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Abstract

Bayesian parameter estimation in coupled ordi-
nary differential equations (ODEs) is challeng-
ing due to the high computational cost of numer-
ical integration. In gradient matching a separate
data model is introduced with the property that
its gradient may be calculated easily. Parameter
estimation is then achieved by requiring consis-
tency between the gradients computed from the
data model and those specified by the ODE. We
propose a Gaussian process model that directly
links state derivative information with system ob-
servations, simplifying previous approaches and
improving estimation accuracy.

1. Introduction
Ordinary differential equations (ODEs) are continuous
time models with the interaction between variables de-
scribed by ẋ(t) = f(x(t), θ), for vector x and vector output
function f . The task is to estimate any unknown parameters
θ of the ODEs by fitting them to observed data collected at
a set of discrete observation times, t1, . . . , tT . A principled
approach to this problem is to first numerically integrate the
ODEs for a given value of θ and initial value x(0) to obtain
a vector of values X ≡ xt1 , . . . , xtT . Parameter estimation
is achieved by finding θ such that X closely matches the
observed data. However, numerical integration is computa-
tionally demanding, rendering this otherwise ideal scheme
impractical in all but the smallest systems, see for example
(Vyshemirsky & Girolami, 2008).

In gradient matching we avoid explicit numerical integra-
tion by considering an alternative model of the data, x(t) =
g(t, φ). Given this fit to the data, one can compute the
gradients of the fitted function at the observed timepoints,
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ẋ(t) = ġ(t, φ). Gradient matching estimates parameters θ
of the ODE and parameters φ of the fitted function g by
requiring that the gradients in both models are consistent
at the observed timepoints. A review of this class of ap-
proaches can be found in (Ramsay et al., 2007).

As described in (Calderhead et al., 2008), previous gra-
dient matching approaches provided only limited point-
parameter estimates or can prove numerically inconsistent.
Recently, Gaussian Processes (GPs) have been considered
as data models within the gradient matching framework
(Calderhead et al., 2008; Dondelinger et al., 2013) and for
the solution of linear operator equations (Graepel, 2003).
GPs provide a distribution over fitted functions and associ-
ated gradients. Using priors on the parameters of the GP
model and the ODE, this gives a flexible Bayesian parame-
ter estimation procedure. More concretely, in (Calderhead
et al., 2008) GP parameters φ are fitted first to the data, and
subsequently the parameters of the ODE θ are estimated.
The estimation accuracy is however limited by the lack of
feedback from ODE parameter inference to GP parameter
inference. To address this Dondelinger et al. (2013) intro-
duced bidirectional interaction between ODE and GP pa-
rameters, demonstrating improved parameter estimation.

These GP approaches have similar computational complex-
ity and can run up to two orders of magnitude faster than
numerical integration. The benefits of a Bayesian approach
to parameter estimation in ODEs are now well-established
and we propose to improve on previous approaches by in-
troducing a simpler generative model that directly links
state derivatives to system observations using a GP. This
plays a similar role to numerical integration but without the
corresponding high computational cost.

1.1. ODE System Description

We consider continuous time dynamical systems in which
the motions of K states x(t) ≡ [x1(t), x2(t), . . . , xK(t)]T

are represented by a set of K ODEs

ẋ(t) ≡ d

dt
x(t) = f(x(t), θ)



Gaussian Processes for Ordinary Differential Equations

y x

θ

x0

(a)

y xẋ
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Figure 1. (a) Numerical Integration with an initial term x0. (b) Our GP-ODE approach corresponds to a generative belief network. (c)
Calderhead et al. (2008) approach, which is based on a form of compatibility function, expressed as a chain graph. (d) The chain graph
of the Dondelinger et al. (2013) approach uses a modified compatibility function. Note that the difference between (c) and (d) is that in
(d) the links x− ẋODE and φ− x are undirected, reflecting the different normalisation requirement.

where θ is a vector of parameters of the ODE. For no-
tational convenience, we additionally define the state ma-
trix X ≡ [x(t1),x(t2), . . . ,x(tT )] and k-th state sequence
xk ≡ [xk(t1), xk(t2), . . . , xk(tT )]T . Given potentially
noisy observations of X (see below), the task is to infer
a posterior distribution over the parameters θ.

1.2. Observation Model

The T observations Y = [y(t1),y(t2), . . . ,y(tT )] are ob-
tained from the states according to independent additive
noise y(t) = x(t) + ε(t) where the noise for the k-th state,
k ∈ {1, 2, . . . ,K}, is Gaussian, εk(t) ∼ N (0, σ2

k). This
gives then an observation model

pOBS(Y|X) =
∏
t

pOBS(y(t)|x(t))

with pOBS(y(t)|x(t)) = N (x(t), σ2I).

