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Abstract

Markov chain Monte Carlo (MCMC) methods are often deemed far too computationally intensive
to be of any practical use for large datasets. This paper describes a methodology that aims to scale up
the Metropolis-Hastings (MH) algorithm in this context. We propose an approximate implementation
of the accept/reject step of MH that only requires evaluating the likelihood of a random subset of
the data, yet is guaranteed to coincide with the accept/reject step based on the full dataset with a
probability superior to a user-specified tolerance level. This adaptive subsampling technique is an
alternative to the recent approach developed in [15], and it allows us to establish rigorously that the
resulting approximate MH algorithm samples from a perturbed version of the target distribution of
interest, whose total variation distance to this very target is controlled explicitly. We explore the
benefits and limitations of this scheme on several examples.

1 Introduction
Consider a dataset X = {x1, ..., xn} and denote by p(x1, ..., xn|θ) the associated likelihood for param-
eter θ ∈ Θ. Henceforth we assume that the data are conditionally independent, so that p(x1, ..., xn|θ) =∏n
i=1 p(xi|θ). Given a prior p(θ), Bayesian inference relies on the posterior π(θ) ∝ p(x1, ..., xn|θ)p(θ).

In most applications, this posterior is intractable and we need to rely on Bayesian computational tools to
approximate it.

A standard approach to sample approximately from π(θ) is the Metropolis-Hastings algorithm (MH;
[19, Chapter 7.3]). MH consists in building an ergodic Markov chain of invariant distribution π(θ).
Given a proposal q(θ′|θ), the MH algorithm starts its chain at a user-defined θ0, then at iteration k+ 1 it
proposes a candidate state θ′ ∼ q(·|θk) and sets θk+1 to θ′ with probability

α(θk, θ
′) = 1 ∧ π(θ′)

π(θk)

q(θk|θ′)
q(θ′|θk)

= 1 ∧ p (θ′)

p (θk)

q(θk|θ′)
q(θ′|θk)

n∏
i=1

p(xi|θ′)
p(xi|θk)

, (1)

while θk+1 is otherwise set to θk. When the dataset is large (n � 1), evaluating the likelihood ratio
appearing in the MH acceptance ratio (1) is too costly an operation and rules out the applicability of such
a method.

The aim of this paper is to propose an approximate implementation of this “ideal” MH sampler, the
maximal approximation error being pre-specified by the user. To achieve this, we first present the “ideal”
MH sampler in a slightly non-standard way.
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In practice, the accept/reject step of the MH step is implemented by sampling a uniform random
variable u ∼ U(0,1) and accepting the candidate if and only if

u <
π(θ′)

π(θk)

q(θk|θ′)
q(θ′|θk)

. (2)

In our specific context, it follows from (2) and the independence assumption that there is acceptance of
the candidate if and only if

Λn (θk, θ
′) > ψ(u, θk, θ

′), (3)

where for θ, θ′ ∈ Θ we define the average log likelihood ratio Λn(θ, θ′) by

Λn(θ, θ′) =
1

n

n∑
i=1

log

[
p(xi|θ′)
p(xi|θ)

]
(4)

and where

ψ(u, θ, θ′) =
1

n
log

[
u
q(θ′|θ)p(θ)
q(θ|θ′)p(θ′)

]
.

The pseudocode of MH is given in Figure 1, unusually formulated using the expression (3). The ad-
vantage of this presentation is that it clearly outlines that the accept/reject step of MH requires checking
whether or not (3) holds.

MH
(
p(x|θ), p(θ), q(θ′|θ), θ0, Niter,X

)
1 for k ← 1 to Niter

2 θ ← θk−1

3 θ′ ∼ q(.|θ), u ∼ U(0,1),

4 ψ(u, θ, θ′)← 1
n log

[
u p(θ)q(θ′|θ)
p(θ′)q(θ|θ′)

]
5 Λn(θ, θ′)← 1

n

∑n
i=1 log

[
p(xi|θ′)
p(xi|θ)

]
6 if Λn(θ, θ′) > ψ(u, θ, θ′)

7 θk ← θ′ . Accept

8 else θk ← θ . Reject

9 return (θk)k=1,...,Niter

Figure 1: The pseudocode of the MH algorithm targeting the posterior π(θ) ∝ p(x1, ..., xn|θ)p(θ). The
formulation singling out Λn(θ, θ′) departs from conventions [19, Chapter 7.3] but serves the introduction
of our main algorithm MHSUBLHD in Figure 3.

