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Abstract

We address the problem of noise management in
clustering algorithms. Namely, issues that arise
when on top of some cluster structure the data
also contains an unstructured set of points. We
consider how clustering algorithms can be “ro-
bustified” so that they recover the cluster struc-
ture in spite of the unstructured part of the in-
put. We introduce some quantitative measures
of such robustness that take into account the
strength of the embedded cluster structure as well
as the mildness of the noise subset. We pro-
pose a simple and efficient method to turn any
centroid-based clustering algorithm into a noise-
robust one, and prove robustness guarantees for
our method with respect to these measures. We
also prove that more straightforward ways of “ro-
bustifying” clustering algorithms fail to achieve
similar guarantees.

1. Introduction
Clustering is (usually) aimed to detect groups of similar
objects in given datasets. Many common clustering algo-
rithms output a partition of the input set. However, it is
often the case that datasets that one wishes to cluster con-
tain, on top of groups of similar objects, a significant subset
that is unstructured. Such a subset, that may be referred to
as noise, tends to disrupt clustering algorithms and make
it difficult to detect the cluster structure of the remaining
domain points. This problem can be viewed as a noise ro-
bustness issue.

Are there useful clustering algorithms that are noise robust
(w.r.t addition of unstructured data points)? Short reflection
reveals that the noise robustness of an algorithm is closely
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related to its sensitivity to the input data. As an extreme
example, it is easy to achieve noise robustness by ignoring
the input data and always returning a fixed output. Acker-
man et al. (2013) provides some formal tradeoffs between
these two desired properties. Roughly stated, their results
(for example, Theorem 4.3) show that no algorithm can be
both noise robust and responsive to cluster structure of the
data (in the language of (Ackerman et al., 2013) these prop-
erties are called robustness to oligarchies and separability-
detecting). However, those results consider applying an al-
gorithm with a fixed number-of-clusters parameter. This
paper addresses the possibility of overcoming those pes-
simistic results by allowing clustering algorithms to add to
the set of clusters they output an extra subset, serving as a
“garbage collector”.

An important aspect of clustering, that distinguishes it from
other major learning tasks, like classification prediction, is
the wide variability of input-output behavior among com-
mon clustering algorithms. Different clustering applica-
tions employ very different clustering algorithms and there
is no single clustering algorithm that is suitable for all.
Consequently, solutions to fundamental clustering chal-
lenges, like the tradeoff between sensitivity to the input and
noise robustness, should be modular in the sense of being
applicable to a variety of clustering algorithms. In this pa-
per we propose such a modular solution. In Section 4, we
consider a method to transform any centroid-based clus-
tering algorithm to one that outputs a set of clusters aug-
mented by a distinct noise bin. We show that our proposed
paradigm can be achieved by employing a simple and ef-
ficiently implementable transformation of the input data,
after which users can apply any centroid-based clustering
algorithm.

Yet another contribution of this paper is the introduction
of quantitative measures of noise robustness (Section 5).
We consider three aspects of noise robustness for centroid-
based clustering algorithms; the degree by which noise can
affect the location of the centers of the clusters (or the
archetypal cluster representatives), the effect of noise on
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the cost of the clustering solution (or, the value of the clus-
tering objective function) and the similarity between the
clustering of the un-noised data, to its clustering in the pres-
ence of the noise.

In our results, we consider a scenario in which the input
dataset X consists of two part: a clusterable subset I,
which is also called the un-noised data, and an added noise
set X \ I (the identity of which is not known to the clus-
tering algorithm). We consider two clustering algorithms,
the original one, A, and its “robustified” transformation
Rp(A) that is obtained by using our paradigm with a tun-
able parameter p. We examine to what extent well clus-
terability of I and mildness properties of X \ I (in terms
of the size and/or diameter of this set, relative to that of
I) affect the similarity between the clusterings A(I) and
Rp(A)(X ) restricted to I. In Section 6, we prove that our
paradigm makes the algorithms noise-robust without sacri-
ficing much of their ability to detect clear cluster structures.
The degree of noise-robustness that our paradigm achieves
depends on a parameter that can be tuned by the user, de-
pending on the level and structure of the noise expected in
the input data. On the other hand, in Section 7, we show
that a simple transformation in which Rp(A) is the origi-
nal algorithm A with an increased number of output clus-
ters (the extra clusters may be used to handle noise) does
not enjoy the same robustness guarantees. In Section 8, we
further demonstrate the gap between these two paradigms
and use experiments to confirm our theoretical results.

Note that in the interest of space, the proofs of some the-
orems and lemmas are moved to the supplementary mate-
rial.

2. Related Work
Previous work on the robustness of clustering methods
have mainly focused on two directions. First, developing
measures of robustness and examining the performance of
traditional clustering algorithms based on these measures.
Second, developing clustering algorithms that are robust to
noise and outliers.