If unknown, the parameters of the observation model (σ in
this case) form part of the parameters that need to be esti-
mated. This is achieved by placing a prior over their val-
ues and incorporating these parameters into the model in
the standard way. This step is unproblematic and, to avoid
notational clutter, we drop these observation parameters as
variables in the model descriptions below (they will how-
ever be included in the experiments).

1.3. Bayesian Numerical Integration

Given the ODE and an assumed initial value x0, we can
then (in principle) numerically integrate the system. For
example1, for K = 1, using a simple approach based
on discretising time in small intervals of δ, a numeri-

1In practice we use the Runge-Kutta method.

cal value x′ for the integrated path is given by x′n+1 =
x′n + δf(x′n, θ), with x′0 = x0. This is iterated until the
desired end time. This can be considered as a procedure
that, for a given initial value, produces (in this case a deter-
ministic) distribution p(x|x0, θ) = δ (x− x′(x0)) over the
values of the state at the observation times. Here δ (·) is
the Dirac delta function. Given then a prior on θ and the
integration constant x0, this defines a joint distribution

p(y, x, x0, θ) = pOBS(y|x)p(x|x0, θ)p(x0)p(θ)

from which samples p(θ, x0|y) can be drawn. This ideal
procedure can produce excellent results (Vyshemirsky &
Girolami, 2008); however the computational expense is
prohibitive in larger models with the bottleneck being the
explicit numerical integration that needs to be carried out
for every value of θ, x0 of interest (Calderhead et al., 2008).

2. The GP-ODE generative model
As an alternative to explicit Bayesian numerical integra-
tion, we propose the following generative model over states
X, their derivatives Ẋ, observations Y and remaining pa-
rameters using a simple belief network, fig(1b),

p(Y,X, Ẋ, φ†, θ) = p(θ)p(φ†)

× pGP (Y|Ẋ, φ†)pODE(Ẋ|X, θ)pGP (X|φ†) (1)

where φ† ≡ (x0, φ). To generate data from this model we
first sample parameters φ†, θ from their priors and then a
state X from the GP prior pGP (X|φ†). A state derivative is
subsequently obtained by sampling from pODE(Ẋ|X, θ).
Finally, given these state derivatives Ẋ, observations Y
are generated by sampling from the GP pGP (Y|Ẋ, φ†). In
this way we combine a smoothness prior assumption on the
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state X together with derivative information obtained from
the ODE in a single generative model2.

ENCODING THE ODE: pODE(Ẋ|X, θ)

The temporal evolution of the ODE is encoded in the
distribution pODE(Ẋ|X, θ). In the deterministic ODE
case (which we assume throughout) this will simply
be a delta function distribution δ(Ẋ − f(X, θ)) ≡∏
t δ (ẋ(t)− f(x(t), θ)), though Gaussian additive noise

would be straightforward to incorporate for the case of
Gaussian SDEs.

PRIOR ON LATENT STATE: pGP (X|φ†)

The GP prior assumes that each state dimension is a
priori independent pGP (X|φ†) =

∏
k pGP (xk|φ†k), with

pGP (xk|φ†k) formed from a GP with mean function3 µφk
(t)

and covariance function cφk
(t, t′).

IMPLICIT INTEGRATION: pGP (Y|Ẋ, φ†)

The term pGP (Y|Ẋ) =
∏
k pGP (yk|ẋk) (dropping param-

eter dependencies on the r.h.s for compactness of notation)

pGP (yk|ẋk) =

∫
pOBS(yk|xk)pGP (xk|ẋk)dxk

plays a key role in our model and specifies how to implicitly
integrate a given state derivative curve to arrive at a distri-
bution over observations. Since differentiation is a linear
operation, the derivative of a GP is also a GP – see for
example (Solak et al., 2002). Hence the joint distribution
pGP (yk, xk, ẋk) is Gaussian distributed. Using the prior
pGP (X|φ†) and observation model pOBS(Y|X) we obtain
the covariance functions

cov(ẋk(t), ẋk(t′)) =
∂2cφk

(t, t′)

∂t∂t′
− ∂µφk

(t)

∂t

∂µφk
(t′)

∂t′

cov(ẋk(t), xk(t′)) =
∂cφk

(t, t′)

∂t
− µφk

(t′)
∂µφk

(t)

∂t
cov(yk(t), ẋk(t′)) = cov(xk(t), ẋk(t′))

cov(yk(t), yk(t′)) = cφk
(t, t′) + σ2δ(t− t′)

2It is natural to consider forming the joint p(y, x, ẋ)
as pOBS(y|x)pODE(ẋ|x)pGP (x). However, the marginal
p(y, x) = pOBS(y|x)pGP (x) is then vacuous, containing no
contribution from the ODE. All models, including fig(1b,c,d), are
‘incorrect’ compared to the true model fig(1a); the challenge is
to combine aspects of numerical integration with the GP and ob-
servation model that achieves coherent parameter estimation with
reduced computational cost over explicit numerical integration.

