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Abstract

Bayesian methods are ubiquitous in machine
learning. Nevertheless, the analysis of empiri-
cal results is typically performed by frequentist
tests. This implies dealing with null hypothesis
significance tests andp-values, even though the
shortcomings of such methods are well known.
We propose a nonparametric Bayesian version of
the Wilcoxon signed-rank test using a Dirichlet
process (DP) based prior. We address in two dif-
ferent ways the problem of how to choose the
infinite dimensional parameter that characterizes
the DP. The proposed test has all the traditional
strengths of the Bayesian approach; for instance,
unlike the frequentist tests, it allows verifying
the null hypothesis, not only rejecting it, and
taking decisions which minimize the expected
loss. Moreover, one of the solutions proposed to
model the infinite-dimensional parameter of the
DP allows isolating instances in which the tradi-
tional frequentist test is guessing at random. We
show results dealing with the comparison of two
classifiers using real and simulated data.

1. Introduction

The field of machine learning is constantly growing. Many
novel approaches in classification, regression etc. are con-
stantly proposed, raising the issue of assessing and compar-
ing these new methods with the state-of-the-art. A proper
way to perform such comparison is by means of statistical
procedures. Tutorials on the use of parametric and non-
parametric statistical tests as a methodology for comparing
algorithms have been presented (Demšar, 2006; Trawiński
et al., 2010; Derrac et al., 2011) on different areas of ma-
chine learning. In all these papers, the Wilcoxon signed-
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rank test is indicated as the nonparametric statistical proce-
dure for the analysis of two paired samples.

Let us consider classification as a case-study. After having
assessed the accuracy (or the AUC, or any other indicator)
of two competing classifiers on multiple data sets, one has
to formally check whether the difference among the two
classifiers is significant. The Wilcoxon signed-rank is used
for this purpose because, thanks to itsnonparametricna-
ture, it solves some major problems of thet-test: it doesnot
assume commensurability of the measures across different
data sets; it doesnot assume normality of the sample mean
of the accuracy; it isrobustw.r.t. outliers. The signed-rank
test is moreover preferable also to the sign test, which is
nonparametric but has much lower power.

However the Wilcoxon signed-rank test is affected by all
the drawbacks which characterize the null-hypothesis sig-
nificance tests (NHST). Such tests “allow one either to re-
ject the null hypothesis or to fail to reject it, but they donot
provide any measure of evidence for the null hypothesis”
(Raftery, 1995). This prevents associating a cost to Type I
and Type II errors and taking decisions by minimizing the
expected loss. Instead, decision are taken on the basis of
the chosensignificanceα, namely the probability of reject-
ing the null hypothesis when it is true. In principle, one
should balance significance and power of the test. Yet, a
principled way of doing this is lacking. Hence, decisions
are simply taken by settingα =0.01 or 0.05, without con-
sidering the probability of Type II errors. Moreover, the
p-value and thus the outcome of the test depend on the in-
tention of the person who has collected the data (Goodman,
1999; Kruschke, 2010).

Bayesian tests of hypothesis constitute an appealing al-
ternative to the NHST analogous. They return the pos-
terior probability of the null and the alternative hypothe-
ses, which are thus fully characterized in terms of mean,
variance, credible interval and density function. While
the frequentist test can onlyreject the null hypothesis,
the Bayesian one can alsoacceptthe null hypothesis, on
the basis of the estimated posterior probability. Once
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the costs of Type I and Type II errors are specified, a
Bayesian test allows taking decisions by minimizing the
expected loss; in this way, the size of the test can be bet-
ter adapted to the actual need. The computation does not
depend on the intention of the person who collected the
data. Bayesian tests have been widely considered for clin-
ical practice (Spiegelhalter et al., 1994) and cognitive sci-
ences (Kruschke, 2010). They are however very rarely used
in machine learning, despite the abundance of Bayesian al-
gorithms in this area. To the best of our knowledge, no
Bayesian version of the Wilcoxon signed-rank has been
proposed so far. We fill this gap by proposing a nonpara-
metric Bayesian version of the Wilcoxon signed-rank test
based on the Dirichlet process (DP) (Ferguson, 1973). In
his seminal paper on the Dirichlet process, Ferguson pro-
vided a Bayesian justification of many classic nonpara-
metric estimators (Mann-Whitney statistics, median, etc.).
Similar results were derived by other authors that, employ-
ing DP as prior model, were able to naturally obtain esti-
mators related to the frequentist ones, e.g., Kaplan-Meier
(Susarla & Ryzin, 1976), Kendall’s tau (Dalal & Phadia,
1983). Recently there has been an increasing interest in
the development of Bayesian nonparametric procedures for
hypothesis testing focusing in particular on the two (ork)
sample problem (Borgwardt & Ghahramani, 2009; Holmes
et al., 2009; Ma & Wong, 2011; Chen & Hanson, 2014).
Two sample tests deal withunpaired samples, while in
machine learning we often work withpairedobservations,
e.g., when we want to compare the accuracy of two classi-
fiers on the same collection of datasets. Moreover, an open
problem in all these procedures is how to choose the infi-
nite dimensional parameter of the nonparametric prior in
case of lack of prior information.

