo-inverse of M. Sometimes
we shall give names to the columns and rows of a matrix
using ordered index sets I and J . In this case we will write
M ∈ RI×J to denote a matrix of size |I| × |J | with rows
indexed by I and columns indexed by J .

A matrix M ∈ Rd×d is symmetric if M = M>. Simi-
larly, a tensor T ∈ Rd×d×d is symmetric if for any per-
mutation ρ of the set {1, 2, 3} we have T = Tρ, where
Tρ(i1, i2, i3) = T(iρ(1), iρ(2), iρ(3)) for every i1, i2, i3 ∈
[d]. Given vectors vi ∈ Rdi for 1 ≤ i ≤ 3, we can take ten-
sor products to obtain matrices v1⊗v2 = v1v

>
2 ∈ Rd1×d2

and tensors v1 ⊗ v2 ⊗ v3 ∈ Rd1×d2×d3 . For convenience
we also write v ⊗ v ⊗ v = v⊗3, which is a third order
symmetric tensor.

Given a tensor T ∈ Rd1×d2×d3 and matrices Mi ∈ Rdi×d′i
we consider the contraction operation that produces a ten-
sor T′ = T(M1,M2,M3) ∈ Rd′1×d′2×d′3 with entries
given by T′j1j2j3 = M1i1j1M2i2j2M3i3j3T

i1i2i3 , where
we used Einstein’s summation convention.

Let Σ be a finite alphabet. We use Σ? to denote the set
of all finite strings over Σ, and we write λ for the empty
string. Given two strings u, v ∈ Σ? we write w = uv
for their concatenation, in which case we say that u is a
prefix of w, and v is a suffix of w. Given two sets of strings
P,S ⊆ Σ? we write PS for the set obtained by taking
every string of the form uv with u ∈ P and v ∈ S . When
singletons are involved, we write uS instead of {u}S. If f :
Σ? → R is a function, we use f(P) to denote

∑
u∈P f(u).

Given strings u, v ∈ Σ?, we denote by |v|u the number of
occurrences of u as a substring of v.

2Code available here:
https://github.com/ICML14MoMCompare/

https://github.com/ICML14MoMCompare/
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2.2. Latent Variable Models

A stochastic language is a probability distribution over Σ?.
More formally, it is a function f : Σ? → R such that
f(x) ≥ 0 for every x ∈ Σ? and

∑
x∈Σ? f(x) = 1. The

main learning problem we consider in this paper is to infer
a stochastic language f̂ from a sample S = (x1, . . . , xm)
of i.i.d. strings generated from some f . In order to give
a succinct representation for f̂ we use hypothesis classes
based on finite automata. In the following we present sev-
eral types of automata that are used throughout the paper.

A weighted automaton (WA) over Σ is a tuple A =
〈α0,α∞, {Aσ}σ∈Σ〉, with α0,α∞ ∈ Rn and Aσ ∈
Rn×n. The vectors α0 and α∞ are called the initial and
final weights, respectively. Matrices Aσ are transition
operators. The size n of these objects is the number of
states of A. A weighted automaton A computes a function
fA : Σ? → R as follows:

fA(x1 · · ·xt) = α>0 Ax1
· · ·Axt

α∞ = α>0 Axα∞ . (1)

A function f : Σ? → R is realized by A if fA = f . If fA
is a stochastic language, then A is a stochastic automaton.

A learning task one might consider in this setting is the
following: assuming the target stochastic language can be
realized by some WA, try to find a stochastic WA realizing
approximately the same distribution (w.r.t. some metric).
The methods given in (Hsu et al., 2009; Bailly et al., 2009)
– which we review in Section 3 – can be used to solve this
problem, provided one is content with a WA A such that
f̂ = fA approximates f but is not necessarily stochastic. It
turns out that this is an essential limitation of using WA as
a hypothesis class: in general, checking whether a WA A
is stochastic is an undecidable problem (Denis & Esposito,
2008). Thus, if one imperatively needs the hypothesis to be
a probability distribution, it is necessary to consider meth-
ods that produce a WA which is stochastic by construc-
tion (e.g., a probabilistic automaton). Alternatively one can
employ heuristics to approximate a probability distribution
with a WA which is not stochastic (see Section 4.2).

A probabilistic automaton (PA) is a WA A =
〈α0,α∞, {Aσ}〉 where the weights satisfy (1) α0 ≥ 0,
with α>0 1 = 1 and (2) α∞ ≥ 0, Aσ ≥ 0, with∑
σAσ1 + α∞ = 1. These conditions say that α0 can

be interpreted as probabilities of starting in each state and
that Aσ and α∞ define a collection of emission/transition
and stopping probabilities. It is easy to check that PA are
stochastic by construction; that is, whenA is a PA the func-
tion fA is a stochastic language. A deterministic PA (DPA)
is a PA where α0(i) = 1 for some i ∈ [n], and for every
σ ∈ Σ and every i ∈ [n] there exists a unique j ∈ [n] such
that Aσ(i, j) > 0.