3There are different ways to define p(x, x0). One approach
is to express this as pGP (x|x0)p(x0), which allows one to use
the same prior p(x0) as for the BNI model, section(1.3). In the
experiments we more simply defined a joint GP pGP (x, x0), for
each k, with mean µφk (t) equal to the mean of the observed data,
for all t. This is equivalent to defining a Gaussian prior on x0

with mean that of the observed data.

and mean functions

ȳk(t) = x̄k(t) = µφk
(t), ˙̄xk(t) = ∂µφk

(t)/∂t

Given the state derivatives, the observations are then Gaus-
sian distributed4

pGP (yk|ẋk) ∼ N (µ
y|ẋ
k ,Σ

y|ẋ
k )

where

µ
y|ẋ
k = µφk

+ Cxẋ
φk

(Cẋẋ
φk

)−1
(
ẋk − ˙̄xk

)
Σ
y|ẋ
k = Cφk

+ σ2
kI−Cxẋ

φk
(Cẋẋ

φk
)−1Cẋx

φk

Cẋẋ
φk

, Cẋx
φk

and Cxẋ
φk

are constructed using the results above
evaluated at the observation times t1, t2, . . . , tT .

2.1. Parameter Estimation

From (1), the conditional marginal distribution over obser-
vations, latent states and parameters is given by

p(Y,X|φ†, θ)

= pGP (X|φ†)
∫
pGP (Y|Ẋ, φ†)pODE(Ẋ|X, θ)dẊ

This integral can be analytically evaluated in the case of
Gaussian additive noise in the ODE. In the deterministic
case, this reduces to simply

p(Y,X|φ†, θ) = pGP (X|φ†)pGP (Y|Ẋ = f(X, θ), φ†)

The distribution over observations, latent states and param-
eters is then given by

p(Y,X, φ†, θ) = p(Y,X|φ†, θ)p(φ†)p(θ) (2)

Estimation of the parameters and latent state X can then
be carried out for example by sampling from the poste-
rior p(X, φ†, θ|Y), see section(3). Note that, in contrast
to (Calderhead et al., 2008; Dondelinger et al., 2013), the
normalisation constant of the joint distribution (2) is known
which facilitates sampling.

Previous approaches (Calderhead et al., 2008; Dondelinger
et al., 2013) used a GP to compute p(X, Ẋ|Y); parame-
ter estimation is achieved by requiring gradients from this
to match the desired gradient f(X, θ). The key difference
between this and our approach is our direct link from the
latent gradient Ẋ to the observation Y. This term can
be expressed as p(Y|Ẋ) =

∫
p(Y|X)p(X|Ẋ)dX where

p(X|Ẋ) implicitly performs numerical integration, as we
describe below. Since Ẋ, X and Y are defined only at the
measurement times, no fine time discretization is required
in our model.

4For a Gaussian defined on joint variables z = (x,y) with
p(z) = N (µz,Σz,z), the conditional is Gaussian with mean and
covariance given from the block mean and covariances, p(x|y) =
N
(
µx + Σx,yΣ

−1
y,y

(
y − µy

)
,Σx,x −Σx,yΣ

−1
y,yΣy,x

)
, see

e.g. (Barber, 2012).
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Figure 2. (a) The dotted curve is the true (but unknown) derivative curve ẋ, which is only observed every 10th timepoint, giving obser-
vation ẋM at these measurement times. From this we calculate the GP posterior pGP (x|ẋM) (assuming x0 = 0). (b) Samples from
pGP (x|ẋM). The derivative of each sample is plotted in (a). The GP constrains the samples from pGP (x|ẋM) such that their derivatives
match the observed derivatives ẋM. The model in section(2) describes the distribution only on the marginal quantities pGP (xM|ẋM)
and thus avoids working with the fine time discretization required in explicit numerical integration.