Various measures of robustness have been developed for
examining the robustness characteristics of clustering al-
gorithms to noise (Donoho, 1982; Hampel, 1971; Hennig,
2008). These measures have been used to demonstrate the
lack of robustness of some traditional algorithms, where the
number of clusters is fixed (Ackerman et al., 2013; Hennig,
2008). That is, they consider the scenario in which a clus-
tering algorithm is used with the same number-of-clusters
parameter for both the clean input and the input after the
addition of noisy points. In this work, we allow some extra
clusters to be used (so as to accommodate the added noisy
data points) and introduce and analyze noise robustness

measures that allow such flexibility. We show that using the
added flexibility of our paradigm, we can overcome some
of the limitations that the above papers deemed inevitable
(without allowing extra noise-accommodating clusters).

Several methods have been suggested for clustering a po-
tentially noisy dataset (Cuesta-Albertos et al., 1997; Dave,
1993; Ester et al., 1996). One interesting work is the de-
velopment of the concept of a “noise cluster” in a fuzzy
setting by Dave (1991; 1993). In this work, we introduce
a novel paradigm for “robustifying” any center-based clus-
tering algorithm. We show that our paradigm generalizes
a non-fuzzy variation of the algorithm introduced by Dave
(1991). In addition, we prove noise robustness guarantees
for our proposed paradigm, guarantees that were not proven
in any of the earlier works we are aware of.

Some of the earlier work on noise-robustness of clustering
algorithms proposes the use of trimmming. Trimming is the
natural approach to separating clusterable parts of the data
from unstructured ones by fixing some noise-set size (say,
as some fraction, α, of the data size) and let the algorithm
find the “least structured” α fraction of an input dataset and
discard it before applying a clustering algorithm (Cuesta-
Albertos et al., 1997; Garcı́a-Escudero et al., 2008; Garcı́a-
Escudero & Gordaliza, 1999). However, such methods suf-
fer from exponential computational complexity, or have to
be compromised for efficient heuristic searches that have
no performance guarantees. In this work, we avoid this is-
sue, by developing a paradigm that is of comparable com-
putational complexity to traditional clustering algorithms.

Clustering has been the subject of many other theoreti-
cal studies. Ackerman & Ben-David (2009), Balcan et al.
(2009), and Bilu & Linial (2012) examined the effect of
robustness (to perturbations of the input) on computational
complexity of clustering. Ben-David et al. (2006) exam-
ined situations where the clustering of the input is similar
to the clustering of a random subset of it. Ailon et al. (2009)
approximated the k-means objective using extra centers.
Our work has a different focus. Our goal is to find cluster-
ing algorithms that yield a good clustering on the cluster-
able portion of a noisy input. Therefore, the questions that
we address, our setting, and approach are different from the
above studies.

Discussing the details of more relevant previous work re-
quires the definition of few notations, hence, it is delayed
to relevant sections.

3. Preliminaries
For a set X and integer k ≥ 1, a k-clustering of X is a
partition C = {C1, . . . , Ck} of X into k disjoint sets. For a
clustering C of X and points x, y ∈ X , we say x ∼C y, if x
and y are in the same cluster, otherwise x 6∼C y. For sets X
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and I such that I ⊆ X , and a clustering C = {C1, . . . , Ck}
of X , we denote the restriction of C to I by C|I = {C1 ∩
I, . . . , Ck ∩ I}.

For two clusterings C and C′ of the set X , we define the
distance between them as ∆(C, C′), the fraction of pairs of
domain points which are in the same cluster under C but
in different clusters under C′ or vice-versa. Equivalently,
∆(C, C′) = 1 − iR(C, C′), where iR is the Rand index
(Rand, 1971). ∆ satisfies the triangle inequality.

Let d be a symmetric distance function defined overX with
d(x, x) = 0 for all x ∈ X , and satisfying the triangle in-
equality. The diameter of X , indicated by diam(X ), is
defined as the maximum distance between two elements
of X . For a clustering C = {C1, . . . , Ck}, the diameter
of C is defined as maxCi∈C diam(Ci). The radius of X
is shown by rad(X ) = minc∈X maxx∈X d(c, x). Clus-
tering C is σ-separable for σ ≥ 1, if minx 6∼Cy d(x, y) >
σ · maxx∼Cy d(x, y). Clustering C is (ρ1, ρ2)-balanced if
for all i ≤ k, ρ1|X | ≤ |Ci| ≤ ρ2|X |. We use ρ-balanced
to refer to a clustering that is (0, ρ)-balanced.

A clustering algorithm is a function A that takes as input
X and d and returns a clustering C ofX . An objective func-
tion is a function that takes as input a clustering and outputs
a non-negative cost associated with it. An objective-based
clustering algorithm is an algorithm that produces a clus-
tering that minimizes a specified objective function.

Consider an input set X drawn from a given space E with
distance function d. Throughout this work, let g : R+ →
R+ be any continuous, increasing, and unbounded func-
tion. The (k, g)-centroid algorithm is an objective-based
clustering algorithm with function

ΛgE,d({C1, . . . , Ck}) = min
µ1,...,µk∈E

k∑
i=1

∑
x∈Ci

g(d(x, µi))

We refer to µi as the center of cluster Ci and we define
µ(x) = arg minµi∈{µ1,...,µk} d(x, µi) to be the center clos-
ets to x. With a slight abuse of notation we can also define
the (k, g)-centroid algorithm as the algorithm that chooses
centers µ1, . . . , µk that minimize

ΛgX ,E,d(µ1, . . . , µk) =
∑
x∈X

g(d(x, µ(x))

We remove X and E from the notation whenever they are
clear from the context. Note that for g(x) = x and g(x) =
x2, Λgd refers to the k-medians and k-means cost function,
respectively.

