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Abstract

Bayesian methods are ubiquitous in machine
learning. Nevertheless, the analysis of empiri-
cal results is typically performed by frequentist
tests. This implies dealing with null hypothesis
significance tests ang-values, even though the
shortcomings of such methods are well known.
We propose a nonparametric Bayesian version of
the Wilcoxon signed-rank test using a Dirichlet
process (DP) based prior. We address in two dif-
ferent ways the problem of how to choose the
infinite dimensional parameter that characterizes
the DP. The proposed test has all the traditional
strengths of the Bayesian approach; for instance,
unlike the frequentist tests, it allows verifying
the null hypothesis, not only rejecting it, and
taking decisions which minimize the expected
loss. Moreover, one of the solutions proposed to
model the infinite-dimensional parameter of the
DP allows isolating instances in which the tradi-
tional frequentist test is guessing at random. We
show results dealing with the comparison of two
classifiers using real and simulated data.

rank test is indicated as the nonparametric statisticalgsro
dure for the analysis of two paired samples.

Let us consider classification as a case-study. After having
assessed the accuracy (or the AUC, or any other indicator)
of two competing classifiers on multiple data sets, one has
to formally check whether the difference among the two
classifiers is significant. The Wilcoxon signed-rank is used
for this purpose because, thanks toritmparametricna-
ture, it solves some major problems of thiest: it doesot
assume commensurability of the measures across different
data sets; it doasotassume normality of the sample mean
of the accuracy; it isobustw.r.t. outliers. The signed-rank
test is moreover preferable also to the sign test, which is
nonparametric but has much lower power.

However the Wilcoxon signed-rank test is affected by all
the drawbacks which characterize the null-hypothesis sig-
nificance tests (NHST). Such tests “allow one either to re-
ject the null hypothesis or to fail to reject it, but they ot
provide any measure of evidence for the null hypothesis”
(Raftery, 1995. This prevents associating a cost to Type |
and Type Il errors and taking decisions by minimizing the
expected loss. Instead, decision are taken on the basis of
the chosemignificancex, namely the probability of reject-
ing the null hypothesis when it is true. In principle, one
should balance significance and power of the test. Yet, a

1. Introduction principled way of doing this is lacking. Hence, decisions

The field of machine learning is constantly growing. Many are simply taken by setting =0.01 or 0.05, without con-
novel approaches in classification, regression etc. are cosidering the probability of Type Il errors. Moreover, the
stantly proposed, raising the issue of assessing and compdi-value and thus the outcome of the test depend on the in-
ing these new methods with the state-of-the-art. A propetention of the person who has collected the d&addman

way to perform such comparison is by means of statistical 999 Kruschke 2010.

procedures. Tutorials on the use of parametric and NoMp,yegian tests of hypothesis constitute an appealing al-
parametric statistical tests as a methodologyforcomgannternmiVe to the NHST analogous. They return the pos-

algorithms have been presentélbmsarZOOG Trawinski terior probability of the null and the alternative hypothe-
et _al, 201 _Derrac et al.201]) on different areas of Ma- ses, which are thus fully characterized in terms of mean,
chine learning. In all these papers, the Wilcoxon S'(-:]ne‘ji/ariance, credible interval and density function. While

Proceedings of the 3% International Conference on Machine the frequgntist test can onlseject the null hypothesis,
Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy- the Bayesian one can alseceptthe null hypothesis, on
right 2014 by the author(s). the basis of the estimated posterior probability. Once