2.2. Informal Justification

To minimise notational issues, we consider a univariate
system with K = 1. Furthermore we discretize time so
that t = nδ, for integer time-index n ∈ {1, . . . , N} and
real discretization interval δ. Note that in the model in
section(2) the timepoints are defined only at the observa-
tion times; however in this section we need to notationally
distinguish between times that the data are observed and
a finer discretisation of time that could be used to carry
out numerical integration. The times at which data will
be observed are therefore described by a subset m ∈ M
of the fine time discretization; for example we measure
ym at time indices M = {1, 10, 20, . . .}. To emphasise
that the measurements only occur at a subset of all dis-
crete times, we write yM for the observed measurements.
Given a curve xn, the numerical derivative is given by
ẋn = (xn − xn−1)/δ. We assume that ẋ1 = x1 − x0,
where x0 is the constant of integration. For a vector x, the
derivative vector is then given by the difference equation
ẋ = Dx − b, where the square invertible matrix D has
zero elements, except for Dn,n−1 = −1/δ,Dn,n = 1/δ,
D1,1 = 1 and b is the zero vector except for b1 = x0. To
explain the fundamental mechanism, we fix the parameters
of the GP and observation model. The posterior over the
discretized state is

p(yM,x, ẋ) = pGP (yM|ẋ)pODE(ẋ|x)pGP (x) (3)

Writing x′ for the numerically integrated curve, we have

pGP (yM|ẋ) =

∫
pOBS(yM|x′M)pGP (x′|ẋ)dx′

Assuming that the derivative curve is obtained by differ-
encing, we can invert this relation using Bayes’ rule

pGP (x′|ẋ) ∝ δ(ẋ−Dx′ + b)pGP (x′)

Since D is invertible, the GP plays no role, to give

pGP (x′|ẋ) ∝ δ(ẋ−Dx′ + b)

Using pODE(ẋ|x) = δ(ẋ − f(x, θ)), and integrat-
ing (3) over ẋ, we obtain the joint distribution over
the observations yM and latent curve x, p(yM,x) =
p(yM|x)pGP (x), where

p(yM|x) ∝∫
pOBS(yM|x′M)δ(ẋ−Dx′ + b)δ(ẋ− f(x, θ))dx′dẋ

= pOBS(yM|x′M =
[
D−1(f(x, θ) + b))

]
M)

This can be interpreted as taking a set of gradients f(x, θ),
integrating them numerically (via the inversion D−1 which
performs summation of the components of f ) and taking
the measurement indices of this vector. The likelihood of
the observations p(yM) =

∫
p(yM|x)pGP (x)dx is equiv-

alent to the mass of GP curves x whose numerical deriva-
tives match f(x, θ) weighted by how well they fit the ob-
served data yM at the observation times M. Taking the
limit δ → 0, the above difference equation becomes the dif-
ferential equation (1.1) and the Gaussian over x becomes a
GP, with ẋ the associated GP derivative, as specified by the
model (1), see figure(2).

3. Inference in the GP-ODE model
There are a number of approaches one could take to draw
samples from the GP-ODE posterior p(X, φ†, θ|Y) and
our philosophy was to choose the simplest that provides
good results. Writing Φ = {x0, φ, σ} for all the param-
eters of the GP and observation model, we sample from
p(X, φ†, θ|Y) using a Gibbs procedure to produce a set
of samples Φi, θi,Xi. We initialize Φ0, θ0 at random and
draw X0 ∼ pGP (X|Y,Φ0). We subsequently draw sam-
ples, indexed by i = 1 : L by alternately drawing from

1. θi,Φi ∼ p(θ,Φ|Xi−1,Y)

2. Xi ∼ p(X|θi,Φi,Y)
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We present a naive approach for drawing from these condi-
tionals below5.

3.1. Parameter sampling

We draw from p(θi,Φi|Xi−1,Y) using Gibbs sampling:

1. Set θi,0 = θi−1,Φi,0 = Φi−1

2. For j = 1 : Lp

(a) Φi,j ∼ p(Φ|Xi−1, θi,j−1,Y)

(b) θi,j ∼ p(θ|Xi−1,Φi,j ,Y)

3. Set θi = θi,Lp , Φi = Φi,Lp

where these conditional distributions can be obtained from
the joint (2). Where there are multiple components of a pa-
rameter, we again use Gibbs sampling to obtain a univariate
sample of a component conditioned on the remaining com-
ponents. In the experiments we assume that the parameters
take values from known discrete sets (the priors are dis-
crete), in which case sampling from these conditionals is
particularly straightforward.