4. Robustifying Paradigms
We define parameterized robustifying paradigms that trans-
form any clustering algorithm to an algorithm that is more

robust to noise to the extent determined by a predefined pa-
rameter. We define two robustifying paradigms. Moreover,
we establish an equivalence between one of the paradigms
and a generalization of an existing algorithm.

A robustifying parameter, p, denotes the degree to which
an algorithm should be robustified to noise; For example,
the number of extra clusters that can be used or a notion
of distance beyond which a point is considered an outlier.
A robustifying paradigm, Rp(·), is a function that takes a
clustering algorithm A and returns a robustified clustering
algorithm Rp(A) based on the robustifying parameter p.
We refer toA as the ground clustering algorithm ofRp(A).

Since noise, unstructured data, and outlying structures are
heterogeneous with respect to the existing data, outliers and
noise groups can be considered as separate clusters. There-
fore, some statisticians simply recommend increasing the
number of clusters when dealing with noisy data (Garcı́a-
Escudero & Gordaliza, 1999). The next paradigm captures
robustification as used in this practice.

Definition 1 (p-Increased Paradigm). The p-Increased
Paradigm is a robustifying paradigm, RIp(·), that takes as
input a (k, g)-centroid algorithm and returns a (k + p, g)-
centroid algorithm.

The next paradigm is parameterized by the distance af-
ter which a point should be considered an outlier. To
define this paradigm, we first introduce a class of al-
gorithms. Given a space E and distance function d,
the δ-truncated distance function corresponding to d is
the function d′ such that d′(x, y) = min{δ, d(x, y)} for
x, y ∈ E. The (k, g)-δ-truncated algorithm is an ob-
jective based algorithm that, given X ⊆ E, first opti-
mizes the function ΛgX ,d′(µ

′
1, . . . , µ

′
k). For j ≤ k, let

C ′j = {x ∈ X |j = arg mini d(x, µ′i) and d(x, µ′j) < δ}
and C ′k+1 = {x ∈ X |min d(x, µ′i) ≥ δ}. Then the
(k, g)-δ-truncated algorithm returns the (k + 1)-clustering
C′ = {C ′1, . . . , C ′k+1}. We refer to µ′i as the center of
C ′i for i ≤ k. With a slight abuse of notation, we define
µ′(x) = arg minµi∈{µ′1,...,µ′k} d(x, µ′i)

Definition 2 (δ-Truncated Paradigm). The δ-Truncated
Paradigm is a robustifying paradigm, RTδ(·), that takes
as input a (k, g)-centroid algorithm and returns a (k, g)-
δ-truncated algorithm.

Dave (1991) developed the notion of the noise prototype,
which is a point equidistant from all points in E. He
then introduced a clustering algorithm that performs fuzzy
(k+1)-means with one center fixed as the noise prototype.
In the next definition, we provide a generalization of the
non-fuzzy variation of Dave’s algorithm for any centroid-
based algorithm. Furthermore, we show that the class of
algorithms produced in such way is equivalent to the class
of algorithms that belong to the δ-Truncated paradigm.
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Definition 3. Let µ∗ be defined such that for all y ∈ E,
d(y, µ∗) = δ. The generalized (k, g)-δ-centroid algo-
rithm is an objective-based algorithm with objective func-
tion ΛgX ,E∪{µ∗},d(µ1, . . . , µk, µ

∗).

We refer to (k, g)-δ-centroid as δ-k-median and δ-k-means
when g(x) = x and g(x) = x2, respectively.

Theorem 1. Clustering C is an optimal (k, g)-δ-centroid
clustering of X if and only if C is an optimal (k, g)-δ-
truncated clustering of X .

Proof. For convenience, let µk+1 = µ∗ and d′(x, y) =
min{δ, d(x, y)}. We show that the (k, g)-δ-centroid
clustering with centers µ1, . . . , µk, µ

∗ and the (k, g)-δ-
truncated clustering with centers µ1, . . . , µk have the same
objective value.

Λg(E,d′)({µ1, . . . , µk}) =
∑
y∈X

g(min
i∈[k]
{min{δ, d(y, µi)}})

=
∑
y∈X

g

(
min
i∈[k]
{min{d(y, µk+1), d(y, µi)}}

)

=
∑
y∈X

g

(
min

i∈[k+1]
d(y, µi)

)
= Λg(E∪{µ∗},d)({µ1, . . . , µk, µ

∗})

Moreover, µ1, . . . , µk, µ
∗ can induce the same (k, g)-δ-

centroid clustering as the (k, g)-δ-truncated clustering in-
duced by µ1, . . . , µk. Therefore, C is an optimal (k, g)-δ-
centroid clustering if and only if it is an optimal (k, g)-δ-
truncated clustering.