So as to save computational efforts, we would like to be able to decide whether (3) holds using only
a Monte Carlo approximation of Λn(θ, θ′) based on a subset of the data. There is obviously no hope to
be able to guarantee that we will take the correct decision with probability 1 but we would like to control
the probability of taking an erroneous decision. In [15], the authors propose in a similar large datasets
context to control this error using an approximate confidence interval for the Monte Carlo estimate.
Similar ideas have actually appeared earlier in the operations research literature. In [6, 1, 24], the authors
consider maximizing a target distribution whose logarithm is given by an intractable expectation; in
the large dataset scenario this expectation is w.r.t the empirical measure of the data. They propose
to perform this maximization using simulated annealing, a non-homogeneous version of MH. This is
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implemented practically by approximating the MH ratio log π(θ′)/π(θ) through Monte Carlo and by
determining an approximate confidence interval for the resulting estimate; see also [22] for a similar
idea developed in the context of inference in large-scale factor graphs. All these approaches rely on
approximate confidence intervals so they do not allow to control rigorously the approximation error.
Moreover, the use of approximate confidence intervals can yield seriously erroneous inference results as
demonstrated in Section 4.1.

The method presented in this paper is a more robust alternative to these earlier proposals which can
be analyzed theoretically and whose properties can be better quantified. As shown in Section 2, it is
possible to devise an adaptive sampling strategy which guarantees that we take the correct decision, i.e.
whether (3) holds or not, with at worst a user-specified maximum probability of error. This sampling
strategy allows us to establish in Section 3 various quantitative convergence results for the associated
Markov kernel. In Section 4, we compare our approach to the one proposed in [15] on a toy example and
demonstrate the performance of our methodology on a large-scale Bayesian logistic regression problem.

2 A Metropolis-Hastings algorithm with subsampled likelihoods
In this section, we use concentration bounds so as to obtain exact confidence intervals for Monte Carlo
approximations of the log likelihood ratio (4). We then show how such bounds can be exploited so as to
build an adaptive sampling strategy with desired guarantees.

2.1 MC approximation of the log likelihood ratio
Let θ, θ′ ∈ Θ. For any integer t≥1, a Monte Carlo approximation Λ∗t (θ, θ

′) of Λn(θ, θ′) is given by

Λ∗t (θ, θ
′) =

1

t

t∑
i=1

log

[
p(x∗i |θ′)
p(x∗i |θ)

]
, (5)

where x∗1, . . . , x
∗
t are drawn uniformly over {x1, . . . , xn} without replacement.

We can quantify the precision of our estimate Λ∗t (θ, θ
′) of Λn(θ, θ′) through concentration inequali-

ties, i.e., a statement that for δt > 0,

P(|Λ∗t (θ, θ′)− Λn(θ, θ′)| ≤ ct) ≥ 1− δt, (6)

for a given ct. Hoeffding’s inequality without replacement [21], for instance, uses

ct = Cθ,θ′

√
2(1− f∗t ) log(2/δt)

t
, (7)

where
Cθ,θ′ = max

1≤i≤n
| log p(xi|θ′)− log p(xi|θ)| (8)

and f∗t = t−1
n is approximately the fraction of used samples. The term (1 − f∗t ) in (7) decreases to 1

n
as the number t of samples used approaches n, which is a feature of bounds corresponding to sampling
without replacement. Let us add that Cθ,θ′ typically grows slowly with n: for instance, if the likelihood
is Gaussian, then Cθ,θ′ is proportional to maxni=1 |xi|, so that if the data actually were sampled from a
Gaussian, Cθ,θ′ would grow in

√
log(n) [7, Lemma A.12].

If the empirical standard deviation σ̂t of {log p(xi|θ′)− log p(xi|θ)} is small, a tighter bound known
as the empirical Bernstein bound [4]

ct = σ̂t

√
2 log(3/δt)

t
+

6Cθ,θ′ log(3/δt)

t
, (9)
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applies. While the bound in [4] originally covers the case where the x∗i are drawn with replacement, it
was early remarked [14] that Chernoff bounds, such as the empirical Bernstein bound, still hold when
considering sampling without replacement. Finally, we will also consider a recent Bernstein bound [5,
Theorem 3] designed specifically for the case of sampling without replacement.