The Bayesian Wilcoxon signed-rank test

the costs of Type | and Type Il errors are specified, aexpected loss depends on the prior. This behavior is anal-
Bayesian test allows taking decisions by minimizing theogous to that observed in credal classifi&€srani & Zaf-
expected loss; in this way, the size of the test can be befalon, 2008, which suspend the judgment when the classi-
ter adapted to the actual need. The computation does nfitation is prior-dependent, namely when the most proba-
depend on the intention of the person who collected théle class varies with the prior used to induce the classifier.
data. Bayesian tests have been widely considered for clinfhe little reliability of prior-dependentecisions is con-
ical practice Spiegelhalter et 311994 and cognitive sci- firmed by the fact that when the IDP test is indeterminate,
encesKruschke2010. They are however very rarely used the Wilcoxon signed-rank and the Bp€ 0) tests are vir-
in machine learning, despite the abundance of Bayesian atually behaving as random guessers. Since IDP has all the
gorithms in this area. To the best of our knowledge, nopositive features of a Bayesian test and it is more reliable
Bayesian version of the Wilcoxon signed-rank has beerthan Wilcoxon and D= 0), we propose IDP as a new
proposed so far. We fill this gap by proposing a nonparatest for comparing classifiers and other methods in machine
metric Bayesian version of the Wilcoxon signed-rank testiearning. Finally, notice that the proposed test is appliea
based on the Dirichlet process (DPefguson1973. In  to many other fields of research where it has the potential
his seminal paper on the Dirichlet process, Ferguson proef reducing the misleading results of NHST by avoiding the
vided a Bayesian justification of many classic nonpara-use of a significance parameter which does not represent a
metric estimators (Mann-Whitney statistics, median,)etc. correct measure of the evidence provided by dadaiison
Similar results were derived by other authors that, employ2013. The IDP test developed in this work can currently
ing DP as prior model, were able to naturally obtain esti-be used online (or downloaded as R or Matlab code) at
mators related to the frequentist ones, e.g., Kaplan-Meieht t p: / /i pg.i dsi a.ch/ sof t war e/ | DP.php.
(Susarla & Ryzin1976, Kendall's tau Dalal & Phadia
1983. Recently there ha_s been an increasing interest in Dirichlet Process
the development of Bayesian nonparametric procedures for
hypothesis testing focusing in particular on the twoKpr The Dirichlet proces®p(a) has been proposed bif€r-
sample problemBorgwardt & GhahramanR009 Holmes  guson 1973 as a probability measure on the set of prob-
et al, 2009 Ma & Wong, 201% Chen & Hanson2014).  ability measures on some spage (for this paper we can
Two sample tests deal withnpaired samples, while in  assumeZ = R). It has an infinite dimensional parame-
machine learning we often work witbaired observations, ter a(-), which is a positive finite measure ovéf, i.e.,
e.g., when we want to compare the accuracy of two classie (A) > 0 (positive) for any (measurable) sktc 2 and
fiers on the same collection of datasets. Moreover, an opea(Z) < « (finite). Assuming that a probability measure
problem in all these procedures is how to choose the infiis drawn from DP, i.e.P ~ Dp(a), the characteristic of
nite dimensional parameter of the nonparametric prior inDP is that, for any (measurable) partitiBy, . .., By, of 2,
case of lack of prior information. the finite vector(P(B1),P(By),...,P(Bm)) is Dirichlet dis-
Here, we address the problem of how to choose the infinitcg,r.'bu.tedI.Dlr (a(By),a(By),... ,_a(Bm)). From the Dirichlet
: . . distribution, we can thus derive the prior medR(B;)] =
dimensional parameter that characterizes the DP by means ; 5
. . . d(Bi)/a(2)) and variance £[(P(Bi) — &[P(Bi)]))‘] =
of two models corresponding to two different choices of the 2
. i . . . aB)(a(Z)—a(B))/a“(Z)(a(Z)+1) of P(Bj) w.r.t.
prior parameter: the noninformative DP prior (Bpf 0)) 1 .
L . the DP for anyB; € 2.~ This shows that the normal-
and the prior ignorance model (IDP). Bpf 0) is the non- . :
. : , , . ized measurer(-)/a(Z) of DP reflects the prior expec-
parametric analogue of a Bayesian noninformative prior, . . .
: : . . tation of P, while the scaling parameter(.2") controls the
while IDP consists of a set of DPs priors and is based ON riance ofP arounda(-)/a(%). The normalized mea-
the techniques developed Bayesian robustneg8erger '

et al, 2000 1994 Pericchi & Walley 1991 Walley, 1997 surea(-)_/a(ff) is a probability measure, therefore, when
. o : o . Z =R, it can be completely characterized by the cumula-
for modelling lack of prior information within parametric

models tive distribution functionG(z) = a(—,7/a(Z). We can
' then denote the Dirichlet process by(a(Z),G).

By means of simulations on artificial and real world data, . . o .
S . - .. ..'DP is a conjugate prior in the sense that, given a sample
we use our test to decide if a certain classifier is signifi-

cantly better than another. We show that the Bayesian tes ,...,Zn-f.rom F . Dp(a(2),G) .Of n obseryatlons Wh'.Ch
. . . are conditionally independent givén and fixed the prior
incurs much lower costs than the frequentist one for a wide T
) parametersr(Z) = sandG = Gy, the posterior distribu-
variety of costs of Type | and Type Il errors. We more- : C : T
) . tion of the cumulative distribution functioR of P is still

over show that the IDP test is more robust, in the sense tha

it acknowledges when the decisiongseor-dependent In Twe will use calligraphic letters{, &, to denote expectation
other words, the IDP test suspends the judgment and b@nd probability w.rt. the DP.
comesndeterminatavhen the option which minimizes the


http://ipg.idsia.ch/software/IDP.php
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Dp(an(Z),Gn) with F w.r.t. its mediarM and computes the statistic:
s 1 0 TF= 3 n(zh = 3 T, )
an(g)zs+n’ Gn:_G0+_Z|[Z o)1 {i: >0} 1<i<j<n
s+n s+n&g

wherer;(|Z]) is the rank of z| and
wherela(z) is the indicator function: it is one whene
A and zero otherwise. Thus, a-posteriori we have that T+ — 1 ifz;> -z,
EP(Z < 2)|Z4,...,Zn] = (S&(2) + n.z)/(s+ n), where ' 0 otherwise.
Nez="3S"1liz «)(2) is the number of observatioZsfallin L .
N<z=3r1liz.e)(2) #51alling 11 ecision is taken by comparing the observed value of
in (_0072] T -+ 2T+ . . oy .
_ _ _ _ the statisticR" = 77—, against its critical value, which
An issue in the use of the DP as prior measur®eshow  genends on the significance For a large number of data,
to choose the infinite dimensional paramegrin case of 4 gistribution oR* under the null hypothesis is approxi-
lack of prior information. There are two avenues that Wemately normal with mean/2. Then, in practice, consider-
can follow. The first assumes that prior ignorance can b‘?ng for example a one-sided test e’valuatMg,K_ 0 against
modelled satisfactorily by a so-called noninformativepri ;"< 0, the null hypothesis is rejected when the observed