Here, we address the problem of how to choose the infinite
dimensional parameter that characterizes the DP by means
of two models corresponding to two different choices of the
prior parameter: the noninformative DP prior (Dp(s= 0))
and the prior ignorance model (IDP). Dp(s= 0) is the non-
parametric analogue of a Bayesian noninformative prior,
while IDP consists of a set of DPs priors and is based on
the techniques developed inBayesian robustness(Berger
et al., 2000; 1994; Pericchi & Walley, 1991; Walley, 1991)
for modelling lack of prior information within parametric
models.

By means of simulations on artificial and real world data,
we use our test to decide if a certain classifier is signifi-
cantly better than another. We show that the Bayesian test
incurs much lower costs than the frequentist one for a wide
variety of costs of Type I and Type II errors. We more-
over show that the IDP test is more robust, in the sense that
it acknowledges when the decision isprior-dependent. In
other words, the IDP test suspends the judgment and be-
comesindeterminatewhen the option which minimizes the

expected loss depends on the prior. This behavior is anal-
ogous to that observed in credal classifiers (Corani & Zaf-
falon, 2008), which suspend the judgment when the classi-
fication is prior-dependent, namely when the most proba-
ble class varies with the prior used to induce the classifier.
The little reliability of prior-dependentdecisions is con-
firmed by the fact that when the IDP test is indeterminate,
the Wilcoxon signed-rank and the Dp(s= 0) tests are vir-
tually behaving as random guessers. Since IDP has all the
positive features of a Bayesian test and it is more reliable
than Wilcoxon and Dp(s= 0), we propose IDP as a new
test for comparing classifiers and other methods in machine
learning. Finally, notice that the proposed test is applicable
to many other fields of research where it has the potential
of reducing the misleading results of NHST by avoiding the
use of a significance parameter which does not represent a
correct measure of the evidence provided by data (Johnson,
2013). The IDP test developed in this work can currently
be used online (or downloaded as R or Matlab code) at
http://ipg.idsia.ch/software/IDP.php.

2. Dirichlet Process

The Dirichlet processDp(α) has been proposed by (Fer-
guson, 1973) as a probability measure on the set of prob-
ability measures on some spaceZ (for this paper we can
assumeZ = R). It has an infinite dimensional parame-
ter α(·), which is a positive finite measure overZ , i.e.,
α(A) > 0 (positive) for any (measurable) setA ∈ Z and
α(Z ) < ∞ (finite). Assuming that a probability measure
is drawn from DP, i.e.,P ∼ Dp(α), the characteristic of
DP is that, for any (measurable) partitionB1, . . . ,Bm of Z ,
the finite vector(P(B1),P(B2), . . . ,P(Bm)) is Dirichlet dis-
tributedDir (α(B1),α(B2), . . . ,α(Bm)). From the Dirichlet
distribution, we can thus derive the prior mean (E [P(Bi)] =
α(Bi)/α(Z )) and variance (E [(P(Bi) − E [P(Bi)])

2] =
α(Bi)(α(Z )−α(Bi))/α2(Z )(α(Z )+1) of P(Bi) w.r.t.
the DP for anyBi ∈ Z .1 This shows that the normal-
ized measureα(·)/α(Z ) of DP reflects the prior expec-
tation ofP, while the scaling parameterα(Z ) controls the
variance ofP aroundα(·)/α(Z ). The normalized mea-
sureα(·)/α(Z ) is a probability measure, therefore, when
Z = R, it can be completely characterized by the cumula-
tive distribution functionG(z) = α(−∞,z]/α(Z ). We can
then denote the Dirichlet process byDp(α(Z ),G).