2.2 Stopping rule construction
The concentration bounds given above are helpful as they can allow us to decide whether (3) holds or
not. Indeed, on the event {|Λ∗t (θ, θ′) − Λn(θ, θ′)| ≤ ct}, we can decide whether or not Λn(θ, θ′) >
ψ(u, θ, θ′) if |Λ∗t (θ, θ′)− ψ(u, θ, θ′)| > ct additionally holds. This is illustrated in Figure 2. Combined
to the concentration inequality (6), we thus take the correct decision with probability at least 1 − δt if
|Λ∗t (θ, θ′) − ψ(u, θ, θ′)| > ct. In case |Λ∗t (θ, θ′) − ψ(u, θ, θ′)| ≤ ct, we want to increase t until the
condition|Λ∗t (θ, θ′)− ψ(u, θ, θ′)| > ct is satisfied.

Let δ ∈ (0, 1) be a user-specified parameter. We provide a construction which ensures that at the first
random time T such that |Λ∗T (θ, θ′)− ψ(u, θ, θ′)| > cT , the correct decision is taken with probability at
least 1 − δ. This adaptive stopping rule adapted from [18] is inspired by bandit algorithms, Hoeffding
races [16] and procedures developed to scale up boosting algorithms to large datasets [9]. Formally, we
set the stopping time

T = n ∧ inf{t ≥ 1 : |Λ∗t (θ, θ′)− ψ(u, θ, θ′)| > ct}, (10)

where a∧ b denotes the minimum of a and b. In other words, if the infimum in (10) is larger than n, then
we stop as our sampling without replacement procedure ensures Λ∗n(θ, θ′) = Λn(θ, θ′). Letting p > 1
and selecting δt = p−1

ptp δ, we have
∑
t≥1 δt ≤ δ. Setting (ct)t≥1 such that (6) holds, the event

E =
⋂
t≥1

{|Λ∗t (θ, θ′)− Λn(θ, θ′)| ≤ ct} (11)

has probability larger than 1− δ under sampling without replacement by a union bound argument. Now
by definition of T , if E holds then Λ∗T (θ, θ′) yields the correct decision, as pictured in Figure 2.

A slight variation of this procedure is actually implemented in practice; see Figure 3. The sequence
(δt) is decreasing, and each time we check in Step 19 whether or not we should break out of the while
condition, we have to use a smaller δt, yielding a smaller ct. Every check of Step 19 thus makes the next
check less likely to succeed. Thus, it appears natural not to perform Step 19 systematically after each
new x∗i has been drawn, but rather draw several new subsamples x∗i between each check of Step 19. This
is why we introduce the variable tlook is Steps 6, 16, and 17 of Figure 3. This variable simply counts the
number of times the check in Step 19 was performed. Finally, as recommended in a related setting in
[18, 17], we augment the size of the subsample geometrically by a user-input factor γ > 1 in Step 18.
Obviously this modification does not impact the fact that the correct decision is taken with probability at
least 1− δ.

3 Analysis
In Section 3.1 we provide an upper bound on the total variation norm between the iterated kernel of
the approximate MH kernel and the target distribution, while Section 3.2 focuses on the number T of
subsamples required by a given iteration of MHSUBLHD. We establish a probabilistic bound on T and
give a heuristic to determine whether a user can expect a substantial gain in terms of number of samples
needed for the problem at hand.
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b b b
ψ(u, θ, θ′) Λ∗

t
(θ, θ′) Λn(θ, θ

′)

2ct

Figure 2: Schematic view of the acceptance mechanism of MHSUBLHD given in Figure 3: if |Λ∗t (θ, θ′)−
ψ(u, θ, θ′)| > ct, then MHSUBLHD takes the acceptance decision based on Λ∗t (θ, θ

′), without requiring
to compute Λn(θ, θ′).

3.1 Properties of the transition kernel of the approximate MH
For θ, θ′ ∈ Θ, we denote by

P (θ,dθ′) = α(θ, θ′)q(θ′|θ)dθ′ + δθ(dθ
′)

(
1−

∫
α(θ, ϑ)q(ϑ|θ)dϑ

)
(12)

the “ideal” MH kernel targeting π with proposal q, where the acceptance probability α(θ, θ′) is defined
in (1). Denote the acceptance probability of MHSUBLHD in Figure 3 by

α̃(θ, θ′) = E1{Λ∗T (θ,θ′)>ψ(u,θ,θ′)}, (13)

where the expectation in (13) is with respect to u ∼ U(0,1) and the variables T and x∗1, . . . , x
∗
T described

in Section 2. Finally, denote by P̃ the MHSUBLHD kernel, obtained by substituting α̃ to α in (12). The
following Lemma states that the absolute difference between α and α̃ is bounded by the user-defined
parameter δ > 0.

Lemma 3.1. For any θ, θ′ ∈ Θ, we have |α(θ, θ′)− α̃(θ, θ′)| ≤ δ.