In the DP setting, the only noninformative prior that has, 51y ofR* is significantly larger (according to the signifi-
been proposed so far is the limiting DP obtainedfer 0,  .5nce levetr) than J/2. Based on the definition df;", one

which has been introduced biFdrguson1973 and dis- can interpret the statistR™ as an estimator of the probabil-

tcr:JstsledkbyfRu_bln_ 1f98])' t'T he Eeclc()jng approach jgg?esmity that, given two independent observatiahandZ’ from
at lack of prior information should be expressed in terms 5 " 5/ "y probability can be written as

of a set of probability distributions. This approach is kmow
asBayesian robustneqd8erger et al. 2000 1994 Peric- P(Zz>-72)=P(2<0,Z >0, |Z|>Z|)
chi & Walley, 1991, Walley, 1991, Coolen-Schrijner et al. / / /
2009 and it has been extensively applied to model lack of +PZ>0,250, [2[2Z])+PZ>0 2 >0),
prior information in parametric models. In this paper, we from which it can be noticed tha&®(Z > —Z') considers
implement the limiting DP obtained far— 0 and we also  at the same time the probability thatis positive and the
extend the Bayesian robust approach to the nonparametrigrobability that negative differences are smaller than the
setting by considering a set of DPs obtained by fixétg  positive ones; for this reason the Wilcoxon statistic is enor
a strictly positive value and lettinGo span the set of all  sensitive than the sign test statistic to the presence afsa bi
distributions. (positive ifP(Z > —Z') > 1/2 or negative iP(Z > —-Z') <

1/2) in the differenceg;. In analogy with the Wilcoxon
3. The Dirichlet Process-based Wilcoxon test signed-rank test, we propose a Bayesian test based on the

probability
Let X" = (Xy,...,%Xy) andY" = (Y1,...,Ys) be two se-
guences of paired observations representing the accaraciqp(z >-Z)= // |[7Z,’w>(z)d(|: (2F(Z2)) = E[|[7Z,lm)(z)].
of classifiersX andY on n different data sets. Define '
Z =Y — X and assume for the moment that there are norhe test compares the hypothe$¥$z > —7/) < 1/2
ties of typez; = —Z;. We will discuss how to manage ties againstP(z > —7’) > 1/2. Notice that the Wilcoxon
and zeros in SectioB.2 LetF be the distribution oZ and  sjgned-rank test needs to assume the symmetFytof be
M its median. A one-sided test contrasts the null hypothaple to specify the distribution &" under the null hypoth-
esisM < 0 against the alternative hypothebls> 0. The  esjs. In this context, another advantage of the Bayesian ap-
easiest test about the median of a distribution is the s&n te proach is that it does not require the symmetry assumption
which counts the number of positive differen@s- 0; this  sjnce all inferences are derived from the posterior distri-
statistic is an estimator of the probabil®fZ > 0). Then,  pytion of P(Z > —Z') > 1/2 which follows directly from
a Bayesian analogous of the sign test would consider thgye prior distribution forF and the sequence of observa-
posterior probability oP(Z > 0). However, a shortcoming  tionsz" = (z;,...,Z,). We propose the Dirichlet process

of the sign-test is its low power. as prior forF.

The Wilcoxon signed-rank test is more powerful than therpaorem 1 1FE ~ Dp(a(Z),G), then

sign test, as it accounts not only for the sign but also for the ’

size of the differenceg;. It does so by ranking the abso- 6Pz > -2 = //I[,z o (DAE[F(2F (D)) )
lute value of the differences and then comparing the ranks "

of the positive and negative differenceBefnsar 20086. ://I . (Z)d[G(min(ZJ')HU(»@”) G(2)6(2)]
The Wilcoxon signed-rank test assumes the symmetry of [=2:2) a(Z)+1
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This result is similar to thatin Lemma 2.1 ddélal & Pha-  be used for predictive inferences. In case of lack of prior
dia, 1983 for the Kendall's tau. Its proof and that of the information, a more natural way to model prior ignorance
next theorems can be found in the appendix (supplememay be to consider the set of all distributio@g (Walley,
tary material). To use the DP for evaluating the posteriorl991), (Walley, 1996). In other words, we keepfixed and
probability ofP(Z > —Z7') > 1/2, we must choose the base assume tha®g € I' = {all distributiong, and then compute
CDF Gy. We focus on the case where we have no priorthe lower and upper expectations for all the functions of in-
information about the functional form &f (which would  terest in the statistical analysis. We call this model prior
justify the use of a nonparametric test), and about the valuaear-ignorance DP (IDP).