5. Measures of Robustness
In previous work, robustness to the addition of noise has
been measured by comparing the output of the same algo-
rithm on both the un-noised and noisy data. This approach
leads to pessimistic results about the possibility of achiev-
ing noise robustness. One example of these results is the
work of Ackerman et al. (2013), which shows that algo-
rithms that are responsive to the structure of the data are
not noise-robust. More precisely, Ackerman et al. (2013)
define a k-clustering algorithm A to be σ-separability-
detecting if for all I, such that there exists a σ-separable
k-clustering C of I, A(I) = C. Then, they show that for
any σ-separability-detecting algorithm and any ρ, there is
a ρ-balanced σ-separable set I that is not robust to a noise
set of size as small as k.

This approach does not reflect the way clustering is done
in practice. For clustering noisy data, one may take spe-
cial provisions to handle the noise – provisions that are not
needed when the data is known to be noise free. For exam-
ple, if it is known that the input data has k clusters, one may
allow the algorithm to create more clusters in an attempt to
separate the noise.

One of the take home messages of this paper is that by re-
vising the previous approach to reflect a more practical set-
ting, we can overcome those pessimistic results. To this
end, our measures of robustness compare the output of a
robustified algorithm (one that can use extra clusters) on
noisy data to the output of its corresponding ground algo-
rithm on the unnoised data. More precisely, let A denote
any clustering algorithm (the ground clustering) and Rp(·)
denote a robustifying paradigm with parameter p. We use
A′ = Rp(A) to denote the robustified algorithm corre-
sponding to A. Given I ⊆ X , A(I) denotes the clustering
of I using the ground algorithm, and A′(X ) denotes the
clustering of X by the robustified algorithm. We consider
I to be robust (to X \ I) with respect to the Rp(A) algo-
rithm if certain properties ofA(I) are preserved inA′(X ).
In the following definitions, for any x ∈ X , we use µ(x)
and µ′(x) to denote the centers of A(I) and A′(X ), re-
spectively, to which x belongs.

Cluster centers are commonly used to compress and rep-
resent data. The distances between points and their corre-
sponding centers can be viewed as the distortion of such a
compression. Therefore, it is essential to have clustering
algorithms where this value does not grow significantly in
the presence of noise. The next definition measures how
much this distortion is affected by the addition of noise to
the input data.

Definition 4 (α-distance-robust). A subset I ⊆ X is
α-distance-robust with respect to A′ if for all y ∈ I,
d(y, µ′(y)) ≤ d(y, µ(y)) + α.

An algorithm is considered robust, if it separates the input
using some low-cost clusters that cover the un-noised data.
In the next definition, we capture this property by comput-
ing minimal cost of a subset of clusters that covers at least
|I| points in total.

Definition 5 (β-cost-robust). Let Λ be an objective (cost)
function. I ⊆ X is β-cost-robust with respect to A′ for Λ,
if there exists C∗ ⊆ A′(X ), such that |

⋃
C∗| ≥ |I| and

Λ(C∗) ≤ Λ(A(I)) + β.

Note that if A′(X ) = A(I) ∪ {X \ I}, then I is 0-cost-
robust to A′.

The next definition measures the degree to which noise af-
fects the structure of a clustering.

Definition 6 (γ-robust). I ⊆ X is γ-robust with respect to
algorithm A′, if ∆(A′(X )|I,A(I)) ≤ γ.

Lemma 1. Given a (k, g)-centroid algorithm A and pa-
rameter δ, letA′ = RTδ(A). For any I ⊆ X , such that for
all y ∈ I, d(y, µ′(y)) ≤ δ, I is g(δ)|X \ I|-cost-robust to
X \ I with respect to RTδ(A) for the Λgd cost function.

Proof. Refer to the supplementary material.
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6. Robustness of Our Paradigm
In this section, we show guaranteed robustness results for
the δ-Truncated paradigm, RTδ(·). We prove robustness,
distance-robustness, and cost-robustness based on several
properties of the underlying structures of I and mildness
properties of X \ I:

RADIUS OF THE BALL COVERING I

The following results guarantee distance-robustness and
cost-robustness for the δ-Truncated paradigm. Theorem
2 derives values of δ that render I robust with respect to
the δ-Truncated algorithm, based on the radius of I and the
signal-to-noise ratio of X .

Theorem 2. For any k and g, let A be the (k, g)-centroid
algorithm. For all I ⊆ X , let r = rad(I) and λ =
|I| / |X \ I| (signal-to-noise ratio). Then for any δ ∈[
4r, g−1(λ(g(2r)− g(r)))

)
, I is 4r-distance-robust and

g(δ)|X \ I|-cost-robust with respect to RTδ(A) for the Λgd
cost function.

Proof. Let A′ = RTδ(A) and let A′(X ) = C′. For all
x ∈ X , let µ′(x) denote the closest center of C′ to x.
Assume on the contrary that there exists y ∈ I such that
d(y, µ′(y)) > 4r, then for any y′ ∈ I, d(y′, µ′(y′)) > 2r.
Therefore, Λgd′(C′) ≥ |I| · g(2r). For any clustering C′′
that has a center at the center of the r-ball that covers I,
Λgd′(C′′) ≤ |I| · g(r) + |X \ I| · g(δ). By the choice of
δ, Λgd′(C′′) < Λgd′(C′), so C′ is not optimal. Hence, I is
4r-distance-robust to X \I with respect to RTδ(A). Using
Lemma 1, I is also g(δ)|X \ I|-cost-robust with respect to
RTδ(A) for cost function Λgd.