Proof. We have

α(θ, θ′)− α̃(θ, θ′) = E
[
1{Λn(θ,θ′)>ψ(u,θ,θ′)} − 1{Λ∗T (θ,θ′)>ψ(u,θ,θ′)}

]
. (14)

Upon noting that the two indicators in the RHS of (14) are identical on {T = n}, it comes

|α(θ, θ′)− α̃(θ, θ′)| ≤ E
[∣∣∣1{Λn(θ,θ′)>ψ(u,θ,θ′)} − 1{Λ∗T (θ,θ′)>ψ(u,θ,θ′)}

∣∣∣1{T<n}] .
Now if T < n, then by definition of T ,∣∣∣1{Λn(θ,θ′)>ψ(u,θ,θ′)} − 1{Λ∗T (θ,θ′)>ψ(u,θ,θ′)}

∣∣∣ = 1⇒ |Λn(θ, θ′)− Λ∗T (θ, θ′)| > cT

and thus

|α(θ, θ′)− α̃(θ, θ′)| ≤ E
[
1{|Λn(θ,θ′)−Λ∗T (θ,θ′)|>cT }1{T<n}

]
≤ P

⋃
t≥1

{|Λ∗t (θ, θ′)− Λn(θ, θ′)| > ct}


= P(Ec)
≤ δ,

where E is defined in (11).
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MHSUBLHD
(
p(x|θ), p(θ), q(θ′|θ), θ0, Niter, X , (δt), Cθ,θ′ ,

)
1 for k ← 1 to Niter

2 θ ← θk−1

3 θ′ ∼ q(.|θ), u ∼ U(0,1),

4 ψ(u, θ, θ′)← 1
n log

[
u p(θ)q(θ′|θ)
p(θ′)q(θ|θ′)

]
5 t← 0

6 tlook ← 0

7 Λ∗ ← 0

8 X ∗ ← ∅ . Keeping track of points already used

9 b← 1 . Initialize batchsize to 1

10 DONE ← FALSE

11 while DONE == FALSE do
12 x∗t+1, . . . , x

∗
b ∼w/o repl. X \ X ∗ . Sample new batch without replacement

13 X ∗ ← X ∗ ∪ {x∗t+1, . . . , x
∗
b}

14 Λ∗ ← 1
b

(
tΛ∗ +

∑b
i=t+1 log

[
p(x∗i |θ

′)
p(x∗i |θ)

])
15 t← b

16 c← 2Cθ,θ′
√

(1−f∗t ) log(2/δtlook )

2t

17 tlook ← tlook + 1

18 b← n ∧ dγte . Increase batchsize geometrically

19 if |Λ∗ − ψ(u, θ, θ′)| ≥ c or b > n

20 DONE ← TRUE

21 if Λ∗ > ψ(u, θ, θ′)

22 θk ← θ′ . Accept

23 else θk ← θ . Reject

24 return (θk)k=1,...,Niter

Figure 3: Pseudocode of the MH algorithm with subsampled likelihoods. Step 16 uses a Hoeffding
bound, but other choices of concentration inequalities are possible. See main text for details.

Lemma 3.1 can be used to establish Proposition 3.2, which states that the chain output by the
algorithm MHSUBLHD in Figure 3 is a controlled approximation to the original target π. For any signed
measure ν on (Θ,B (Θ)), let ‖ν‖TV = 1

2 supf :Θ→[−1,1] ν (f) denote the total variation norm where
ν(f) =

∫
Θ
f(θ)ν (dθ). For any Markov kernel Q on (Θ,B (Θ)) , we denote by Qk be the k-th iterate

kernel defined by induction for k ≥ 2 through Qk(θ, dθ′) =
∫

Θ
Q(θ, dϑ)Qk−1(ϑ, dθ′) with Q1 = Q.

Proposition 3.2. Assume that P is uniformly geometrically ergodic, i.e., there exists an integer m and
a probability measure ν on (Θ,B (Θ)) such that, for all θ ∈ Θ, Pm(θ, ·) ≥ (1− ρ) ν(·). Hence there
exists A <∞ such that

∀θ ∈ Θ,∀k > 0, ‖P k(θ, ·)− π‖TV ≤ Aρbk/mc. (15)

Then there exists B <∞ and a probability distribution π̃ on (Θ,B (Θ)) such that

∀θ ∈ Θ,∀k > 0, ‖P̃ k(θ, ·)− π̃‖TV ≤ B[1− (1− δ)m (1− ρ)]bk/mc (16)
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and π̃ satisfies

‖π − π̃‖TV ≤
Amδ

1− ρ
. (17)