A factorized weighted automaton (FWA) is a tuple A =

〈α0,α∞,T, {Oσ}σ∈Σ〉 with initial and final weights
α0,α∞ ∈ Rn, transition weights T ∈ Rn×n, and emis-
sion weights Oσ ∈ Rn×n, where the matrices Oσ are di-
agonal. One can readily transform a FWA into a WA by
taking B = 〈β0,β∞, {Bσ}〉 with β0 = α0, β∞ = α∞,
and Bσ = OσT. A hidden Markov model (HMM) is a
FWA where the weights satisfy (1) α0 ≥ 0 with α>0 1 = 1,
(2) T ≥ 0 with T1 = 1, and (3) α∞ ≥ 0, Oσ ≥ 0,
with

∑
σOσ1 + α∞ = 1. It can be easily checked

that these conditions imply that the WA obtained from a
HMM is a PA. For convenience, given a HMM we also
define the observation matrix O ∈ RΣ×n with entries
O(σ, i) = Oσ(i, i).

Note that unlike with WA, both PA and HMM readily de-
fine probability distributions. But this comes at a price:
there are stochastic WA realizing probability distributions
that cannot be realized by any PA or HMM with a fi-
nite number of states (Denis & Esposito, 2008). In terms
of representational power, both PA and HMM are equiv-
alent when the number of states is unrestricted. How-
ever, in general PA provide more compact representations:
given a PA with n states one can always obtain an HMM
with min{n2, n|Σ|} states realizing the same distribution.
Moreover, there are PA with n states such that every HMM
realizing the same distribution needs more than n states
(Dupont et al., 2005). These facts imply that different hy-
pothesis classes for learning stochastic languages impose
different limitations upon the learned representation.

Given a stochastic language f that assigns probabilities to
strings, there are two functions computing aggregate statis-
tics that one can consider: fp for probabilities of prefixes,
and f s for expected number of occurrences of substrings.
In particular, we have fp(x) = f(xΣ?) =

∑
y∈Σ? f(xy),

and f s(x) = Ey∼f [|y|x] =
∑
y,z∈Σ? f(yxz). Note

that given a sample S of size m generated from f , it
is equally easy to estimate the empirical probabilities
f̂S(x) = (1/m)

∑m
i=1 I[xi = x], as well as empirical

prefix probabilities f̂p
S(x) = (1/m)

∑m
i=1 I[xi ∈ xΣ?]

and empirical substring occurrence expectations f̂ s
S(x) =

(1/m)
∑m
i=1 |xi|x. It is shown in (Balle et al., 2013) that

when f is realized by a WA, PA, or HMM, then so are fp

and f s. This result provides an explicit conversion that pre-
serves the number of states and that can be easily reversed.
Therefore, in terms of learning algorithms, one can work
with any of these three representations indistinctively.

2.3. Learning Latent Variable Models with EM

EM is an iterative algorithm for locally maximizing
the non-convex log-likelihood function (Dempster et al.,
1977). It alternates between two types of steps: an expec-
tation (E) step, where the expected distribution of the hid-
den variables are computed, and a maximization (M) step,
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where the parameters of the model are updated by max-
imizing the joint likelihood of the observed data and the
expected hidden variables’ distributions. To avoid getting
stuck in local maxima, restarts and other heuristics are usu-
ally necessary (Hulden, 2012). In practice, given enough
time to explore the space of parameters these heuristics
yield very competitive models (e.g., Verwer et al., 2012).

3. Learning Algorithms Based on the Method
of Moments

The key idea behind method of moments algorithms is to
derive equations relating the parameters of some stochastic
automaton realizing the target distribution to statistics of
the distribution. Then, using estimations of these statistics
computed from observed data, one can solve these equa-
tions for the parameters of a hypothesis model. In the case
of rational stochastic languages, these equations involve
mostly linear algebra operations that can be solved using
several methods. In this section we describe three algo-
rithms for solving these equations. Our selection is repre-
sentative of the possible approaches to the method of mo-
ments, all of which involve either singular value decompo-
sitions, convex optimization, or symmetric tensor decom-
positions. For ease of presentation, we assume that we have
access to the target stochastic language f , which can be
used to compute the probability f(x) of any string x ∈ Σ?.
Very few modifications are needed when the algorithms are
applied to empirical estimates f̂S computed from a sam-
ple S. We give detailed descriptions of these modifications
wherever they are needed.