Note that Theorem 2 implies that if I has radius r and
signal-to-noise ratio λ, then for any δ ∈ [4r, r

√
3λ), I is

4r-distance-robust and δ2|X \I|-cost-robust to δ-k-means.

UNDERLYING STRUCTURE OF I

The following results guarantee robustness, distance-
robustness and cost-robustness for the δ-Truncated
paradigm. Theorem 3 derives values of δ that render I ro-
bust with respect to the δ-Truncated algorithm, based on
the underlying structure of I and the signal-to-noise ratio
of X .

Theorem 3. For any k and g, let A be the (k, g)-centroid
algorithm. Assume that I ⊆ X has the following proper-
ties: I can be covered by a (ρ1, ρ2)-balanced set of balls,
called B1, . . . , Bk, such that for all i ≤ k, rad(Bi) ≤
r, and for all i 6= j, the centers of Bi and Bj are
at least ν > 4r + 2g−1(ρ1+ρ2ρ1

g(r)) apart. Let δ ∈[
ν
2 , g
−1
(
|I|
|X\I| (ρ1g(ν2 − 2r)− (ρ1 + ρ2)g(r))

))
, then I

is

• 0-robust
• min{ν2 , g

−1(g(ν2 − 2r) − ρ2
ρ1
g(r)) + 2r}-distance-

robust
• g(δ)|X \ I|-cost-robust

with respect to RTδ(A) for the Λgd cost function.

Note that Theorem 3 implies that if I ⊆ X can be covered
by two balls of radius r whose centers are 10r apart, and
each covers half of I, and if there is 5% noise, then for
any δ ∈ [5r, 8.5r), I is 0-robust, 4r-distance-robust, and
δ|X \I|-cost-robust toRTδ(A) for the 2-medians function.

We need the next two lemmas to prove Theorem 3. Lem-
mas 2 and 3 examine the output of the (k, g)-δ-truncated
and (k, g)-centroid algorithms when the un-noised data has
a well-clusterable underling pattern.

Lemma 2. LetA be the (k, g)-centroid algorithm. Assume
that I ⊆ X , B1, . . . , Bk, and δ are as defined in Theorem
3. Let A′ = RTδ(A), then A′(X )|I = {B1, . . . , Bk, ∅}.
Furthermore, for all y ∈ I, d(y, µ′(y)) ≤ min{ν/2,
g−1

(
g(ν2 − 2r)− ρ2

ρ1
g(r)

)
+ 2r}.

Proof. The conditions of Theorem 3 state that I can
be covered by a (ρ1, ρ2)-balanced set of balls, called
B = {B1, . . . , Bk}, such that rad(Bi) ≤ r for
all i ≤ k, and for all i 6= j, the centers of
Bi and Bj are at least ν > 4r + 2g−1(ρ1+ρ2ρ1

g(r))
apart. Moreover, δ is assumed to be in the range[
ν
2 , g
−1
(
|I|
|X\I| (ρ1g(ν2 − 2r)− (ρ1 + ρ2)g(r))

))
For i ≤ k let bi represent the center of Bi and Di
represent a ball of radius ν

2 − r centered at bi. Let
A′(X ) = C′ with centers, µ′1, . . . , µ

′
k that minimize Λgd′ .

Let D1 = {Di|Di does not cover any µ′j} and D2 =
{Di|Di covers more than one µ′j}. Since D1, . . . , Dk are
pairwise disjoint, |D1| ≥ |D2|. Assume in search of a
contradiction that D1 6= ∅. For any Di ∈ D1, for all
y ∈ Di, d(y, µ′(y)) ≥ ν

2 − 2r. Consider the following
set of µ′′1 , . . . , µ

′′
k : If Dj includes exactly one center, µ′i,

then let µ′′j = µ′i, otherwise µ′′j = bj .

ΛgX ,d′(µ
′′
1 , . . . , µ

′′
k) ≤ ΛgX ,d′(µ

′
1, . . . , µ

′
k)

+
∑

Di∈D1

∑
y∈Bi

[g(d′(y, µ′′(y)))− g(d′(y, µ′(y)))]

+
∑

Di∈D2

∑
y∈Bi

[g(d′(y, µ′′(y)))− g(d′(y, µ′(y)))]

+
∑

y∈X\I

g(d′(y, µ′′(y)))

≤ ΛgX ,d′(µ
′
1, . . . , µ

′
k) + |D1||I|ρ1

(
g(r)− g(

ν

2
− 2r)

)
+ |D2||I|ρ2g(r) + |X \ I|g(δ)

≤ ΛgX ,d′(µ
′
1, . . . , µ

′
k)

+ |D1||I|
(

(ρ1 + ρ2)g(r)− ρ1g(
ν

2
− 2r)

)
+ |X \ I|g(δ)
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< ΛgX ,d′(µ
′
1, . . . , µ

′
k)