Proof. We have

P̃ (θ, dθ′) =

∫
q(θ, dϑ)E

[{
I{Λ∗T (θ,ϑ)>ψ(u,θ,ϑ)}δϑ (dθ′) + I{Λ∗T (θ,ϑ)≤ψ(u,θ,ϑ)}δθ (dθ′)

}]
where the expectation is w.r.t u, T, x∗1, ..., x

∗
T . Hence

P̃ (θ, dθ′) ≥
∫
q (θ, dϑ)E

[
IE
{
I{Λ∗T (θ,ϑ)>ψ(u,θ,ϑ)}δϑ (dθ′) + I{Λ∗T (θ,ϑ)≤ψ(u,θ,ϑ)}δθ (dθ′)

}]
.

By definition of T , on the event E (slightly redefined here with ϑ in place of θ′), we have

Λ∗T (θ, ϑ) > ψ (u, θ, ϑ)⇔ Λn (θ, ϑ) > ψ (u, θ, ϑ) .

It follows that

P̃ (θ, dθ′) ≥
∫
q (θ, dϑ)E

u

[
ET,x∗1 ,...,x∗T [IE ]

{
I{Λn(θ,ϑ)>ψ(u,θ,ϑ)}δϑ (dθ′) + I{Λn(θ,ϑ)≤ψ(u,θ,ϑ)}δθ (dθ′)

}]
≥ (1− δ)

∫
q (θ, dϑ)Eu

[{
I{Λn(θ,ϑ)>ψ(u,θ,ϑ)}δϑ (dθ′) + I{Λn(θ,ϑ)≤ψ(u,θ,ϑ)}δθ (dθ′)

}]
= (1− δ)P (θ, dθ′) .

By a straightforward induction, we obtain

P̃m(θ, dθ′) ≥ (1− δ)m Pm (θ, dθ′)

≥ (1− δ)m (1− ρ) ν (dθ′) .

An application of [10, Theorem 6.6] yields (16).
Now let k > 0. The triangular inequality and the uniform ergodicity of P and P̃ yield

‖π − π̃‖TV ≤ ‖π − P km(θ, ·)‖TV + ‖P km(θ, ·)− P̃ km(θ, ·)‖TV + ‖P̃ km(θ, ·)− π̃‖TV

≤ ‖P̃ km(θ, ·)− P km(θ, ·)‖TV +Aρk +B (1− (1− δ)m (1− ρ))
k
. (18)

Now a classical decomposition [2, Equation (6.3)] yields

‖P̃ km(θ, ·)− P km(θ, ·)‖TV ≤
Am

1− ρ
sup
ϑ∈Θ
‖P (ϑ, ·)− P̃ (ϑ, ·)‖TV. (19)

As for any θ ∈ Θ, we have for any bounded measurable function

|Pf(θ)− P̃ f(θ)| ≤ 2‖f‖∞
∫
|α(θ, ϑ)− α̃(θ, ϑ)|q(ϑ|θ)dϑ

then it follows from Lemma 3.1 and the definition of the total variation norm that

‖P (θ, ·)− P̃ (θ, ·)‖TV ≤ δ.

Hence we obtain
‖π − π̃‖TV ≤

Amδ

1− ρ
+Aρk +B (1− (1− δ)m (1− ρ))

k
.

As this upper bound is valid for all k, taking the limit as k →∞ completes the proof of Proposition 3.2.

One may obtain tighter bounds and ergodicity results by weakening the uniform geometric ergodicity
assumption and using recent results on perturbed Markov kernels [11], but this is out of the scope of this
paper.

7



3.2 On the stopping time T

3.2.1 A bound for fixed θ, θ′

The following Proposition gives a probabilistic upper bound for the stopping time T , conditionally on
θ, θ′ ∈ Θ and u ∈ [0, 1] in the case where ct is defined by (7). A similar bound holds for the empirical
Bernstein bound in (9).