3.2. State sampling

It is natural to consider drawing samples from
p(X|θ,Φ,Y) using Metropolis-Hastings (similar to
(Dondelinger et al., 2013)) with pGP (X|Φ,Y) as the
proposal. However, in our experience, this results in
poor mixing. We therefore use Gibbs sampling in which
we draw a state from p(x(t)|X\t, θ,Φ,Y), where X\t
are the states except for x(t), drawing samples in se-
quence from times t ∈ {t1, . . . , tT }. To draw from
p(x(t)|X\t, θ,Φ,Y) we use either Metropolis-Hastings
with proposal pGP (x(t)|X\t,Φ,Y) or Gibbs sampling
for each component of the vector x(t) based on discrete
values6. After Lx sweeps through all timepoints, we obtain
the new sample Xi.

4. Relation to previous approaches
4.1. Gradient Matching

(Calderhead et al., 2008) is based on matching gradients
via what could be termed a ‘compatability’ function (for
the case K = 1 and fixed σ for notational simplicity)

ω(ẋ,x|θ, φ) ≡ pGP (ẋ|x, φ)pODE(ẋ|x, θ)

This is used to define

p(θ|x, φ) ∝ p(θ)ω′(x|θ, φ)

5More sophisticated sampling strategies could be considered.
However for the benchmark experiments, these approaches have
proved adequate.

6For the experiments, the Gibbs approach proved adequate.

using the marginal compatibility

ω′(x|θ, φ) ≡
∫
ω(ẋ,x|θ, φ)dẋ

with presumably the intention that this has high value when
the gradient distributions overlap7. The marginal compat-
ibility ω′(x|θ, φ) is analytically computed since the terms
under the integral are Gaussian. The authors modify the de-
terministic ODE by the addition of fictitious noise to give a
Gaussian distribution for pODE(ẋ|x, θ) with mean f(x, θ).
To ease comparison with our approach (the extension to the
stochastic ODE case is trivial), we take the deterministic
ODE case, for which the above reduces to

p(θ|x, φ) ∝ p(θ)pGP (ẋ = f(x, θ)|x, φ) (4)

The joint distribution over observations, latent states and
parameters is then defined as

p(y,x, θ, φ) = pOBS(y|x)p(θ|x, φ)pGP (x|φ)p(φ) (5)

Inference is then achieved by sampling, conditioned on the
observed sequence y. The unknown normalisation term of
(4) is a function of φ and thus makes direct Gibbs sam-
pling from this posterior problematic. The approach taken
in (Calderhead et al., 2008) is to first refactor the joint dis-
tribution in the form8

p(y,x, θ, φ) = p(θ|x, φ)p(x|φ,y)p(φ|y)p(y)

Conditioned on y, ancestral sampling is then performed:

φ ∼ p(φ|y)

x ∼ p(x|φ,y) ∝ pOBS(y|x)pGP (x|φ)

θ ∼ p(θ|x, φ)

Here, p(φ|y) ∝ p(φ)
∫
pOBS(y|x)pGP (x|φ)dx for which

the integral can be evaluated analytically. A disadvantage
of this model is that the posterior p(φ|y) does not take the
ODE system dynamics into consideration. Effectively, a
GP is fitted to the data first (without knowledge of the sys-
tem dynamics) and the parameters θ of the ODE are subse-
quently adjusted to best match the fitted GP.

The gradient matching approach can be defined as a graph-
ical model chain graph (see for example (Koller & Fried-
man, 2009)) distribution9 , fig(1c), with factors

pOBS(y|x)pODE(ẋODE |x, θ)pGP (ẋGP |x, φ)

× δ (ẋODE − ẋGP ) pGP (x)p(θ)p(φ)

7The mathematical motivation for this is less clear. Given dis-
tributions p and q, their ‘overlap’

∫
p(x)q(x)dx is maximal when

q(x) is a delta distribution placing all its mass on the most likely
state of p(x); this is not necessarily the same as matching q to p.

8Whilst this can be interpreted as generative model, this is un-
natural since the term p(θ|x, φ) means that the parameters of the
ODE depend on the generated state x.

9This chain graph structure is the same for the trivial extension
to the stochastic ODE case.
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The undirected link between θ and ẋODE is necessary to
ensure that the variables ẋODE , ẋGP , θ form a component
of the chain graph. Marginalising this chain distribution
over ẋGP and ẋODE gives the marginal distribution

pOBS(y|x)pGP (x|φ)p(φ)
p(θ)ω′(x|θ, φ)∫
p(θ)ω′(x|θ, φ)dθ

(6)

which matches (5). We can also write this as

pOBS(y|x)pGP (x|φ)p(φ)p(θ)mGM (x|θ, φ) (7)

where we define the gradient matching function

mGM (x|θ, φ) ≡ ω′(x|θ, φ)∫
p(θ)ω′(x|θ, φ)dθ

(8)