of P(Z > —Z'), and propose a model which is capable of . ] ]

modeling a situation of complete prior ignorance about the! "€orem 3 Given the DP prior Digs, Go), with Go € T,
expectation oP(Z > —Z'). For any choice 0§ andGo the the prior onver and upper expectations are obtained for
prior and posterior expectation 8{Z > —Z') can be de- 9Go0= 0z, With Zy <0 (lower) and % > 0 (upper), and are
rived from Theorentd, by taking, respectivelyy(Z) = s EP(Z>-7)=0, EP(z>-2)]=1, (5
andG = G for the prior anda(Z’) = s+nandG = Gy ) _ ) )

for the posterior. Since the form @ does not affect the ~the posterior lower expectation of > —Z') is obtained
posterior fors — 0, this is a frequent choice for modeling for dGo(2) = &z, with Zo < —max|Zi| and is

a noninformative prior. This prior has been introduced un- Ly 2 Yo (@)

der the name of Bayesian Bootstrap Rupin 1981). The EIP(Z> —7')[Z") = L A ! o=
prior and posterior expectations, in this case, are given by = (srn)(stn+1) (stn)(stnt1)’

the following theorem (6)
' the posterior upper expectation is obtained for@@ =

Theorem 2 Given that F~ Dp(s,Gy), fors— Oone has 0z, With Zo > max|Z| and is

‘ & > _7N|Z" =
£[P2=-2)] = [10m)(@dCo(2). ® e
Z z |[7Z|‘oo)(zl) z |[0‘oo) (ZJ) (7)
non n i=1j=1 4=t + s?+2nsts
EP(Z>-2)Z" = n(n—1+l) Zl Z l-z,.00)(Zj) + Z loe)(Z)) | - (stn)(stn+1) (stn)(s+n+1) T (stn)(stn+1)”
e =1

(4) From Theorem3 it follows that, given the prior
Dp(a(Z),Go), with a(Z') < s, the posterior expectation

It can be easily seen that the posterior expectation olataineof P(Z > —Z') will be bounded by¢'[P(Z > —Z')|Z"] and
for s— 0 is equal toR". This shows that’[P(Z > -Z')]  &[P(Z > —Z')|Z"] whatever is the choice @o. Thus, one
is closely related to the Wilcoxon signed-rank stati&ic ~ should not worry about the fact the upper and lower expec-
This result extends to the Wilcoxon signed-rank a similartations are obtained by extreme prioBp(s, dz,)), since
result obtained byHRerguson1973 concerning the rela- they are only used to identify the range of values where
tionship betwee’ [P(X <Y)| (with X andY representing the expectation provided by any other (smoother) prior will
independent unpaired samples) and the Mann-Whitney Wall. The imprecision, defined as the difference between
statistics. Note that, although i8)(the posterior means of the upper and lower expectations, can be derived from
P(Z > —Z') andR* appear to be closely related, the poste-Theorem3 as &[P(Z > —Z')|Z"] — &£[P(Z > -Z/)|Z"] =
rior distribution ofP(Z > —Z') is, in general, differentfrom _st2n1sts 404 goes to zero for large Thus,&[P(Z >

that assumed fdR™ under the null hypothesis (although, if (—SE?;(E”TZEP(Z > —7')|Z" tend to the asymptotic limit of

the null hypothesis is true they converge to the same disg+ f5r n 5 . To perform the hypothesis test, we need to
tribution for largen), and thus one should not expect the | o the posterior probability d(Z > —Z') > 1/2. The
frequentist and Bayesian tests to make the same decisiopg; theorem gives an important result which can be used
even fors — 0. The prior expectation fas — 0 depends 5 efficiently approximate it by Monte Carlo sampling, in

on the choice of the prior base meas@g For exam-  .qrrespondence of the atomic priors that give the upper and
ple, by choosingsy symmetric around zero, we obtain @ |, wer distributions.

prior expectation of 12. However, in a situation of com-

plete prior ignorance, we have no reason to assign, a priorirheorem 4 Consider one of the limiting priors that give
any specific value to the probabili§(Z > —Z’'). More-  the posterior lower and upper expectations §-(7). Let
over, Rubin has highlighted a second critical point: thedFR, be sampled from its posterior; then glE wodz, +
Bayesian bootstrap assigns zero posterior probabilityyo a ZT:lWJ Oz;, Where(wo,wy,...,Wn) ~ Dir(s,1,...,1) and,
set that does not include the observations, sincefer0,  for any ac [0, 1], it holds that

EP(A)|Z" = (a(A) +na)/(s+n) — 0 whenny =0, i.e.,

wLe(ne)\'/er] the(re(age not)é(bserv)ations in the/s€éRubin, E[P(Z 2-7)> a|z“] =P [g(w.,Z”) = a] ’ (8)
1981). This is not suitable for a Bayesian model that can ?[P(Z >-Z')> a|zn} =P[g(w,Z") >4,
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n n
with gw,,Z") = 3 5 wiwjl_z «)(Z;j) and 0.04
N i=1j=1 ' Area

Area Upper=0.87
0031 | ower=0.76
/

n n
g(w., X") =wo(2—wo) + 2 2 Wil ze) (Zj),
i=1j=

and P is computed w.r.t. this Dirichlet distribution.