Proposition 3.3. Let δ > 0 and δt = p−1
ptp δ. Let θ, θ′ ∈ Θ such that Cθ,θ′ 6= 0 and u ∈ [0, 1]. Let

∆ =
|Λn(θ, θ′)− ψ(u, θ, θ′)|

2Cθ,θ′
(20)

and assume ∆ 6= 0. Then if p > 1, with probability at least 1− δ,

T ≤
⌈

4

∆2

{
p log

[
4p

∆2

]
+ log

[
2p

δ(p− 1)

]}⌉
∨ 1. (21)

Proof. The outline of the proof is similar to that of [17, Theorem 2, item 1]. Let t0 be defined as

t0 = inf{t ≥ 1 : 2c′t ≤ |Λn(θ, θ′)− ψ(u, θ, θ′)|}

and c′t = 2Cθ,θ′
√

log(2/δt)
2t . On the event

E =
⋂
t≥1

{|Λ∗t (θ, θ′)− Λn(θ, θ′)| ≤ ct}

of probability at least 1− δ, see Section 2, we have∣∣Λ∗t0 (θ, θ′)− ψ (u, θ, θ′)
∣∣ ≥ |Λn (θ, θ′)− ψ (u, θ, θ′)| −

∣∣Λ∗t0 (θ, θ′)− Λn (θ, θ′)
∣∣

≥ 2c′t0 − ct0
≥ ct0

so T is smaller than t0 ∧ n.
Now

2c′t ≤ |Λn(θ, θ′)− ψ(u, θ, θ′)| ⇔ 4Cθ,θ′

√
log(2/δt)

2t
≤ |Λn(θ, θ′)− ψ(u, θ, θ′)|

⇔
log
[

2ptp

δ(p−1)

]
t

≤ |Λn(θ, θ′)− ψ(u, θ, θ′)|2

8C2
θ,θ′

⇔
log

[(
2p

δ(p−1)

)1/p

t

]
t

≤ ∆2

2p
. (22)

Using the log trick of [17, Lemma 3], a sufficient condition for (22) to hold is

t ≥ 4p

∆2
log

4p
(

2p
δ(p−1)

)1/p

∆2


or, equivalently,

t ≥ 4

∆2

{
p log

[
4p

∆2

]
+ log

[
2p

δ(p− 1)

]}
.
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The relative distance ∆ in (21) characterizes the difficulty of the step. Intuitively, at equilibrium, i.e.,
when (θ, θ′) ∼ π(θ)q(θ′|θ) and u ∼ U[0,1], if the log likelihood log p(x|θ) is smooth in θ, the proposal
could be chosen so that the log likelihood ratio Λn(θ, θ′) has positive expectation and a small variance,
thus leading to high values of ∆ and small values of T .

3.2.2 A heuristic at equilibrium

Integrating (21) with respect to θ, θ′ to obtain an informative quantitative bound on the average number
of samples required by MHSUBLHD at equilibrium would be desirable but proved difficult. However
the following heuristic can help the user figure out whether our algorithm will yield important gains for
a given problem. For large n, standard asymptotics [23] yield that the log likelihood is approximately a
quadratic form

log p(x|θ) ≈ −(θ − θ∗)THn(θ − θ∗)

with Hn of order n. Assume the proposal q(·|θ) is a Gaussian random walk N (·|θ,Γ) of covariance
Γ, then the expected log likelihood ratio under π(θ)q(θ′|θ) is approximately Trace(HnΓ). According
to [20], an efficient random walk Metropolis requires Γ to be of the same order as H−1

n , that is, of
order 1/n. Finally, the expected Λn(θ, θ′) at equilibrium is of order 1/n, and can thus be compared
to ψ(u, θ, θ′) = log(u)/n in Line 19 of MHSUBLHD in Figure 3. The RHS of the first inequality in
Step 19 is the concentration bound ct, which has a leading term in σ̂t/

√
t in the case of (9). In the

applications we consider in Section 4, σ̂t is typically proportional to ‖θ − θ′‖, which is of order
√
n

since Γ ≈ H−1
n . Thus, to break out of the while loop in Line 19, we need t ∝ n. At equilibrium,

we thus should not expect gains of several orders of magnitude: gains are fixed by the constants in
the proportionality relations above, which usually depend on the empirical distribution of the data. We
provide a detailed analysis for a simple example in Section 4.3.

4 Experiments
All experiments were conducted using the empirical Bernstein-Serfling bound of [5], which revealed
equivalent to the empirical Bernstein bound in (9), and much tighter in our experience with MHSUBLHD
than Hoeffding’s bound in (7). All MCMC runs are adaptive Metropolis [13, 3] with target acceptance
25% when the dimension is larger than 2 and 50% else [20]. Hyperparameters of MHSUBLHD were set
to p = 2, γ = 2, and δ = 0.01. The first two were found to work well with all experiments. We found
empirically that the algorithm is very robust to the choice of δ.

4.1 On the use of asymptotic confidence intervals
MCMC algorithms based on subsampling and asymptotic confidence intervals experimentally lead to
efficient optimization procedures [6, 1, 24], and perform well in terms of classification error when used,
e.g., in logistic regression [15]. However, in terms of approximating the original posterior, they come
with no guarantee and can provide unreliable results.