3.1. Singular Value Decomposition Method

A key step underlying the method of moments algorithms
for learning stochastic languages is the arrangement of a
finite set of values of f into a matrices or tensors in a
way such that spectral factorizations of these linear ob-
jects reveal information about the operators of a WA, PA,
or HMM realizing f . As a simple example, consider
f = fA for some WA A = 〈α0,α∞, {Aσ}〉 with n
states. Given two sets of strings P,S ⊂ Σ? which we
call prefixes and suffixes, consider the matrix H ∈ RP×S
with entries given by H(u, v) = f(uv). This is the Han-
kel matrix3 of f on prefixes P and suffixes S. Writing
f(u, v) = (α>0 Au)(Avα∞) we see that this Hankel ma-
trix can be written as H = PS, where P ∈ RP×n with
the uth row equal to α>0 Au, and S ∈ Rn×S with vth col-
umn equal to Avα∞. Then it is easy to see that the Hankel
matrix Hσ ∈ RP×S with entries Hσ(u, v) = f(uσv) for

3In real analysis a matrix M is Hankel if M(i, j) = M(k, l)
whenever i+j = k+l, which implies that M is symmetric. In our
case we have H(u, v) = H(w, z) whenever uv = wz, but H is
not symmetric because string concatenation is not commutative.

some σ ∈ Σ can be written as Hσ = PAσS. Thus, a way
to recover the operators Aσ of A is to obtain a factoriza-
tion H = PS and use it to solve for Aσ in the expression
of Hσ . In practice H is factorized via a singular value de-
composition, hence the name spectral method.

We now proceed to give the details of the algorithm, which
is based on (Hsu et al., 2009; Bailly et al., 2009). The al-
gorithm computes a minimal WA that approximates f but
which, in general, is not stochastic. As input, the method
requires sets of prefixes and suffixes P,S ⊂ Σ?, and the
number of states n of the target automaton.

The algorithm starts by computing the Hankel matrices
H,Hσ ∈ RP×S for each σ ∈ Σ. It also computes vec-
tors hλ,S ∈ RS with hλ,S(v) = f(v) and hP,λ ∈ RP with
hP,λ(u) = f(u). Next, it computes the reduced SVD4 de-
composition H = UDV> with U ∈ RP×n, V ∈ RS×n
and diagonal D ∈ Rn×n. The algorithm then returns
a WA A = 〈α0,α∞, {Aσ}〉 given by α>0 = h>λ,SV,
α∞ = D−1U>hP,λ, and Aσ = D−1U>HσV.

3.2. Convex Optimization Method

This method recovers the operators of a WA by solving
an optimization problem involving the sum of a Frobenius
norm loss and a trace norm regularizer. As with the SVD
method, the learned WA is not stochastic by construction.
To motivate the algorithm, recall from the previous sec-
tion that if f is computed by a WA with n states, then
a Hankel matrix of f admits a factorization of the form
H = PS, P ∈ RP×n, S ∈ Rn×S . Now suppose that
P has rank n. Then, taking Bσ = PAσP

+ ∈ RP×P
we have BσH = Hσ and rank(Bσ) ≤ n. Since the WA
given by B = 〈β0,β∞, {Bσ}〉 with β>0 = α>0 P

+ and
β∞ = Pα∞ satisfies fA = fB , this motivates an algo-
rithm that looks for a low-rank solution of MH = Hσ .

An algorithm based on this principle is described in (Balle
et al., 2012). As input, the method requires sets of prefixes
P and suffixes S with λ ∈ P ∩ S , and a regularization
parameter τ > 0. The number of states of the WA produced
by this algorithm is equal to the number of prefixes |P|.

The algorithm starts by computing two Hankel matrices
H ∈ RP×S and HΣ ∈ RPΣ×S , where H is defined like
before, and HΣ(uσ, v) = f(uσv). Note that because we
have λ ∈ P ∩ S , now the vectors hP,λ and hλ,S are con-
tained inside of H. The operators of the hypothesis are
obtained by solving the optimization problem

AΣ ∈ argmin
M∈RPΣ×P

‖MH−HΣ‖2F + τ‖M‖∗ , (2)

and then taking the submatrices Aσ ∈ RP×P given by

4When using an approximation Ĥ, the algorithm computes
the n-truncated SVD instead.
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Aσ(u, u′) = AΣ(uσ, u′). The output automaton is ob-
tained by taking A = 〈α0,α∞, {Aσ}〉, with the operators
recovered from AΣ, α0 = eλ the indicator vector corre-
sponding to the empty prefix, and α∞ = hP,λ.