— — lower
upper

Probability
o
S

Based on this theorem, we can numerically approximate

2 and.Z by Monte Carlo sampling the vector of weights 0 05 1

(Wo,W1,...,Wyn) from the Dirichlet distribution.  This P> -Z)

means that we do not need stick-breaking or other sampling

techniques specific for DP. Figure 1.Posterior distributions dP(Z > —Z'). Area lower (up-

. ) . per) gives the value of2[P(Z > —Z') > 1/2|2"] (Z[P(Z >
!_et a, be f[he decision of preferring Class'ﬂé'to X a”@'ao —~7') > 1/2|Z")), i.e. the integral of the lower (upper) distribu-
its opposite; we can formulate the Bayesian test in termgon, from 1/2 toc.

of a loss function which assigns loksto an error of type

| (taking the decisiora; whenY is not better tharX) and
losslg to an error of type Il (taking the decisi@ whenY

is actually better thaiX). To minimize the expected loss,
the decisioray should be preferred if

Finally, by exploiting the results inJanssenl1994), it is
possible to show that the above test is asymptotically con-
sistent as a test fd?(Z > —Z’), in the sense that the poste-

loZ[P(z>-2Z) > 32" <h2[P(z>-Z') < 3|27, rior lower and upper distributions (Z > —.Z’) converge
to the asymptotic distribution of the statist®"™ (a Nor-
thatis mal distribution). Conversely, the Wilcoxon-signed rank
PPEZ>-7)> %|Zn] < l1 : 9) test is asymptotically consistent only under the assumptio
lo+11 that the distributiorF is symmetric; when this is not the

where the probability?[P(Z > —Z') > 1/2|Z") is evalu- ~ case the test is not calibrated and, thus, asymptotically in
ated from the posterior distribution &. Notice that this ~consistent. Consider this exampR(Z > —Z') = 0.5 but
decision problem is the Bayesian analogous of a frequerthe mediammis positive and, thug is asymmetric (for in-

tist one-sided test withr =lp/(lo+11) where we have used stance= = wU[1, 5]+ (1—w)U[-12 5], withw = 0.46514,

the posterior probability oP(Z > —7') > 1/2 given the m=1and Ua, b] is the uniform distribution on the inter-
data in place of the likelihood of the data given the nullval [a,b]), which can happen if a classifier is slightly better
hypothesis. In the IDP model, both the lower and uppethan the other except in a few cases where it is worse. In
probabilities ofP(Z > —Z’) > 1/2 are compared with the this case, is one classifier better than the other? Note that
thresholdy/(lo+11) and the decision is made based on thethe frequentist test would neither be calibrated if the arsw
following rules: (i) if 22 > 11/(lo+11) we prefer classifier is yes, nor powerful if it is not (the probability of rejecgin

Y; (i) if 2 <l11/(lo+11) we prefer classifieX; (iii) if Hp converges to 6% for frequentist test). In this case our
2 >11/(lo+11) andZ < 11/ (lo+11) we are not able to  test coherently declares that no classifier can be preferred
make a decision which yields minimum expected loss for(it is asymptotically calibrated).

any choice of the prior measu@.

. - 3.1. How to choose sin IDP
Thus, the IDP test can return a determinate decision only

in the first two cases, whereas in the third case we are ifThe value ofs determines how quickly lower and upper
an indeterminate situation where it is not possible to reaclposterior expectations converge as the number of obser-
a decision. Notice that the fact of preferring classiffer vations increases. A way to select a values@$ by im-
does not imply thak is better thary, but only that one can  posing that the degree of imprecisiéiiP(Z > —Z')|Z;] —
expect a smaller loss by choosiKg Indeed, ifl; > lp, one  £[P(Z > —Z')|Z;] is reduced to a fraction of its prior value
may preferX even wherY is likely to be better, if the ev- (£[P(Z > —Z')] — £[P(Z > —Z')] = 1) after the first ob-
idence in favor ofY is not sufficiently large to compensate servationZ; =Y; — X;. A degree of imprecision close to
the larger cost in case of error. As an illustrative example,l after the first observation increases the probability of an
Figurel shows the posterior upper and lower distributionsindeterminate outcome of the test, whereas, a value close
of P(Z > —Z') obtained frorm = 20 observationZ sam- to 0 makes the test less reliable (in fact the limiting value
pled from a standard normal distribution. Based on thes®f O corresponds to the Bayesian bootstrap which will be
posterior estimates, the test will decide in favor of clessi  shown in the next section to be less reliable than IDP).
Yifl1/(lo+11) < 0.76, and conversely in favor of classifier Then the intermediate value of 2 is a frequent choice in
Xif I1/(lp+11) > 0.87. It will be instead indeterminate if prior-ignorance modelingRericchi & Walley 1991; Wal-
0.76<I11/(lp+11) < 0.87. ley, 1996). Although this is a subjective way to choose the
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degree of conservativeness (indeterminacy), it represent
reasonable trade-off between the reliability and indeterm
nacy of the decision. Fron®)—(7) it follows that&’[P(Z >