4.2. Adaptive Gradient Matching

Dondelinger et al. (2013) considered a modified gradient
matching approach with joint distribution

p(y,x, ẋ, θ, φ)∝pOBS(y|x)pGP (x|φ)ω(ẋ,x|θ, φ)p(θ)p(φ)

and marginal

p(y,x, θ, φ)∝pOBS(y|x)pGP (x|φ)ω′(x|θ, φ)p(θ)p(φ)

A benefit of this approach is that the marginal

p(y|φ) ∝
∫
pOBS(y|x)pGP (x|φ)

∫
ω′(x|θ, φ)p(θ)dθdx

does depend on the ODE; in contrast to (Calderhead et al.,
2008) the parameters of the GP are influenced by the ODE
(and vice versa). The marginal p(y,x, θ, φ) can also be
written in the same form as expression (7) but with the
adaptive gradient matching function

mAGM (x|θ, φ) ≡ ω′(x|θ, φ)∫
p(θ)p(φ)pGP (x|φ)ω′(x|θ, φ)dθdxdφ

The improved performance of AGM over GM (Don-
delinger et al., 2013) may be attributed to the fact that
mAGM is proportional to the marginal compatibility ω′ and
therefore always encourages matching between the GP and
the ODE, whereas mGM less strongly encourages match-
ing due to the partial cancellation of ω′ in both the numer-
ator and denominator of (8). No such issues arise in the
GP-ODE approach in which the coupling between the GP
and ODE parameters occurs through the implicit numerical
integration mechanism, as described in section(2.2), which
ensures agreement between the ODE and GP curves.

The factors in the corresponding chain graph, fig(1d), are
the same as for the gradient matching method of sec-
tion(4.1). However, all variables except y form a com-
ponent in the chain graph, giving the correct form for the
marginal distribution on p(y,x, θ, φ). As for the gradient
matching method, this has no natural interpretation as a
generative model of the data.

5. Experiments
We illustrate our framework on two benchmark systems,
Lotka-Volterra and Signal Transduction Cascade in (Don-
delinger et al., 2013). To aid comparison, wherever possi-
ble, we have chosen the same parameter settings and priors
as the original authors. Our main interest is to study the
implications of the different joint distributions specified by
the competing approaches. As such we wish to make as
similar as possible the sampling approaches for the three
competing models in order to minimize differences due to
different sampling strategies. To facilitate comparison we
therefore used the same discretized sampling strategy for
all methods. For the AGM and our GP-ODE approach we
used Gibbs sampling for a discretized set of values, analo-
gous to section(3.1) and the Gibbs scheme of section(3.2)
for state samples. The cost of drawing a single sample in
all competing approaches is similar, scaling O(KT 3). We
stopped each sampling scheme (all written in Matlab) after
a similar CPU time. Following (Dondelinger et al., 2013),
we set p(θ) to a Gamma priorGa(4, 0.5), p(φ) to a uniform
prior U(0, 100) and p(σ) to a Gamma prior Ga(1, 1). For
the sampling process, the standard deviations of the obser-
vation noise σ in both models are initialized as the ground
truth. For comparison we ran the Bayesian Numerical Inte-
gration approach using the same discretized parameter val-
ues wherever possible.

5.1. Lotka-Volterra

The Lotka-Volterra model is an ecological system that is
used to describe the periodical interaction between a prey
species [S] and a predator species [W ]:

d[S]

dt
= [S](α− β[W ]),

d[W ]

dt
= −[W ](γ − δ[S])

where θ = [α, β, γ, δ]T and x(t) = [[S], [W ]]. The ground
truth data are generated using numerical integration over
the interval [0, 2] with θ = [2, 1, 4, 1] and initial state val-
ues [S] = 5, [W ] = 3. The clean data are then sampled
with the sampling interval 0.2. Finally clean data are cor-
rupted with additive Gaussian noise N (0, 0.52I) to form
the observations Y. We chose the squared-exponential co-
variance function cφk

(t, t′) = σxk exp(−lk(t− t′)2) where
φk = [σxk , lk]. Assuming a common parameter across
observation dimensions, the parameter vector φ is simpli-
fied to [σx, l]; we initialize it as [1, 10]. The parameters
are initialized as θ = [1.5, 0.5, 3.5, 0.5]. We discretized
the ODE parameters α, β, γ, δ over [1.5, 2.5], [0.5, 1.5],
[3.5, 4.5], [0.5, 1.5] all with the interval 0.1; the param-
eter σx is discretized over the range [0.1,1] with interval
0.1; the lengthscale l is discretized over [5, 50] with inter-
val 5; the standard deviation of the noise σ was discretized
over [0.1, 1] with interval 0.1. The parameter x0 was, for
each state dimension k, discretized in the range [1, 10] us-
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Figure 3. Bayesian Inference for Lotka-Volterra. The results for prey and predator are respectively shown in the first and second row. In
all the plots, observations are red stars and the ground truth is the blue curve. Plotted in green are the reconstructions using the posterior
samples of θ. To aid comparison between the approaches we numerically integrated the ODE starting from the true initial state [5, 3] with
each curve generated by numerical integration using a parameter sample θ. The green plots are the mean and one standard deviation of
these resulting curves. First column: Bayesian Numerical Integration. This represents the solution that we wish to approximate. Second
column: Our GP-ODE method. Third column: The Adaptive Gradient Matching method. Fourth column: The Gradient Matching
method. All competing methods were run for approximately 300s of CPU time.