3.3. Symmetric Tensor Decomposition Method

The tensor decomposition method can be applied when the
target distribution is generated by a HMM. The idea behind
this approach is to observe that when f can be realized by
a FWA, then the factorization of the Hankel matrix associ-
ated with a symbol σ ∈ Σ becomes Hσ = POσTS. Since
P, S, and T appear in the decomposition for all σ, and Oσ

is diagonal, this implies that under some assumptions on
the ranks of these matrices, all the Hσ admit a joint diago-
nalization. Stacking these matrices together yields a Han-
kel tensor HP,Σ,S ∈ RP×Σ×S with a particular structure
that can be exploited to recover first O, and then the tran-
sition matrix T and the weight vectors α0 and α∞. The
algorithm we describe in this section implements this idea
by following the symmetrization and whitening approach
of (Anandkumar et al., 2012b). Our presentation is a vari-
ant of their method, which extends the method to work with
arbitrary sets of prefixes P and suffixes S , and also is able
to recover the set of stopping probabilities. We present a
consistency analysis of this variant in the Supplementary
Material.

Again, the method needs as input sets of prefixes P and
suffixes S with λ ∈ P ∩ S, and the number of states
n of the target HMM, which must satisfy n ≤ |Σ|.
The algorithm proceeds in four stages. In its first stage,
the algorithm computes a set of Hankel matrices and
tensors. In particular, a third order tensor HP,Σ,S ∈
RP×Σ×S with entries HP,Σ,S(u, σ, v) = f(uσv), a Han-
kel matrix HP,S ∈ RP×S with entries HP,S(u, v) =
f(uv), and a Hankel matrix Hp

P,Σ ∈ RP×Σ with en-
tries Hp

P,Σ(u, σ) = f(uσΣ?). Integrating over the dif-
ferent dimensions of the tensor HP,Σ,S , the algorithm ob-
tains three more matrices: H̄Σ,S ∈ RΣ×S with entries
H̄Σ,S(σ, v) =

∑
u f(uσv), H̄P,S ∈ RP×S with entries

H̄P,S(u, v) =
∑
σ f(uσv), and H̄P,Σ ∈ RP×Σ with en-

tries H̄P,Σ(u, σ) =
∑
v f(uσv).

The goal of the second stage is to obtain an orthogonal
decomposition of a tensor derived from HP,Σ,S as fol-
lows. Assuming H̄P,S has rank at least n, the algorithm
first finds matrices QP ∈ Rn×P and QS ∈ Rn×S such
that H̃P,S = QPH̄P,SQ

>
S is invertible, and then com-

putes N = Q>S H̃
−1
P,SQP ∈ RS×P . Combining these, a

matrix XΣ ∈ RΣ×Σ and a tensor YΣ ∈ RΣ×Σ×Σ are
obtained as follows: XΣ = H̄Σ,SNH̄P,Σ, and YΣ =
HP,Σ,S(N>H̄>Σ,S , I,NH̄P,Σ). One can show that both

XΣ and YΣ are symmetric.5 Then, assuming XΣ is pos-
itive definite of rank at least n, we can find W ∈ RΣ×n

such that W>XΣW = I. This is used to whiten the ten-
sor YΣ by taking ZΣ = YΣ(W,W,W) ∈ Rn×n×n.
Next we compute the robust orthogonal eigendecomposi-
tion ZΣ =

∑
i∈[n] γiz

⊗3
i using a power method for ten-

sors similar to that used to compute eigendecompositions
of matrices (Anandkumar et al., 2012b). Using these robust
eigenpairs (γi, zi) we build a matrix Õ ∈ RΣ×n whose ith
column is γi(W>)+zi. After a normalization operation,
this will be the observation matrix of the output model.

The third stage recovers the rest of parameters (up to nor-
malization) via a series of matrix manipulations. Let ÕP =
H̄P,Σ(Õ>)+ ∈ RP×n and Õ>S = Õ+H̄Σ,S ∈ Rn×S . We
start by taking α̃>0 = e>λ ÕP and α̃∞ = Õ>S eλ: respec-
tively, the rows of ÕP and ÕS corresponding to λ. Simi-
larly, the algorithm computes T̃ = Õ+

PH̄P,SH
+
P,SÕP ∈

Rn×n.

In the last stage the model parameters are normalized
as follows. Let D̃γ = diag(γ2

1 , . . . , γ
2
n) ∈ Rn×n and

D̃S = Õ>Hp
P,Σ

+
ÕP ∈ Rn×n. To obtain α∞ we

first compute β = D̃ST̃
+D̃γα̃∞ ∈ Rn and then let

α∞(i) = β(i)/(1 + β(i)). The initial weights are ob-
tained as α>0 = α̃>0 D̃

+
ΣD̃

+
S , where D̃Σ = I − diag(α∞).