~7)|22] - EIP(Z > ~Z))|2a] = 5. Thus, by im-

posing that(sfi;rﬁ = 1, we obtains= (v/17—3)/2. Ob-

(lp,11). Fig. 2 reports as a function df and for two differ-
ent values oflp,l1): (i) the loss of the D= 0) test; (ii)
the loss of the Wilcoxon test; (iii) the loss of the IDP test
when it is determinate; (iv) the indeterminacy of the IDP
test, i.e., the number of runs it returns an indeterminate re
sponse divided by the total number of Monte Carlo runs.

serve that the lower and upper probabilities produced by @t s start comparing Wilcoxon versus Bpf 0). From
value ofs are always contained in the probability intervals

produced by larger values ef Then whenever we are un-
decided fors; we are also fois, > ;. Nonetheless, for
largen the distance between the upper and lower probabil-
ities goes to zero, then also the indeterminacy goes to zerc 1 1

‘—e—s:O —o—Freq —— IP-Dp determinate —s— IP-Dp indeterminacy ‘

3.2. Managing ties

So far, it has been assumed that there is zero probability
of ties i = —Zj ) and zerosZ; = 0). Notice that the ze-
ros can be interpreted as ties, sine= 0 = —7;. If ties
are possible, the common approach to account for them it
to consider the probabilityP(Z > —Z') + $P(Z = —Z')]
(Sidak et al.1999. Note thatP(Z > —Z) + 3P(Z = -Z')
is equal toE[l(_ 7 o) (2) + %I{,z}(z)] which in turns is equal
to E[H(z+ Z)], whereH(-) denotes the Heaviside step ) )
function, i.e.,H(z) =1 forz> 0, H(z) = 1/2 forz=0 the plot relative to the losflo = 1,11 = 4), it can be seen
andH(z) = 0 for z< 0. The procedure presented in this that Wilcoxon is too conservative towards the null hypoth-
section is easily extended to the case of ties by substi€Sis. Wherh > 0 it has a greater loss than 3p¢ 0) and,
tuting ||z )(Zj) with H(Z +Z;) in the computation of th_us, a lower power. This conservativeness can be quan-
Z[P(Z > 7> 1/2|Zn] and?[P(Z > _7) > 1/2|Z”}. tified by c;omputmg the areas under the curves in Fg.

for the Wilcoxon and DX = 0) tests, i.e., the average loss
(averaged over the Monte Carlo runs and the values) of
The results are shown in Tablefor different values of
5(|o,|1)- It is evident that Dpg = 0) has always lower av-
erage loss than Wilcoxon, (see in particullarl;) = (1,4)
which corresponds to the plot in Fig (left)). The only
exception is for(lp,l11) = (1,19) (Fig. 2 (right)). In this
case, the DP-based tests declares that clas¥ifieibetter

[0,
-0.05 0 0.05 -0.05 0 0.05
A A

Figure 2.Loss forly = 4 (left) andl; = 19 (right).

4. Numerical Simulations

Consider a Monte Carlo experiment in which paired value
of accuracies, Y; are generated far= 30 multiple data

sets based on the Gaussian models:
(L] e ) w -- ot prona
Y ’ ’ than classifieiX when the posterior probability of the hy-
pothesisA > 0 is greater than & a = 0.95. Thus for this

for i =1,...,n, with A (difference in accuracy) ranging choice of the loss, Wilcoxon and DP are closely matched.
from —0.07 to Q07 ando = 0.12. We have selected these However, the choicélg,l;) = (1,19) is extremely conser-
values on the basis of extensive classification experimentgative, implying that the cost associated to a Type | error
performed using WEKA \Witten et al, 2011). Hereafter, is 19-times greater than the cost associated to a Type Il er-
due to the limited space, we only report the results forror. Consider, for instance, that clinical trialSgiegelhal-
the casep = 0; the results obtained with correlation (e.g., ter et al, 1994 are usually designed to have significance
p = 0.95) lead to similar conclusions. The aim of this sec-of 5% and power 80 or 90% (the computation of power re-
tion is to compare three methods to evaluate if the clasquires doing a number of assumptions). We can roughly
sifier Y is better than classifieX (i.e., A > 0): (i) one- infer that in these cases a Type Il error is regarded about
sided Wilcoxon signed-ranks test; (ii) Bayesian Bootstrapwo or four times worse than a Type | error. The advan-
Dp(s = 0); (iii) prior ignorance Dirichlet process (IDP) tage of the Bayesian test is that one can make decisions
model. The one-sided Wilcoxon test has been implementethinimizing the expected loss. Conversely, in the frequen-
according to the conventional decision criterigprvalue  tist Wilcoxon test, one always makes the myopic choice
less thana = 0.05. To evaluate the performance of the a = 0.05 regardless of the loss. Tahleshows that for
tests, we have considered the average loss produced laywide variety of values of cost configurations, including
each method (i.e. the proportion of wrong decisions mul-(lp,l1) = (1,2) and (lo,11) = (1,4), the Bayesian test in-
tiplied by the corresponding loss) with different values of curs much lower loss than the Wilcoxon signed-rank. To

0-2
po?