DP is a conjugate prior in the sense that, given a sample
Z1, . . . ,Zn from F ∼Dp(α(Z ),G) of n observations which
are conditionally independent givenF, and fixed the prior
parametersα(Z ) = s andG = G0, the posterior distribu-
tion of the cumulative distribution functionF of P is still

1We will use calligraphic letters,E ,P , to denote expectation
and probability w.r.t. the DP.

http://ipg.idsia.ch/software/IDP.php
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Dp(αn(Z ),Gn) with

αn(Z ) = s+n, Gn =
s

s+n
G0+

1
s+n

n

∑
i=1

I[Zi ,∞),

whereIA(z) is the indicator function: it is one whenz∈
A and zero otherwise. Thus, a-posteriori we have that
E [P(Z ≤ z)|Z1, . . . ,Zn] = (sG0(z) + n<z)/(s+ n), where
n<z=∑n

i=1 I[Zi ,∞)(z) is the number of observationsZi falling
in (−∞,z].

An issue in the use of the DP as prior measure onP is how
to choose the infinite dimensional parameterG0 in case of
lack of prior information. There are two avenues that we
can follow. The first assumes that prior ignorance can be
modelled satisfactorily by a so-called noninformative prior.
In the DP setting, the only noninformative prior that has
been proposed so far is the limiting DP obtained fors→ 0,
which has been introduced by (Ferguson, 1973) and dis-
cussed by (Rubin, 1981). The second approach suggests
that lack of prior information should be expressed in terms
of a set of probability distributions. This approach is known
asBayesian robustness(Berger et al., 2000; 1994; Peric-
chi & Walley, 1991; Walley, 1991; Coolen-Schrijner et al.,
2009) and it has been extensively applied to model lack of
prior information in parametric models. In this paper, we
implement the limiting DP obtained fors→ 0 and we also
extend the Bayesian robust approach to the nonparametric
setting by considering a set of DPs obtained by fixings to
a strictly positive value and lettingG0 span the set of all
distributions.

3. The Dirichlet Process-based Wilcoxon test

Let Xn = (X1, . . . ,Xn) and Yn = (Y1, . . . ,Yn) be two se-
quences of paired observations representing the accuracies
of classifiersX and Y on n different data sets. Define
Zi = Yi −Xi and assume for the moment that there are no
ties of typeZi = −Z j . We will discuss how to manage ties
and zeros in Section3.2. Let F be the distribution ofZ and
M its median. A one-sided test contrasts the null hypoth-
esisM ≤ 0 against the alternative hypothesisM > 0. The
easiest test about the median of a distribution is the sign test
which counts the number of positive differencesZi > 0; this
statistic is an estimator of the probabilityP(Z > 0). Then,
a Bayesian analogous of the sign test would consider the
posterior probability ofP(Z > 0). However, a shortcoming
of the sign-test is its low power.

The Wilcoxon signed-rank test is more powerful than the
sign test, as it accounts not only for the sign but also for the
size of the differencesZi . It does so by ranking the abso-
lute value of the differences and then comparing the ranks
of the positive and negative differences (Demšar, 2006).
The Wilcoxon signed-rank test assumes the symmetry of

F w.r.t. its medianM and computes the statistic:

T+ = ∑
{i: Zi≥0}

r i(|Zi |) = ∑
1≤i≤ j≤n

T+
i j , (1)

wherer i(|Zi |) is the rank of|Zi | and

T+
i j =

{

1 if Zi ≥−Z j ,
0 otherwise.