To illustrate this, we consider the following setting. X is a synthetic sample of size 105 drawn
from a Gaussian N (0, 0.12), and we estimate the parameters µ, σ of a N (µ, σ2) model, with flat priors.
Analytically, we know that the posterior has its maximum at the empirical mean and variance of X .
Running the approximate MH algorithm of [15], using a level for the test ε = 0.05, and starting each
iteration by looking at t = 2 points so as to be able to compute the variance of the log likelihood ratios,
leads to the marginal of σ shown in Figure 4(a).

The empirical variance of X is denoted by a red triangle, and the maximum of the marginal is off
by 7% from this value. Relaunching the algorithm, but starting each iteration with a minimum t = 500
points leads to better agreement and a smaller support for the marginal, as depicted in Figure 4(b).
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(c) X ∼ lnN (0, 2), starting at t = 500
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Figure 4: (a,b,c) Estimates of the marginal posteriors of σ obtained respectively by the algorithm of
[15] using approximate confidence intervals and our algorithm MHSUBLHD given in Figure 3, for X
sampled from each of the distributions indicated below the plots, and with different starting points for the
number t of samples initially drawn from X at each MH iteration. On each plot, a red triangle indicates
the true maximum of the posterior, and the legend indicates the proportion of X used on average by
each algorithm. (d) The synthetic dataset used in Section 4.2.2. The dash-dotted line indicates the Bayes
classifier.
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Still, t = 500 works better for this example, but fails dramatically if X are samples from a lognormal
logN (0, 2), as depicted in Figure 4(c). The asymptotic regime, in which the studentized statistic used
by [15] actually follows a Student distribution, depends on the problem at hand and is left to the user to
specify. In each of the three examples of Figure 4, our algorithm produces significantly better estimates
of the marginal, though at the price of a significantly larger average number of samples used per MCMC
iteration. In particular, the case X ∼ logN (0, 2) in Figure 4(c) essentially requires to use the whole
dataset.

4.2 Large-scale Bayesian logistic regression
In logistic regression, an accurate approximation of the posterior is often needed rather than minimizing
the classification error, for instance, when performing Bayesian variable selection. This makes logistic
regression for large datasets a natural application for our algorithm, since the constant Cθ,θ′ in concen-
tration inequalities such as (9) can be computed as follows. The log likelihood

log p(y|x, θ) = − log(1 + e−θ
T x)− (1− y)θTx (23)

is L-Lipschitz in θ with L = ‖x‖, so that we can set

Cθ,θ′ = ‖θ − θ′‖ max
1≤j≤n

‖xj‖.

We expect the Lipschitz inequality to be tight as (23) is almost linear in θ.

4.2.1 The covtype dataset

We consider the dataset covtype.binary1 described in [8]. The dataset consists of 581,012 points, of
which we pick n = 400, 000 as a training set, following the maximum training size in [8]. The original
dimension of the problem is 54, with the first 10 attributes being quantitative. To illustrate our point
without requiring a more complex sampler than MH, we consider a simple variant of the classification
problem using the first q = 2 attributes only. We use the preprocessing and Cauchy prior recommended
by [12].

We draw four random starting points and launch independent runs of both the traditional MH in
Figure 1 and our MHSUBLHD in Figure 3 at each of these four starting points. Figure 5 shows the results:
plain lines indicate traditional MH runs, while dashed lines indicate runs of MHSUBLHD. Figures 5(c)
and 5(d) confirm that MHSUBLHD accurately approximates the target posterior. In all Figures 5(a) to
5(d), MHSUBLHD reproduces the behaviour of MH, but converges up to 3 times faster. However, the
most significant gains in number of samples used happen in the initial transient phase. This allows fast
progress of the chains towards the mode but, once in the mode, the average number of samples required
by MHSUBLHD is close to n. We observed the same behaviour when considering all q = 10 quantitative
attributes of the dataset, as depicted by the train error shown in Figure 7(a).

4.2.2 Synthetic data

To investigate the rôle of n in the gain, we generate a 2D binary classification dataset of size n = 107.
Given the label, both classes are sampled from unit Gaussians centered on the x-axis, and a subsample
of X is shown in Figure 4(d).

The results are shown in Figure 6. The setting appears more favorable than in Section 4.2.1, and
MHSUBLHD chains converge up to 5 times faster. The average number of samples used is smaller, but
it is still around 70% after the transient phase for all approximate chains.