This forms a contradiction, so without loss of generality
let every Di cover a center µ′i. For i 6= j and for all
y ∈ Bi, d(y, µ′i) ≤ ν

2 < d(y, µ′j). Therefore, A′(X )|I =
{B1, . . . , Bk, ∅}.
For everyC ′i ∈ C′, |Bi|·miny∈Bi

g(d(y, µ′i)) ≤ |Bi|g(r)+
|Ci \ I|g(δ). Therefore, there exists y ∈ Bi, such that

g(d(y, µ′i)) ≤ g(r) +
|X \ I|
|Bi|

g(δ)

≤ g(r) +
|I|
|Bi|

(
ρ1g(

ν

2
− 2r)− (ρ1 + ρ2)g(r)

)
≤ g(

ν

2
− 2r)− ρ2

ρ1
g(r)

Hence, for all y ∈ I, d(y, µ′(y)) ≤ min{ν/2, 2r +

g−1
(
g(ν2 − 2r)− ρ2

ρ1
g(r)

)
}.

Lemma 3. Let A be the (k, g)-centroid algorithm. For
any I, if it can be covered with a (ρ1, ρ2)-balanced set
of k balls, called B, where each ball has radius r and
the centers of two different balls are at least ν > 4r +
2g−1(ρ1+ρ2ρ1

g(r)) apart, then A(I) = B.

Proof. Refer to the supplementary material.

Proof of Theorem 3. Lemma 2 shows that for every y ∈
I, d(y, µ′(y)) ≤ δ. By Lemma 1, I is g(δ)|X \ I|-cost-
robust with respect to RTδ(A) for cost function Λgd.

Let B1, . . . , Bk be the mentioned balls that cover
I. Lemma 2 and Lemma 3 show that A′(X )|I =
{B1, . . . , Bk, ∅} and A(I) = {B1, . . . , Bk}. Therefore,
I is 0-robust with respect to RTδ(A).

Lemma 2 shows that for any y ∈ I, d(y, µ′(y)) ≤
min{ν2 , g

−1
(
g(ν2 − 2r)− ρ2

ρ1
g(r)

)
+ 2r}. Therefore, I

is d(y, µ′(y)) ≤ min{ν/2, g−1
(
g(ν2 − 2r)− ρ2

ρ1
g(r)

)
+

2r}-distance-robust with respect to RTδ(A)

UNDERLYING STRUCTURE OF I & CONVEXITY OF g

In this section, we restrict our attention to convex cost func-
tions and show that for such functions Theorems 2 and 3
can be strengthened. Note that g is convex in most com-
mon clustering, e.g. k-medians and k-means. Throughout
this section, we implicitly assume that g is also continuous,
increasing, and unbounded.
Theorem 4. For any k and convex function g, let A be the
(k, g)-centroid algorithm. For all I ⊆ X , such that I has a
σ-separable, ρ-balanced clustering of diameter s, and for
any δ > σs/2, and any

γ ≤

(
|X\I|
|I| + 1

)
g(δ) + 2g(s)

g(σs/2)
+ 2kρ2

I is γ-robust with respect to RTδ(A).

We need to develop a few results before proving Theorem
4. The next lemma states an important property of convex
functions.
Lemma 4. For any x, y ∈ X , a metric distance func-
tion d, and a convex function g, g(d(x, c)) + g(d(y, c)) ≥
2g
(
d(x,y)

2

)
.

Proof. In the following, the first inequality holds by the
convexity of g and the second inequality holds by the fact
that g is increasing and d satisfies the triangle inequality.

g(d(x, c)) + g(d(y, c)) ≥ 2g

(
d(x, c) + d(y, c)

2

)
≥ 2g

(
d(x, y)

2

)

The next lemma bounds the number of pairs that are clus-
tered differently in two clusterings based on the distance
between the partitions.
Lemma 5. (Ackerman et al., 2013) Let C1 and C2 be two
clusterings of Y , where C1 is ρ-balanced and has k clus-
ters. If ∆(C1, C2) ≥ γ, then the number of disjoint pairs
{x, y} ⊆ Y such that x 6∼C1 y and x ∼C2 y is at least
1
2 (γ − kρ2)|Y|.

The next two lemmas examine the output of the (k, g)-δ-
Truncated and (k, g)-centroid algorithms when g is convex
and I has a desirable internal structure.
Lemma 6. For any k and convex function g, let A be the
(k, g)-centroid algorithm. For all I ⊆ X that has a σ-
separable, ρ-balanced k-clustering of diameter s, namely
B, and any δ > σs

2 , if A′ is RTδ(A),

∆(B,A′(X )|I) ≤
|X\I|
|I| g(δ) + g(s)

g(σs/2)
+ kρ2

Proof. Let A′(X ) = C′ with centers µ′1, . . . , µ
′
k. Let

∆(B, C′) = γ and assume on the contrary that γ >
|X\I|
|I| g(δ)+g(s)

g(σs/2) + kρ2. Using Lemma 4, for any {x, y} ∈ I
such that x 6∼B y but x ∼C′ y, g(d′(x, µ′i))+g(d′(y, µ′i)) ≥
min{2g(δ), 2g(σs2 )} ≥ 2g(σs2 ). Lemma 5 shows that there
are at least 1

2 (γ − kρ2)|I| many such disjoint pairs. There-
fore,

Λgd′(C
′) ≥ g(

σs

2
)(γ − kρ2)|I|

> g(
σs

2
)

|X\I|
|I| g(δ) + g(s)

g(σs/2)
|I|

> g(s)|I|+ |X \ I|g(δ)

> Λgd′(B ∪ {X \ I})
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Contradiction. Therefore, ∆(B,A′(X )|I) ≤ kρ2 +
|X\I|
|I| g(δ)+g(s)

g(σs/2) .