The decision is taken by comparing the observed value of
the statisticR+ = 2T+

n(n+1) against its critical value, which
depends on the significanceα. For a large number of data,
the distribution ofR+ under the null hypothesis is approxi-
mately normal with mean 1/2. Then, in practice, consider-
ing for example a one-sided test evaluatingM ≤ 0 against
M > 0, the null hypothesis is rejected when the observed
value ofR+ is significantly larger (according to the signifi-
cance levelα) than 1/2. Based on the definition ofT+

i j , one
can interpret the statisticR+ as an estimator of the probabil-
ity that, given two independent observationsZ andZ′ from
F , Z ≥−Z′. This probability can be written as

P(Z ≥−Z′) = P(Z ≤ 0, Z′ > 0, |Z′| ≥ |Z|)
+P(Z > 0, Z′ ≤ 0, |Z| ≥ |Z′|)+P(Z > 0, Z′ > 0),

from which it can be noticed thatP(Z ≥ −Z′) considers
at the same time the probability thatZ is positive and the
probability that negative differences are smaller than the
positive ones; for this reason the Wilcoxon statistic is more
sensitive than the sign test statistic to the presence of a bias
(positive ifP(Z ≥−Z′)> 1/2 or negative ifP(Z ≥−Z′)<
1/2) in the differencesZi . In analogy with the Wilcoxon
signed-rank test, we propose a Bayesian test based on the
probability

P(Z≥−Z′)=
∫∫

I[−z′,∞)(z)d(F(z)F(z′))=E[I[−Z′,∞)(Z)].

The test compares the hypothesisP(Z ≥ −Z′) ≤ 1/2
againstP(Z ≥ −Z′) > 1/2. Notice that the Wilcoxon
signed-rank test needs to assume the symmetry ofF to be
able to specify the distribution ofR+ under the null hypoth-
esis. In this context, another advantage of the Bayesian ap-
proach is that it does not require the symmetry assumption
since all inferences are derived from the posterior distri-
bution of P(Z ≥ −Z′) > 1/2 which follows directly from
the prior distribution forF and the sequence of observa-
tionsZn = (Z1, . . . ,Zn). We propose the Dirichlet process
as prior forF.

Theorem 1 If F ∼ Dp(α(Z ),G), then

E
[

P(Z ≥−Z′)
]

=
∫∫

I[−z′,∞)(z)dE [F(z)F(z′)] (2)

=
∫∫

I[−z′,∞)(z)
d [G(min(z,z′))+α(Z ) G(z)G(z′)]

α(Z )+1
.
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This result is similar to that in Lemma 2.1 of (Dalal & Pha-
dia, 1983) for the Kendall’s tau. Its proof and that of the
next theorems can be found in the appendix (supplemen-
tary material). To use the DP for evaluating the posterior
probability ofP(Z ≥−Z′)> 1/2, we must choose the base
CDF G0. We focus on the case where we have no prior
information about the functional form ofF (which would
justify the use of a nonparametric test), and about the value
of P(Z ≥ −Z′), and propose a model which is capable of
modeling a situation of complete prior ignorance about the
expectation ofP(Z ≥−Z′). For any choice ofsandG0 the
prior and posterior expectation ofP(Z ≥ −Z′) can be de-
rived from Theorem1, by taking, respectively,α(Z ) = s
andG = G0 for the prior andα(Z ) = s+ n andG = Gn

for the posterior. Since the form ofG0 does not affect the
posterior fors→ 0, this is a frequent choice for modeling
a noninformative prior. This prior has been introduced un-
der the name of Bayesian Bootstrap by (Rubin, 1981). The
prior and posterior expectations, in this case, are given by
the following theorem.

Theorem 2 Given that F∼ Dp(s,G0), for s→ 0 one has

E
[

P(Z ≥−Z′)
]

=
∫

I[0,∞)(z)dG0(z), (3)

E [P(Z ≥−Z′)|Zn] = 1
n(n+1)

[

n

∑
i=1

n

∑
j=1

I[−Zi ,∞)(Z j)+
n

∑
j=1

I[0,∞)(Z j)

]

.