Finally, we let O = ÕD̃Σ and T = D̃ST̃D̃+
S D̃

+
Σ . When

working with empirical approximations these matrices are
not guaranteed to satisfy the requirements in the definition
of a HMM. In this case, a last step is necessary to enforce
the constraints by projecting the parameters into the sim-
plex (Duchi et al., 2008).

One important benefit of the symmetric tensor decomposi-
tion approach is that, since it returns proper HMM param-
eters, it can be used to initialize other optimization algo-
rithms (e.g., maximum likelihood methods such as EM).

3.4. Statistical Guarantees

Under some natural assumptions, these three methods are
known to be consistent. Assuming the Hankel matrices and
tensors are computed from a WA with n states, the SVD
and convex optimization methods are consistent whenever
H has rank n (Hsu et al., 2009; Balle et al., 2012). To guar-
antee the consistency of the tensor decomposition method
we require that f can be realized by some HMM with
n ≤ |Σ| states and H̄P,S has rank n (see (Anandkumar
et al., 2012b) and the proof in the Supplementary Mate-
rial). We note that in most cases, whether these conditions
are satisfied or not may depend on our choice of P and S.

5When working with approximate Hankel matrices and ten-
sors this is not necessarily true. Thus one needs to consider the
symmetrized versions (XΣ + X>

Σ)/2 and
∑
ρY

ρ
Σ/6, where the

sum is taken over all the permutations ρ of {1, 2, 3}.
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Finite sample bounds can also be obtained for some of
these methods, which show that the error of method of mo-
ments typically decreases at a parametric rate Op(m−1/2).
Moreover, explicit dependencies on several task-related pa-
rameters can be obtained with these types of analyses. In
the case of stochastic languages, one obtains bounds that
depend polynomially on the number of states n, the al-
phabet size |Σ|, the dimensions of the Hankel matrices√
|P||S|, and the nth singular value of H (see Hsu et al.,

2009; Anandkumar et al., 2012b; Hsu & Kakade, 2013;
Balle, 2013, for explicit bounds and further pointers) .

4. Empirical Comparison
We compare the empirical performance of the methods de-
scribed above using two contrasting performance metrics
on synthetic data and a real-world natural language pro-
cessing (NLP) task. The goal of this analysis is to elucidate
the performance and implementation tradeoffs between the
different moment-based methods, while comparing them to
a state-of-the-art EM baseline.

4.1. Methods Compared

The following methods are compared: Spec-Str, the spec-
tral method (3.1) applied to empirical estimates f̂S ; Spec-
Sub, the spectral method (3.1) applied to empirical esti-
mates f̂ s

S ; CO, the convex optimization method (3.2) ap-
plied to empirical estimates f̂ s

S and using the alternating
direction method of multipliers (ADMM) (Boyd et al.,
2011) optimization algorithm; Tensor, the symmetric ten-
sor decomposition method using the tensor-power method
(Anandkumar et al., 2012b) (3.3) applied to empirical esti-
mates f̂S ; EM, an optimized implementation6 of the Baum-
Welch algorithm (Dempster et al., 1977); EM-Tensor, the
EM method initialized with the solution from the tensor
method.

Versions of the spectral method using both string (f̂S) and
substring (f̂ s

S) estimates are included in order to demon-
strate a basic tradeoff: using f̂ s

S maximizes the amount of
information extracted from training data but leads to dense
Hankel matrices while using f̂S leads to sparse Hankel ma-
trix estimates. The CO method uses f̂ s

S as its complex-
ity scales with the size of the Hankel matrix and the op-
timization routines do not preserve sparsity. The tensor
method uses f̂S , as our implementation relies on exploit-
ing the sparsity of the Hankel estimates.

Table 1 summarizes important characteristic and imple-
mentation details for the different moment-based methods.7

6The Treba EM library (Hulden, 2012) was used.
7The (subjective) implementation difficulty simply highlights

significant disparities. Code lengths do not include libraries.
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Figure 1. Runtimes (log scale) for initializing and building mod-
els of size 10, 20, and 30 on a synthetic 12-symbol domain.

4.2. Performance Metrics

We examine two contrasting performance metrics: one
based upon perplexity and the other on word-error-rate
(WER). We define the perplexity of a modelM on a test set
T as: Per(M) = 2−

∑
x∈T p∗(x) log(pM(x)), where p∗(x) is

the true probability of the string (estimated as its empiri-
cal frequency in the test set if necessary) and pM(x) is the
probability assigned to the string by the model. For the
spectral methods and the CO method, the models are not
guaranteed to return true probabilities, so thresholding to
(0,1] is employed (see Cohen et al., 2013, for a discussion
of other possible heuristics). In contrast, the WER met-
ric measures the fraction of incorrectly predicted symbols
when, for each prefix of strings in the test set, the most
likely next symbol is predicted.