Lemma 7. For any k and convex function g, let A be
the (k, g)-centroid algorithm. Let I have a σ-separable,
ρ-balanced clustering of diameter s, namely B. Then,
∆(A(I),B) ≤ g(s)

g(σs/2) + kρ2

Proof. Let A(I) = C with centers µ1, . . . , µk. Let
∆(B, C) = γ and assume, in search of a contradiction,
that γ > g(s)

g(σs/2) + kρ2. For any {x, y} ∈ I such that
x 6∼B y but x ∼C y, using Lemma 5, g(d(x, µi)) +
g(d(y, µi)) ≥ 2g(σs2 ). Lemma 6, shows that there are at
least 1

2 (γ − kρ2)|I| many such disjoint pairs. Therefore,

Λgd(C) ≥
1

2
(γ − kρ2)|I|2g(σs/2)

> g(s)|I|
> Λgd(B)

This forms a contradiction. Therefore, ∆(A(I),B) ≤
g(s)

g(σs/2) + kρ2.

Proof of Theorem 4. Let B be the σ-separable, ρ-
balanced, k-clustering of diameter s that covers I, and let

γ′ =
|X\I|
|I| g(δ)+g(s)

g(σs/2) +kρ2, and γ′′ = g(δ)+g(s)
g(σs/2) +kρ2. Lem-

mas 6 and 7 respectively show that ∆(B,A′(X )|I) ≤ γ′′

and ∆(B,A(I)) ≤ γ′. Therefore, ∆(A(I),A′(X )|I) ≤
γ′ + γ′′ ≤ γ.

7. Non-robustness of the Simplistic Paradigm
A key component of our δ-Truncated paradigm is the use of
a “garbage-collecting” cluster. In this section, we show that
using the common cost functions with no such “garbage
collectors”, we can not achieve similar noise robustness
performance. More specifically, Theorems 5 and 6 show
that for any desired level of robustness and signal-to-noise
ratio, there exists I ⊆ X with the desired signal-to-noise
ratio and a well-clusterable underlying pattern that is not
robust with respect to the p-Increased paradigm, as long as
p < |X \ I|.
Theorem 5. Let A be the k-means algorithm. For any
α, r, λ > 0 there exists X and I ⊆ X , such that rad(I) ≤
r, I can be covered with k balls of arbitrarily small radii,
and X has signal-to-noise ratio |I|

|X\I| ≥ λ. But, for any
p < |X \I|, I is not α-distance-robust or α2(|I|−|X \I|)-
cost-robust with respect to RIp(A) for the k-means cost
function.

Proof. Let d1 = (α + 2r)( λ
λ+1 |X | + 1) and d2 = 2(d1 +

2r) + 1. For i ≤ k, let Bi denote a closed ball of ra-

Figure 1. Structure of an unrobust dataset w.r.t RIp(A).

dius 0, such that |Bi| ≥ λ
k(λ+1) |X |. Let B1, . . . , Bk be

evenly placed on a line of length 2r. For, i ≤ b |X |λ+1c, let oi
be a point on the line that connects B1, . . . , Bk, such that
d(o1, B1) = d1 and d(oi, oi+1) = d2 (see Figure 1). Let
I =

⋃
i∈[k]Bi and X = I ∪ {o1, . . . , ob|X |/(λ+1)c}. Note

that X and I are chosen such that |I|
|X\I| ≥ λ.

Let A′ = RIp(A), A′(X ) = {C1, . . . , Ck+p}, µi denote
the center of Ci, and µ(x) denote the closest center to x.
Assume (in the hope of finding a contradiction) that for all
i ≤ k+p,Ci ⊆ I orCi ⊆ X\I. Without loss of generality
let C1 ⊆ I, then d(o1, µ1) ≤ d1 + 2r. Moreover, for any
Ci ⊆ X \ I, such that |Ci| ≥ 2, if oj is the left-most or
the right-most point of Ci, d(oj , µi) ≥ d2/2 > d(o1, µ1).
Without loss of generality, assume o1 ∈ C2. There are two
cases:

1. C2 = {o1, oj , . . . }: Then the cost of clustering C′ =
{C1 ∪ {o1}, C2 \ {o1}, . . . , Cp+k} is lower than the
cost of C.

2. C2 = {o1}: Let C3 ⊆ X \ I be any cluster of size at
least 2, and let oi be its left-most point (such a cluster
exists since p < |X \ I|). The cost of clustering C′ =
{C1 ∪ {o1}, {oi}, C3 \ {oi}, . . . , Cp+k} is lower than
the cost of C.