(4)

It can be easily seen that the posterior expectation obtained
for s→ 0 is equal toR+. This shows thatE [P(Z ≥ −Z′)

]

is closely related to the Wilcoxon signed-rank statisticR+.
This result extends to the Wilcoxon signed-rank a similar
result obtained by (Ferguson, 1973) concerning the rela-
tionship betweenE [P(X ≤Y)] (with X andY representing
independent unpaired samples) and the Mann-Whitney U
statistics. Note that, although in (2) the posterior means of
P(Z ≥−Z′) andR+ appear to be closely related, the poste-
rior distribution ofP(Z≥−Z′) is, in general, different from
that assumed forR+ under the null hypothesis (although, if
the null hypothesis is true they converge to the same dis-
tribution for largen), and thus one should not expect the
frequentist and Bayesian tests to make the same decisions
even fors→ 0. The prior expectation fors→ 0 depends
on the choice of the prior base measureG0. For exam-
ple, by choosingG0 symmetric around zero, we obtain a
prior expectation of 1/2. However, in a situation of com-
plete prior ignorance, we have no reason to assign, a priori,
any specific value to the probabilityP(Z ≥ −Z′). More-
over, Rubin has highlighted a second critical point: the
Bayesian bootstrap assigns zero posterior probability to any
set that does not include the observations, since fors→ 0,
E [P(A)|Zn] = (α(A)+nA)/(s+n)→ 0 whennA = 0, i.e.,
whenever there are not observations in the setA (Rubin,
1981). This is not suitable for a Bayesian model that can

be used for predictive inferences. In case of lack of prior
information, a more natural way to model prior ignorance
may be to consider the set of all distributionsG0 (Walley,
1991), (Walley, 1996). In other words, we keepsfixed and
assume thatG0 ∈Γ = {all distributions}, and then compute
the lower and upper expectations for all the functions of in-
terest in the statistical analysis. We call this model prior
near-ignorance DP (IDP).

Theorem 3 Given the DP prior Dp(s,G0), with G0 ∈ Γ,
the prior lower and upper expectations are obtained for
dG0 = δZ0 with Z0 < 0 (lower) and Z0 > 0 (upper), and are

E [P(Z ≥−Z′)] = 0, E [P(Z ≥−Z′)] = 1; (5)

the posterior lower expectation of P(Z ≥ −Z′) is obtained
for dG0(z) = δZ0 with Z0 <−max|Zi | and is

E [P(Z ≥−Z′)|Zn] =

n
∑

i=1

n
∑

j=1
I[−Zi ,∞)(Z j )

(s+n)(s+n+1) +

n
∑

j=1
I[0,∞)(Z j )

(s+n)(s+n+1) ;
(6)

the posterior upper expectation is obtained for dG0(x) =
δZ0 with Z0 > max|Zi | and is

E [P(Z ≥−Z′)|Zn] =
n
∑

i=1

n
∑

j=1
I[−Zi ,∞)(Z j )

(s+n)(s+n+1) +

n
∑

j=1
I[0,∞)(Z j )

(s+n)(s+n+1) +
s2+2ns+s

(s+n)(s+n+1) .
(7)

From Theorem 3 it follows that, given the prior
Dp(α(Z ),G0), with α(Z ) ≤ s, the posterior expectation
of P(Z ≥ −Z′) will be bounded byE [P(Z ≥ −Z′)|Zn] and
E [P(Z ≥−Z′)|Zn] whatever is the choice ofG0. Thus, one
should not worry about the fact the upper and lower expec-
tations are obtained by extreme priors (Dp(s,δZ0)), since
they are only used to identify the range of values where
the expectation provided by any other (smoother) prior will
fall. The imprecision, defined as the difference between
the upper and lower expectations, can be derived from
Theorem3 asE [P(Z ≥ −Z′)|Zn]− E [P(Z ≥ −Z′)|Zn] =

s2+2ns+s
(s+n)(s+n+1) , and goes to zero for largen. Thus,E [P(Z ≥
−Z′)|Zn],E [P(Z≥−Z′)|Zn] tend to the asymptotic limit of
R+ for n→ ∞. To perform the hypothesis test, we need to
know the posterior probability ofP(Z ≥ −Z′) > 1/2. The
next theorem gives an important result which can be used
to efficiently approximate it by Monte Carlo sampling, in
correspondence of the atomic priors that give the upper and
lower distributions.