4.3. Hyper-parameter optimization

To ensure a fair comparison, the only hyper-optimization
performed for each domain was a search for the best model-
size, or in the case of CO, a search for τ . The search-
schedule was fixed across all domains but was not uni-
form across all methods. In particular, (1) EM is orders-
of-magnitude slower than the other methods (see Figure
1), necessitating a more coarse-grained search, and (2) for
tensor decomposition the space of model-sizes is upper-
bounded by |Σ|, restricting the search. Further details can
be found in the Supplementary Material.

4.4. Synthetic Experiments

We tested the algorithms on 12 synthetic problems taken
from the set of problems used in the PAutomaC competi-
tion (Verwer et al., 2012). These domains were selected to
represent a diverse sampling of possible target stochastic
languages. The different classes of models used to gener-
ate the datasets are HMM, PA, and DPA. We selected four
models from each of these classes, such that within each
class exactly half of the problems have the property that
n < |Σ|. Table A.1 in (Verwer et al., 2012) provides de-
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Table 1. Characterizing the different moment-based methods according to their time complexities (for n-state models) and implementa-
tion difficulty. Advanced techniques used to make the algorithms scalable and improve performance are highlighted.

Method Implementation Difficulty Advanced Techniques Time Complexity Returns
PA

Spectral
EASY
(≈ 100-200 Python lines)

• Feature-variance normalizing (Cohen et al., 2013).
• Randomized SVD (Halko et al., 2011).

O(n|Σ||P||S|) No

CO
HARD
(≈ 1000-1250 Python + C++ lines)

• ADMM (with over-relaxation and inexact proximal
operators) (Boyd et al., 2011).

• Randomized SVD.
O(|Σ||P|3) per iteration No

Tensor
MEDIUM
(≈ 750-1000 Python + C++ lines)

• Sparse LSQR (Paige & Saunders, 1982).
• Simplex projection (Duchi et al., 2008).

O((|Σ|+n)|P||S|+Rn2), whereR
is # of tensor-power iterations Yes

Table 2. Performance of difference methods on synthetic data in terms of WER. Model sizes (or the τ order) are listed in parentheses.
The WER of the true model use to generate the data is included for comparison. Note that the WER of a learned model can be lower
than that of the true model on the test data, as WER relies on scores not probability assignments.

Type ID |Σ| ≥ n Spec-Str Spec-Sub CO Tensor EM EM-Tensor True

HMM

1 7 80.3 (72) 71.3 (31) 89.8 (10−5) 86.4 (3) 75.7 (10) 78.2 (3) 68.8 (63)
14 7 70.0 (6) 70.2 (10) 85.2 (10−5) 89.4 (3) 68.6 (20) 75.5 (3) 68.4 (15)
33 3 78.7 (3) 76.7 (3) 95.3 (10−3) 83.6 (3) 74.3 (20) 76.7 (3) 74.1 (13)
45 3 80.2 (2) 80.1 (10) 90.1 (10−5) 87.9 (3) 78.1 (10) 70.1 (3) 78.1 (14)

PA

29 7 65.7 (70) 47.3 (41) 67.1 (10−3) 88.7 (3) 49.2 (40) 74.1 (3) 47.2 (36)
39 3 66.2 (32) 62.0 (30) 83.4 (10−5) 93.2 (4) 63.3 (30) 71.3 (4) 59.3 (6)
43 7 83.4 (10) 78.0 (12) 89.2 (10−5) 89.3 (3) 77.4 (40) 78.1 (3) 77.1 (67)
46 3 90.7 (20) 79.3 (20) 95.7 (10−5) 95.5 (4) 77.5 (40) 80.4 (4) 77.3 (19)

DPA

6 7 62.0 (20) 50.2 (68) 78.1 (10−5) 59.7 (5) 47.4 (40) 59.7 (5) 46.9 (19)
7 3 95.7 (10) 50.6 (20) 66.0 (10−3) 81.4 (4) 48.1 (40) 87.2 (4) 48.3 (12)

27 7 83.1 (50) 75.5 (22) 91.3 (10−4) 92.1 (7) 83.0 (10) 83.8 (7) 73.0 (19)
42 3 67.8 (40) 61.4 (16) 73.9 (10−4) 92.5 (5) 58.1 (40) 75.7 (5) 56.6 (6)

tailed descriptions of these different problems.

Table 2 summarizes the performance of the different meth-
ods in terms of WER and Table 3 the performance in terms
of perplexity.