ing 20 uniformly spaced bins. After drawing ODE param-
eters θ from the posterior (see table(5.1)), we plot the nu-
merically integrated curves (setting x0 to the true value to
aid visual comparison), see figure(3). The ‘best’ method
is that which most closely approximates the Bayesian Nu-
merical Integration method of section(1.3). For small noise
levels (not shown), all three competing methods produce
similar results; however as the noise increases, the Adap-
tive Gradient Matching and Gradient Matching approaches
diverge markedly from the Bayesian Numerical Integration
approach, whilst the GP-ODE approach fairs well.

5.2. Signal Transduction Cascade

The Signal Transduction Cascade model is described by a
5-dimensional ODE system

d[S]

dt
= −k1[S]− k2[S][R] + k3[RS]

d[Sd]

dt
= k1[S]

d[R]

dt
= −k2[S][R] + k3[RS] +

V [Rpp]

Km+ [Rpp]

d[RS]

dt
= k2[S][R]− k3[RS]− k4[RS]

d[Rpp]

dt
= k4[RS]− V [Rpp]

Km+ [Rpp]

where θ = [k1, k2, k3, k4, V,Km] and x(t) =
[[S], [Sd], [R], [RS], [Rpp]]T . The ground truth data
are generated over the interval [0, 100] with θ =
[0.07, 0.6, 0.05, 0.3, 0.017, 0.3] and initial state [S] = 1,
[Sd] = 0, [R] = 1, [RS] = 0, [Rpp] = 0. Then the data

are sampled at t= [0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50,
60, 80, 100]. Finally the drawn samples are corrupted with
additive Gaussian noise N (0, 0.12I) to construct the noisy
observations. The non-stationarity is captured by the co-
variance function10

cφk
(t, t′)=σxk arcsin

(
ak + bktt

′√
(ak + bkt2 + 1)(ak + bkt′2 + 1)

)
where φk = [σxk , ak, bk]. The ODE parameters are ini-
tialized as θ = [0.05, 0.4, 0.03, 0.1, 0.015, 0.1]. We dis-
cretized the ODE parameters k1, k2, k3, k4, V , Km over
[0.05, 0.09], [0.4, 0.8], [0.03, 0.07], [0.1, 0.5], [0.015,
0.019], [0.1, 0.5] with the respective intervals 0.01, 0.1,
0.01, 0.1, 0.001, 0.1; the parameters σx, a, b over [0.1,0.9],
[0.5, 2.5], [0.5, 2.5] with the respective intervals 0.2, 0.5,
0.5; the standard deviations of the noise σ over [0.06, 0.14]
with the interval 0.02. The 5 components of x0 were dis-
cretized in the intervals [0.5 1.5], [-0.1 0.1], [0.5 1.5], [-0.1
0.1], [-0.1 0.1] using 50 uniformly spaced bins. All three
competing approaches were run for approximately 30mins
CPU time. All three methods produce reasonable solutions
and the reconstructions using numerical integration with
parameters θ sampled from the respective posteriors are
similar. As such we show only the ideal Bayesian Numer-
ical Integration procedure and our GP-ODE method in fig-
ure(4). In table(5.1) the GP-ODE method closely matches
the Bayesian Numerical Integration approach, with the
Gradient Matching and Adaptive Gradient Matching ap-
proaches producing broadly similar parameter estimates.

10In contrast to the Lotka Volterra model, here we use a GP
with separate hyperparameters for each state dimension due to
the different length scales in each dimension.
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Figure 4. Bayesian Numerical Integration (top row) and GP-ODE results (bottom row) for the Signal Transduction Cascade. The results
for [R], [Sd], [R], [RS], [Rpp] (from left to right). In all the plots, observations are red stars and the ground truth is the blue curve. The
green curves show reconstructions using sampled parameters θ from each posterior. Each curve is obtained by numerical integration
using the sampled parameter, starting from the same initial point x0 = [1, 0, 1, 0, 0].