Theorem 4 Consider one of the limiting priors that give
the posterior lower and upper expectations in (6)–(7). Let
dFn be sampled from its posterior; then dFn = w0δZ0 +

∑n
j=1wjδZ j , where(w0,w1, . . . ,wn) ∼ Dir (s,1, . . . ,1) and,

for any a∈ [0,1], it holds that

P
[

P(Z ≥−Z′)> a|Zn
]

= P
[

g(w·,Zn)> a
]

,

P
[

P(Z ≥−Z′)> a|Zn
]

= P[g(w·,Zn)> a] ,
(8)
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with g(w·,Zn) =
n
∑

i=1

n
∑
j=1

wiwj I[−Zi ,∞)(Z j) and

g(w·,Xn) = w0(2−w0)+
n
∑
i=1

n
∑
j=1

wiwj I[−Zi ,∞)(Z j),

and P is computed w.r.t. this Dirichlet distribution.

Based on this theorem, we can numerically approximate
P andP by Monte Carlo sampling the vector of weights
(w0,w1, . . . ,wn) from the Dirichlet distribution. This
means that we do not need stick-breaking or other sampling
techniques specific for DP.

Let a1 be the decision of preferring classifierY to X anda0

its opposite; we can formulate the Bayesian test in terms
of a loss function which assigns lossl1 to an error of type
I (taking the decisiona1 whenY is not better thanX) and
lossl0 to an error of type II (taking the decisiona0 whenY
is actually better thanX). To minimize the expected loss,
the decisiona0 should be preferred if

l0P[P(Z ≥−Z′)> 1
2|Z

n]≤ l1P[P(Z ≥−Z′)≤ 1
2|Z

n],

that is

P[P(Z ≥−Z′)> 1
2|Z

n]≤ l1
l0+ l1

, (9)

where the probabilityP[P(Z ≥ −Z′) > 1/2|Zn] is evalu-
ated from the posterior distribution ofF . Notice that this
decision problem is the Bayesian analogous of a frequen-
tist one-sided test withα = l0/(l0+ l1) where we have used
the posterior probability ofP(Z ≥ −Z′) > 1/2 given the
data in place of the likelihood of the data given the null
hypothesis. In the IDP model, both the lower and upper
probabilities ofP(Z ≥ −Z′) > 1/2 are compared with the
thresholdl1/(l0+ l1) and the decision is made based on the
following rules: (i) if P > l1/(l0+ l1) we prefer classifier
Y; (ii) if P < l1/(l0 + l1) we prefer classifierX; (iii) if
P > l1/(l0+ l1) andP < l1/(l0+ l1) we are not able to
make a decision which yields minimum expected loss for
any choice of the prior measureG0.

Thus, the IDP test can return a determinate decision only
in the first two cases, whereas in the third case we are in
an indeterminate situation where it is not possible to reach
a decision. Notice that the fact of preferring classifierX
does not imply thatX is better thanY, but only that one can
expect a smaller loss by choosingX. Indeed, ifl1 > l0, one
may preferX even whenY is likely to be better, if the ev-
idence in favor ofY is not sufficiently large to compensate
the larger cost in case of error. As an illustrative example,
Figure1 shows the posterior upper and lower distributions
of P(Z ≥ −Z′) obtained fromn= 20 observationsZi sam-
pled from a standard normal distribution. Based on these
posterior estimates, the test will decide in favor of classifier
Y if l1/(l0+ l1)< 0.76, and conversely in favor of classifier
X if l1/(l0+ l1) > 0.87. It will be instead indeterminate if
0.76≤ l1/(l0+ l1)≤ 0.87.

Figure 1.Posterior distributions ofP(Z ≥ −Z′). Area lower (up-
per) gives the value ofP[P(Z ≥ −Z′) > 1/2|Zn] (P [P(Z ≥
−Z′) > 1/2|Zn]), i.e. the integral of the lower (upper) distribu-
tion from 1/2 to∞.

Finally, by exploiting the results in (Janssen, 1994), it is
possible to show that the above test is asymptotically con-
sistent as a test forP(Z ≥−Z′), in the sense that the poste-
rior lower and upper distributions ofP(Z ≥−Z′) converge
to the asymptotic distribution of the statisticR+ (a Nor-
mal distribution). Conversely, the Wilcoxon-signed rank
test is asymptotically consistent only under the assumption
that the distributionF is symmetric; when this is not the
case the test is not calibrated and, thus, asymptotically in-
consistent. Consider this example:P(Z ≥ −Z′) = 0.5 but
the medianm is positive and, thusF is asymmetric (for in-
stanceF =wU[1,5]+(1−w)U[−12,5], with w= 0.46514,
m= 1 and U[a,b] is the uniform distribution on the inter-
val [a,b]), which can happen if a classifier is slightly better
than the other except in a few cases where it is worse. In
this case, is one classifier better than the other? Note that
the frequentist test would neither be calibrated if the answer
is yes, nor powerful if it is not (the probability of rejecting
H0 converges to 6.5% for frequentist test). In this case our
test coherently declares that no classifier can be preferred
(it is asymptotically calibrated).