Several conclusions can be drawn from these results. First,
we note that Spec-Sub and EM are the top performers in
terms of WER. And though EM outperforms Spec-Sub on
a majority of domains, their performance is quite close
(compared to the gap between those two and the other al-
gorithms), while Spec-Sub is 40x faster. In terms of per-
plexity EM and CO are the top-performers; EM performs
best on a majority of domains but with a large penalty in
terms of runtime. We also observe that the tensor decom-
position initialized EM method usually outperformed the
tensor method alone in terms of WER; in terms of perplex-
ity its behavior was more erratic.

Figure 1 summarizes a representative example of the run-
time costs of the algorithms, distinguishing between ini-
tialization and model-building phases. For the moment-
methods, the Hankel matrices (and their spectral decom-
positions) only need to be computed once prior to hyper-
parameter optimization. This represents a major advantage
of the moment-based methods compared to EM, where no
computation results are reused.

4.5. Natural Language Processing Problem

In addition to synthetic experiments, we compared the
methods performance on a NLP task. In this task the

methods were used to learn a model of the parts-of-speech
(POS) tags from the Penn-Treebank Corpus (Marcus et al.,
1993). There are 11 distinct POS tags in the task, so
|Σ| = 11.

Table 4 summarizes the performance of the algorithms on
the NLP data. Here, we again see that EM is the top per-
former in terms of WER with the Spec-Sub method per-
forming only slightly worse. In terms of perplexity the CO
method outperforms all the other methods by a large mar-
gin. Overall, the results on the NLP data reinforce the con-
clusions reached via the synthetic experiments.

5. Discussion
In this work we provided a unified presentation of three
methods of moments for learning probabilistic models over
stochastic languages. Beyond providing a solid and unified
foundation for cross-method comparisons, this presentation
also extended the symmetric tensor decomposition method
to work with arbitrary prefix and suffix bases.

With this foundation in place, we discussed several con-
crete instantiations of these approaches, highlighting im-
plementation techniques that are necessary for scalabil-
ity and performance, and we empirically compared these
methods, along with an EM baseline, on both synthetic
and real-world data. The synthetic experiments elucidated
several important performance trends, which we hope will
serve as aids for future research in this area and as impetus
for the adoption of moment-based methods in applied set-
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Table 3. Performance of difference methods on synthetic data in terms of perplexity. Model sizes (or the τ order) are listed in parentheses.
The perplexity of the true model use to generate the data is included for comparison.

Type ID |Σ| ≥ n Spec-Str Spec-Sub CO Tensor EM EM-Tensor True

HMM

1 7 ≈ 109 (40) 441.07 (8) 44.77 (10−5) 66.8 (3) 500.1 (30) 126.14 (3) 29.90 (63)
14 7 306.30 (1) 133.71 (30) 128.53 (10−3) 253.44 (3) 116.84 (20) 133.09 (3) 116.80 (15)
33 3 51.14 (3) 49.22 (4) 57.05 (10−5) 60.04 (3) 32.14 (10) 32.21 (3) 31.87 (13)
45 3 ≈ 106 (70) 31.87 (19) 36.6 (10−5) 40.47 (7) 107.75 (40) 62.24 (7) 24.04 (14)

PA

29 7 ≈ 105 (41) 39.32 (49) 34.57 (10−4) ≈ 1014 (3) 25.09 (40) 80.55 (3) 24.03 (36)
39 3 8170.69 (8) 42.8 (30) 11.24 (10−2) 22.42 (5) 10.43 (5) 11.34 (5) 10.00 (6)
43 7 ≈ 106 (2) 115.62 (4) 36.61 (10−2) 36.90 (3) 461.23 (40) 56.94 (3) 32.64 (67)
46 3 44.12 (2) 34.51 (26) 25.28 (10−5) 32.1 (4) 12.02 (40) 14.26 (4) 11.98 (19)

DPA

6 7 ≈ 109 (56) 95.12 (40) 104.68 (10−5) 691.28 (3) 67.32 (40) 247.07 (3) 66.96 (19)
7 3 999.83 (4) 70.24 (48) 62.74 (10−5) 664.53 (5) 51.27 (40) ≈ 1016 (5) 51.22 (12)

27 7 ≈ 106 (21) 238.48 (19) 102.85 (10−5) 212.22 (4) 94.90 (40) 71.63 (4) 42.43 (19)
42 3 ≈ 105 (12) 59.43 (31) 23.91 (10−2) 39.00 (5) 168.52 (40) 292.90 (5) 16.00 (6)

Table 4. Performance of difference methods on 11-symbol NLP dataset in terms of both WER and perplexity. Model sizes (or the τ
order) are listed in parentheses.