Hence, C is not an optimal clustering. So, for any opti-
mal RIp(A) clustering, there exists a cluster Ci such that
{oj , y} ⊆ Ci for some y ∈ I. Then, d(y, µi) ≥ d1

|I|+1 >

α + 2r. Hence, I is not α-distance-robust to X \ I with
respect to RIp(A).

Because there exists y ∈ I with d(y, µ(y)) > α + 2r for
all y′ ∈ I, then d(y′, µ(y′)) > α. So, I is not α2(|I| −
|X\I|)-cost-robust with respect toRIp(A) for the k-means
cost function.

Note that Theorem 5 implies that for any (k, g)-centroid
algorithm, A, any desired level of robustness, and any
signal-to-noise ratio, there exists I with arbitrarily small
radius and X ⊇ I with that signal-to-noise ratio, that is
not robust with respect to the RIp(A) function, as long as
p ≤ |X \ I| − k.

The next theorem proves similar results as in Theorem 5
for (structural) robustness, and contrasts results shown in
Theorems 3 and 4.
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Theorem 6. Let A be the k-means algorithm. For any
r, λ > 0, there exists X and I ⊆ X , such that rad(I) ≤ r,
I can be covered with k balls of arbitrarily small radii,
and X has signal-to-noise ratio of |I|

|X\I| ≥ λ. But, for any
p < |X \I|, I is not (1− 1

k )-robust with respect toRIp(A).

Bounded Space

Corollaries 1 and 2 demonstrate the limitations of p-
Increased algorithms even when the diameter of the data
is bounded.

Corollary 1. LetA be the k-means algorithm. For any λ, k
and ν < 1

k , there exists I ⊆ X , such that X has diameter 1
and signal-to-noise ratio |I|

|X\I| ≥ λ, and I can be covered
by k balls that have arbitrarily small radii and their centers
are at least ν apart. But for any p < |X \ I| and any
α ≤ 1−kν

2|X |(|I|+1) , I is not α-distance-robust, (1− 1
k )-robust,

or (α − νk)2(|I| − |X \ I|)-cost-robust with respect to
RIp(A) for the k-means cost function.

Corollary 2. Let A be the k-means algorithm. For any
λ > 0, there exists I ⊆ X , such that X has diameter 1 and
signal-to-noise ratio |I|

|X\I| ≥ λ, and I has an arbitrarily
small radius, but for any p < |X \ I| − k and any α ≤

1
2(|I|+1)|X | , I is not α-distance-robust or α2(|I|−|X \I|)-
cost-robust with respect to RIp(A) for the k-means cost
function.

8. Comparing the Two Paradigms
Here, we use an example to further demonstrate the robust-
ness of the δ-Truncated paradigm compared to the limita-
tions of the p-Increased paradigm. Moreover, we use ex-
periments to back up these our theoretical results.

Example 1. Let A denote the k-means algorithm. By
Corollary 2, there exists I ⊆ X such that |X | = n has
diameter 1 and 10% noise, and I has radius 0, but for
any p < 0.1n − k, I is not 5/n2-distance robust to X \ I
with respect to RIp(A). Since I can be covered by a ball
of radius 1/4n2, by Theorem 2, for δ ∈ [ 1

n2 ,
3
√
3

4n2 ), I is
1/n2-distance-robust with respect to RTδ(A).

8.1. Experiments

Datasets: For any k, we use n = 50000 data points on
the unit square. 90% of the points come from k Gaussian
distributions with centers selected uniformly at random and
standard deviation = 1

n . Additionally, 10% uniform noise
is introduced in the data.

Clustering Algorithms: We run the Lloyd algorithm for
k + p-means, when p = 1, 2. For δ-k-means, we adapt
the Lloyd algorithm to calculate the clustering using a δ-

truncated distance matrix in every iteration, where δ is set
to 10

n .

Charts: The following graph shows the average cost of a
clustering per clustered point, in δ-k-means, k + 1-means,
and k + 2-means. Let (C,Φ) be the δ-k-means clustering.
The δ-k-means average cost is |Cost(C) / |

⋃
C|. For the

k + p-means, we find the minimal cost of a collection of
clusters that cover at least |

⋃
C| points, then divide this

cost by the number of points that are present in these clus-
ters. The δ-k-means average cost per point is considerably
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smaller than that of k + p-means. Moreover, this cost is
stable throughout the experiments and remains close to the
average radius of the cluster. On the other hand, the cost of
k + p-means fluctuates and is considerably higher than the
average radius of the clusters.

9. Concluding Remarks
In this paper, we consider the problem of robustness of
clustering algorithm to the addition of unstructured data
points (that we termed “noise”). We propose to aug-
ment any given center-based clustering algorithm with an
efficiently implementable “noise-robustifying” mechanism
that creates an additional cluster, used as a “garbage col-
lecting” bucket. We introduce rigorous robustness notions
that capture different aspects of robustness that may be de-
sirable for such algorithms. We prove that our algorith-
mic paradigm indeed guarantees desirable noise robust-
ness, and show that the simple strategy, of just applying
the underlying clustering algorithms with extra clusters (to
accommodate such noisy data), cannot enjoy similar per-
formance.
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