0
A

po?
02



The Bayesian Wilcoxon signed-rank test

LOSS,'o:]. |1:1 |1:2 |1:4 |1:9 |1:19 LOSS,'o:]. |1:1 |1:2 |1:4 |1:9 |1:19
Dp(s=0) .025 .034 .044 .053 .061 IDP .023 .031 .040 .049 .057
Wilcoxon .048 .049 .050 .054 .061 Dp(s=0) .023 .031 .040 .049 .057

Wilcoxon .047 .047 .048 .051 .057

Table 1.Total average loss. ) )
Table 2.Average loss in the IDP determinate cases.

" . L. . % Ho/H1 =1 =2 lh=4 1,=9 1;=19
compare Wilcoxon and Dp& 0) with IDP, we distinguish Dp_0) 45/45 43/48 4350 4354 4255
two cases: (i) the instances in which IDP is determinate; Wilcoxon  100/0  100/0 100/0 100/0 50/ 50
(ii) the instances in which IDP is indeterminate. The loss
(averaged w.r.tA and the Monte Carlo runs) for the first Table 3.% of Hp/H1 decisions in the IDP indeterminate instances
case is shown in Tab® while for the second case Tat8e averaged oveh for lo = 1 and different values df.
reports the percentage of times the Wilcoxon ands2pQ)
tests have returned a wrong decision in the two cases where
the truth isHo or, respectivelyH,. From Table2-3, it ~ 4.1. Practical case studies

can respectively be seen that. (.i) i.n the “.DP determinate inWe consider three different classifiers: naive Bayes (NB)
s_t_a_nces the Iqss of D:p_@ 0) _commdes with th‘f’“ of IDP; and two variants of the tree-augmented naive Bayes (TAN)
(ii) in the IDP indeterminate Instances B3¢ 0) is aimost (Friedman et a).1997 which differ as for the score used

a random guesser. Fiy <19, Wilcoxon test has always for learning the TAN structure. We denote such two vari-

greater loss than tc:‘f"‘t ‘I)f Dp¢ 0) and IDE in g‘e determi- - 5ts of TAN as TANpey and TANmg. We run the WEKA
hate instances and it always returiisin the indeterminate implementation \itten et al, 2017 of such classifiers on

mstances: The o_nIy exceptlon_|s the_chse 19 whe_re the 70 data sets from the UCI repository: 54 classification data
losses coincide in the determinate instances while, in the i< 24 16 regression data sets, which we use for classi-

each classifier on each data set. Then we compare pairs

. I t rand i 16% of th hi Ef classifiers via the Wilcoxon signed-rank test and its two
suing an almost random answerin 0 OTNE cases, Which,, g Bayesian variants (Tabfel). We run the tests in a
is a large percentage (a similar comment can be done fg

¥ne-sided fashion. When comparing NBC with a TAN the
Dp(s= 0) in the casd; < 19, see in particulaly = 4 in ! ! paring -

o 2 (lef 1) = 9 si i the d . null hypothesis is that the median accuracy of NBC is no
Fig. 2 (left)). For (lo,l1) = (1,19), since in the determi- smaller than that of TAN; the alternative hypothesis is that

nate instances Wilcoxon and IDP have the same loss and We median accuracy of TAN is instead greater than that

the mdetermmgte ones Wllcoxon IS a random_gu_esser, WEf NBC. The three tests consistently identify both TANs
could paradoxically design a new test that coincides with

IDP in the IDP determinate instances and issues a random

A = 0.05); this means that Dp& 0) and Wilcoxon are is-

answer in the indeterminate ones that overall has the same Pair Wilcoxon  DP§=0) IDP

loss of Wilcoxon. This shows that IDP is more reliable ofclassifiers  pvalue P(HiD) [B(HiID). PHiID)]
than Wilcoxon. In fact, assume that one is trying to com- NBoTAN 1ees : e
pare the accuracy of two classifiers to determine if “Y is TANgpeu TAN gl 79 26 [-23..30]

better than X” and that, given the available data, IDP is in-

determinate. In such a situation the Wilcoxon test aIwaysTab’e _zl.Statistich_comparison of pair of classifiers. We report the
issues a determinate response (pretending to be able to cappsterior probablllty 9H1 for the test DP$=0) and the interval of
clude whether “Y is better than X or not), but its responsel'® Posterior probability ofiy for IDP.