1available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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Figure 5: Results of 4 independent runs of MH (plain lines) and MHSUBLHD (dashed lines) for the 2
first attributes of the covtype dataset. The legend indicates the average number of samples required as a
proportion of n.

4.3 A Gaussian example
To further investigate when gains are made at equilibrium, we now consider inferring the mean θ of
a N (θ, 1) model, using a sample X ∼ N ( 1

2 , σ
2
X ) of size n. Although simple, this setting allows us

analytic considerations. The log likelihood ratio is

log
p(x|θ′)
p(x|θ)

= (θ′ − θ)(x− θ + θ′

2
)

so that we can set

Cθ,θ′ = 2|θ′ − θ|
(

max
1≤i≤n

|xi|+
|θ + θ′|

2

)
.

We also remark that √
Vx log

p(x|θ′)
p(x|θ)

= |θ − θ′|σX . (24)

Under the equilibrium assumptions of Section 3.2.2, |θ − θ′| is of order n−1/2, so that the leading term
t−1/2σ̂t of the concentration inequality (9) is of order σXn−1/2t−1/2. Thus, to break out of the while
loop in Line 19 in Figure 3, we need t ∝ σ2

Xn. In a nutshell, larger gains are thus to be expected when
data are clustered in terms of log likelihood as intuitively anticipated.

To illustrate this phenomenon, we set σX = 0.1. To investigate the behavior of the chain at equilib-
rium, all runs were started at the mode of a subsampled likelihood, using a proposal covariance matrix
proportional to the covariance of the target. In Figure 7(b), we show the running average of the number
of samples needed for 6 runs of MHSUBLHD, with various values of n from 105 to 1015. With increas-
ing n, the number of samples needed progressively drops to 25% of the total n. This is satisfying, as the
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Figure 6: Results of 4 independent runs of MH (plain lines) and MHSUBLHD (dashed lines) for the
synthetic dataset described in Section 4.2.2. The legend indicates the average number of samples required
as a proportion of n. On Figures 6(a) and 6(b), a dash-dotted line indicates the error obtained by the
Bayes classifier.
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different values of n, for the Gaussian experiment of Section 4.3.
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number of samples required at equilibrium should be less than 50% to actually improve on usual MH,
since a careful implementation of MH in Figure 1 only requires to evaluate one single full likelihood per
iteration, while methods based on subsampling require two.

5 Conclusion
We have presented an approximate MH algorithm to perform Bayesian inference in a large dataset
scenario. This is a robust alternative to the technique in [15], and this robustness comes at an in-
creased computational price. We have obtained theoretical guarantees on the resulting chain, including
a user-controlled error in total variation, and we have demonstrated the methodology on several appli-
cations. Experimentally, the resulting approximate chains achieve fast burn-in, requiring on average
only a fraction of the full dataset. At equilibrium, the performance of the method is strongly problem-
dependent. Loosely speaking, if the expectation w.r.t. π(θ)q(θ′|θ) of the variance of the log likelihood
ratio log p(x|θ′)/p(x|θ) w.r.t. to the empirical distribution of the observations is low, then one can expect
significant gains. If this expectation is high, then the algorithm is of limited interest as the Monte Carlo
estimate Λ∗t (θ, θ

′) requires many samples t to reach a reasonable variance. It would be desirable to use
variance reduction techniques but this is highly challenging in this context.

Finally, we note that the algorithm and analysis provided here can be straightforwardly extended to
scenarios where the target distribution is such that the log ratio log π(θ′)/π(θ) is intractable, as long as
a concentration inequality for a Monte Carlo estimator of this log ratio is available. For models with
an intractable likelihood, it is often possible to obtain such estimators that have a low variance, so the
methodology discussed here may prove useful.
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[11] D. Ferré, Hervé L., and J. Ledoux. Regular perturbation of V-geometrically ergodic Markov chains.
Journal of Applied Probability, 50(1):184–194, 2013.

[12] A. Gelman, A Jakulin, M.G. Pittau, and Y-S. Su. A weakly informative default prior distribution
for logistic and other regression models. Annals of applied Statistics), 2008.

[13] H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli, 7:223–
242, 2001.

[14] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

[15] A. Korattikara, Y. Chen, and M. Welling. Austerity in MCMC land: Cutting the Metropolis-
Hastings budget. In Proceedings of the International Conference on Machine Learning (ICML),
2014.

[16] O. Maron and A. Moore. Hoeffding races: Accelerating model selection search for classification
and function approximation. In Advances in Neural Information Processing Systems. The MIT
Press, 1993.

[17] V. Mnih. Efficient stopping rules. Master’s thesis, University of Alberta, 2008.
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