PARAMETER TRUE VALUE NUM-BAYES GP-ODE AGM GM

α 2 2.2680±0.1853 2.2380±0.1953 1.9480±0.2819 1.6429±0.2488
β 1 1.2070±0.1249 1.1490±0.1910 1.1750±0.1909 0.9242±0.2256
γ 4 3.8330±0.2640 3.9590±0.3002 3.8390±0.2947 3.6449±0.2223
δ 1 0.9850±0.0857 0.9860±0.0995 1.2320±0.1638 1.1737±0.1803

k1 0.07 0.0683±0.0122 0.0747±0.0130 0.0771±0.0130 0.0762±0.0130
k2 0.6 0.6800±0.0876 0.6230±0.1246 0.5460±0.1259 0.5632±0.1256
k3 0.05 0.0548±0.0125 0.0530±0.0135 0.0593±0.0111 0.0594±0.0115
k4 0.3 0.2290±0.0498 0.2960±0.0281 0.3750±0.0999 0.3754±0.1051
V 0.017 0.0177±0.0012 0.0177±0.0014 0.0172±0.0015 0.0173±0.0014
Km 0.3 0.3860±0.0792 0.4220±0.0690 0.4090±0.0911 0.4186±0.0953

Table 1. ODE Parameter Estimation for both the Lotka Volterra (upper) and Signal Transduction Cascade (lower) ODEs. In each we
plot the mean and standard deviation of the θ parameter samples from the respective competing approaches, namely the ‘ideal’ Bayesian
Numerical Integration procedure, our GP-ODE approach, the Adaptive Gradient Matching approach (Dondelinger et al., 2013) and the
Gradient Matching approach (Calderhead et al., 2008).

6. Discussion
Bayesian parameter estimation in ODEs using numeri-
cal integration is an ideal but computationally prohibitive
method for all but the smallest systems due to the high cost
of explicit numerical integration required to evaluate a sin-
gle point in the posterior. Any other model will necessarily
make assumptions that are formally inconsistent with this
ideal approach and the aim is therefore to trade the accu-
racy of matching the ideal Bayesian numerical integration
approach for computational speed.

Whilst previous alternatives based on using Gaussian Pro-
cesses have demonstrated some success in circumventing
the high computational cost, these are not natural genera-
tive models of the data. Despite the improvements in (Don-
delinger et al., 2013), previous GP approaches use a heuris-
tic compatibility function that leads to a complex chain
graph with unknown normalisation constant.

In contrast, our method has a natural link to numerical in-
tegration and is we believe conceptually the closest match
amongst competing GP approaches to the ideal numerical
integration mechanism. Our GP-ODE approach is a simple
generative model of data and as such is amenable to alter-
native approximation techniques, other than Monte Carlo.
For example, variational approximations are in principle
possible to apply directly to the posterior.

In our experience on toy benchmark problems, our GP-
ODE approach performs at least as well as alternative GP
approaches and sometimes significantly better, particularly
in the case of observations with appreciable noise. Code is
available from github.com/odegp/code.

Acknowledgements

We would like to thank Dirk Husmeier and Benn Macdon-
ald for helpful discussions and provision of their code.

https://www.github.com/odegp/code


Gaussian Processes for Ordinary Differential Equations

References
Barber, D. Bayesian Reasoning and Machine Learning.

Cambridge University Press, 2012.

Calderhead, B., Girolami, M., and Lawrence, N. D. Accel-
erating Bayesian Inference over Nonlinear Differential
Equations with Gaussian Processes. In NIPS, 2008.

Dondelinger, F., Filippone, M., Rogers, S., and Husmeier,
D. ODE parameter inference using adaptive gradient
matching with Gaussian processes. In AISTATS, 2013.

Graepel, T. Solving noisy linear operator equations by
Gaussian processes: application to ordinary and partial
differential equations. In ICML, 2003.

Koller, D. and Friedman, N. Probabilistic Graphical Mod-
els: Principles and Technique. MIT Press, 2009.

Ramsay, J., Hooker, G., Campbell, D., and Cao, J. Parame-
ter Estimation for Differential Equations: A Generalized
Smoothing Approach. Journal of the Royal Statistical
Society: Series B, 69(5):741–796, 2007.

Solak, E., Murray-Smith, R., Leithead, W. E., Leith, D. J.,
and Rasmussen, C. E. Derivative observations in Gaus-
sian Process models of dynamic systems. In NIPS, 2002.

Vyshemirsky, V. and Girolami, M. Bayesian ranking of
biochemical system models. Bioinformatics, 24:833–
839, 2008.