is simply random (like tossing a coin). On the other side,

the IDP acknowledges the impossibility of making a deci-as significantly more accurate than NBC. Indeed, TAN is
sion (I do not know whether “Y is better than X”). In such well-known to perform better than naive Bayésiédman
cases one knows that (i) her/his posterior decisions woule@t al, 1997). For both TANs, the DRE0) returns probabil-
depend on the choice @; (ii) reaching a decision given ity 1 for the alternative hypothesis. Given the large sample
the observed data is difficult, and in fact the Wilcoxon be-size £=70), the upper and lower posterior probability of the
haves like a random guesser. Based on the indeterminagdternative hypothesis computed by IDP collapse on a sin-
outcome of the IDP test, one can for example decide to rumgle point, namely 1. On the other hand, the three tests con-
the classifiers on additional datasets to eliminate the-indesistently report no significant difference between the two
terminacy (in fact when the number of observations goes t@ANs. The lower and upper posteriors for this last case are
infinity the indeterminacy goes to zero). shown in Fig.3.
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005 returning either Iy or H; depending on the prior. We sep-
0.04 7 - _lfpv:: arately evaluate the replicability of the decisions made by
z Area / the tests when the IDP test is determinate and indetermi-
3 003 Lower=0226 Area Upper=0.302 nate, as reported in Tab. Strikingly, a sharp drop of
2 0.02 replicability affects both the Wilcoxon and the BRQ) test

when the IDP test becomes indeterminate. For both tests,
‘ ‘ ‘ when assessing both pairs of classifiers, the replicability
0 02 O-F‘,‘(Z >-z(')56 0.8 L drops from about 90% to about 50%. In practice both the

- Wilcoxon and the DP=0) test behave as random guessers
when the IDP is indeterminate.

0.01

Figure 3.Posterior probability for TANpey TAN - ) o
The behavior of the IDP testannotbe mimicked by a re-

ject option, which would suspend the judgment whenever
4.2. Replicability analysis the p-value of the frequentist test is close to 0.05. The
IDP test checks whether the decision to be taken is prior-
dependent, yielding a more complex behavior than a reject
option. On the one hand the IDP test does alwaysgets

According to Bouckaert 2004, a desirable test has low
Type | error, high power and higkplicability. The replica-

bility is the probability that the same conclusion is ackigv indeterminate when the-value is close to 5; on the

in two experiments involving the same pair of classifiers . . . :
(i.e., the null hypothesis is accepted or rejected in bot other hand,lln some cases it does .get mdetermmate.when
U qhe p-value is quite far from @5. This means that the in-

cases). We follow the experimental setup Bfe(nSar :
2006. We randomly draw 15 data sets among the 70 ava”_determmacy of IDP does not only depend on fiealue ,

able. We repeat the drawing 1000 times. Every time w but on the observations (not only the statistic). However,

o She medianp-value of the cases in which IDP suspends
run the statistical tests to compare the accuracy of classl-he decision is close t0.05. Moreover, thep-values of
fiers on the drawn data sets. We consider two pairs of clas; . . o .
sifiers: NB—TANna and NB—TANspeu. This yields 1000 She cases in which IDP suspends the judgment are (almost)

experiments for each pair of classifiers. In the followingSyr‘m‘nmnc"leIy distributed around@. This explains why

S . e
we describe how to measure replicability of a hypothesisiﬂg {EF:DII?ﬁ(?;[:g;‘;:}gfev:g;gﬁzgéeﬁ drops down to 50%n

test. The outcome of the hypothesis test in thieh exper-
imentis O or 1 depending on whether the null hypothesis is

accepted or rejected. The replicabilRyis defined as: 5. Conclusions
Si(e —9)? We have proposed a novel Bayesian method based on
R=1-2%4 the Dirichlet Processes (DP) for performing the Wilcoxon

n-1 signed-rank test. We have developed two tests: one based

whereg is the mean outcome of the hypothesis test oveon a noninformative prior and one based on a conservative
the n=1000 repetitions. ThuR ranges between 0.5 (ran- model of prior ignorance (IDP). The Bayesian approach
dom decisions) and 1 (perfectly repeatable decisions). Tés more flexible than the frequentist one, as it allows for
allow a fair measure of repeatability we focus on the losgaking decision which minimize the expected loss. Experi-
(lo,11) = (1,19), in which case the decisions of the fre- mental results show that the prior ignorance method is more
quentist ¢=0.05) and that of the Bayesian tests are closelyeliable than both the frequentist test and the noninforma-
matched, as already discussed. The IDP test suspentige Bayesian one, being able to isolate instances in which
these tests are almost guessing at random. We plan to ex-
Pair %H  %Ind Replicability tend this approach to implement Bayesian versions of mul-
Wilcoxon DP &0) tiple nonparametric tests such as for instance the Friedman
Det Ind Det Ind test. Inthelongrun, ouraimis to build a statistical packag
NB-TAN 87 14 88 50 .88 .56 forBayesian nonparametric tests.
TANmdl - TANBpey 6 8 94 51 95 50
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