Metric Spec-Str Spec-Sub CO Tensor EM EM-Tensor

WER 66.6 (38) 60.43 (46) 84.7 (10−5) 85.3 (3) 59.8 (20) 62.6 (3)
Perplexity 4.03 · 1015 (70) 1.00 · 1014 (9) 4.15 · 109 (10−3) 4.99 · 1014 (7) 1.33 · 1013 (2) 2.43 · 1013 (7)

tings. The NLP experiment demonstrates that these trends
appear to carry over to noisy real-world settings.

With respect to the WER metric, the experiments demon-
strated that the Spec-Sub method produces WER results
competitive with EM with a speed-up factor of 40x. This
makes Spec-Sub an attractive candidate for applications re-
quiring low WERs, given its combination of speed, sim-
plicity, and accuracy.

With respect to model perplexity, the experiments demon-
strated that the convex relaxation of the spectral method can
produce highly accurate models. The good performance
of CO in this setting is intriguing given its relatively poor
WER performance and the fact that the algorithm is not
guaranteed to return a PA (in contrast to the tensor and EM
methods).

It is should be noted, however, that EM was the top-
performer on a majority of domains; though it is consider-
ably more expensive in terms of runtime. This is an impor-
tant finding as it demonstrates that an optimized implemen-
tation of EM with random restarts is not significantly disad-
vantaged by the issue of local-minima and that the primary
drawback of EM compared to the moment-methods is its
computational inefficiency, specially on large state spaces.

Our experiments also elucidate other interesting properties
of the methods. First, the results demonstrate that the ad-
vantage of using f̂ s

S estimates, which lead to dense Hankel
estimates and extract more information from the training
sample (compared to f̂ estimates), is quite pronounced in
the case of the spectral method. In addition, these experi-
ments highlight the unpredictable nature of initializing EM
with a moment-based solution.

Of course, for the sake of clarity of presentation and anal-
ysis, this empirical comparison did exclude certain settings
and methods. We did not examine the effect of large or
continuous alphabets, as in those cases the performance
of moment-methods are contingent upon the feature rep-
resentation or kernel embedding employed (Song et al.,
2010; Boots et al., 2013). And we did not examine differ-
ent methods of choosing prefix and suffix bases. However,
both these issues are largely orthogonal to the core learning
problem, as we expect all three moment-methods to benefit
equally from feature-representations and basis selections.

That said, our analysis offers a clear picture of the cur-
rent empirical state-of-the-art in moment-based methods
for modelling stochastic languages. This work also rises a
number of important directions and open questions for fu-
ture work. Of particular interest are problems such as: (1)
establishing theoretical justification for CO’s strong perfor-
mance on the perplexity metric; (2) relax the theoretical
constraints of tensor-based methods; and (3) developing al-
gorithms in which moment-initialized maximum likelihood
optimization is guaranteed to improve solutions.

Acknowledgments
The authors are grateful to Animashree Anandkumar,
Furong Huang, Percy Liang, and Andreu Mayo for sharing
their implementations of some of the algorithms described
in this paper. Financial support for this research was pro-
vided by the NSERC Discovery and CGS-M programs, and
the James McGill Research Fund.



Methods of Moments for Stochastic Languages

References
Anandkumar, A., Foster, D. P., Hsu, D., Kakade, S. M., and Liu,

Y. A spectral algorithm for latent Dirichlet allocation. In NIPS,
2012a.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky,
M. Tensor decompositions for learning latent variable models.
CoRR, abs/1210.7559, 2012b.

Anandkumar, A., Hsu, D., Huang, F., and Kakade, S. M. Learning
mixtures of tree graphical models. In NIPS, 2012c.

Anandkumar, A., Hsu, D., and Kakade, S. M. A method of
moments for mixture models and hidden Markov models. In
COLT, 2012d.

Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. A tensor spec-
tral approach to learning mixed membership community mod-
els. In COLT, 2013.

Bailly, R., Denis, F., and Ralaivola, L. Grammatical inference as
a principal component analysis problem. In ICML, 2009.

Bailly, R., Habrard, A., and Denis, F. A spectral approach for
probabilistic grammatical inference on trees. In ALT, 2010.

Bailly, R., Carreras, X., Luque, F., and Quattoni, A. Unsupervised
spectral learning of WCFG as low-rank matrix completion. In
EMNLP, 2013a.

Bailly, R., Carreras, X., and Quattoni, A. Unsupervised spectral
learning of finite state transducers. In NIPS, 2013b.

Balle, B. Learning Finite-State Machines: Algorithmic and
Statistical Aspects. PhD thesis, Universitat Politècnica de
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