3.1. How to choose s in IDP

The value ofs determines how quickly lower and upper
posterior expectations converge as the number of obser-
vations increases. A way to select a value ofs is by im-
posing that the degree of imprecisionE [P(Z ≥ −Z′)|Z1]−
E [P(Z ≥−Z′)|Z1] is reduced to a fraction of its prior value
(E [P(Z ≥ −Z′)]− E [P(Z ≥ −Z′)] = 1) after the first ob-
servationZ1 = Y1 −X1. A degree of imprecision close to
1 after the first observation increases the probability of an
indeterminate outcome of the test, whereas, a value close
to 0 makes the test less reliable (in fact the limiting value
of 0 corresponds to the Bayesian bootstrap which will be
shown in the next section to be less reliable than IDP).
Then the intermediate value of 1/2 is a frequent choice in
prior-ignorance modeling (Pericchi & Walley, 1991; Wal-
ley, 1996). Although this is a subjective way to choose the
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degree of conservativeness (indeterminacy), it represents a
reasonable trade-off between the reliability and indetermi-
nacy of the decision. From (6)–(7) it follows thatE [P(Z ≥
−Z′)|Z1]− E [P(Z ≥ −Z′)|Z1] =

s2+3s
(s+1)(s+2) . Thus, by im-

posing that s2+3s
(s+1)(s+2) =

1
2, we obtains= (

√
17−3)/2. Ob-

serve that the lower and upper probabilities produced by a
value ofs are always contained in the probability intervals
produced by larger values ofs. Then whenever we are un-
decided fors1 we are also fors2 > s1. Nonetheless, for
largen the distance between the upper and lower probabil-
ities goes to zero, then also the indeterminacy goes to zero.

3.2. Managing ties

So far, it has been assumed that there is zero probability
of ties (Zi = −Z j ) and zeros (Zi = 0). Notice that the ze-
ros can be interpreted as ties, sinceZi = 0 = −Zi . If ties
are possible, the common approach to account for them is
to consider the probability[P(Z ≥ −Z′) + 1

2P(Z = −Z′)]
(Sidak et al., 1999). Note thatP(Z ≥−Z′)+ 1

2P(Z =−Z′)
is equal toE[I(−z′,∞)(z)+

1
2I{−z′}(z)] which in turns is equal

to E[H(z+ z′)], whereH(·) denotes the Heaviside step
function, i.e.,H(z) = 1 for z> 0, H(z) = 1/2 for z= 0
andH(z) = 0 for z< 0. The procedure presented in this
section is easily extended to the case of ties by substi-
tuting I[−Zi ,∞)(Z j) with H(Zi + Z j) in the computation of
P

[

P(Z≥−Z′)> 1/2|Zn
]

andP
[

P(Z≥−Z′)> 1/2|Zn
]

.

4. Numerical Simulations

Consider a Monte Carlo experiment in which paired values
of accuraciesXi , Yi are generated forn= 30 multiple data
sets based on the Gaussian models:

[

Xi

Yi

]

∼ N

([

0
∆

]

,

[

σ2 ρσ2

ρσ2 σ2

])

, (10)

for i = 1, . . . ,n, with ∆ (difference in accuracy) ranging
from −0.07 to 0.07 andσ = 0.12. We have selected these
values on the basis of extensive classification experiments
performed using WEKA (Witten et al., 2011). Hereafter,
due to the limited space, we only report the results for
the caseρ = 0; the results obtained with correlation (e.g.,
ρ = 0.95) lead to similar conclusions. The aim of this sec-
tion is to compare three methods to evaluate if the clas-
sifier Y is better than classifierX (i.e., ∆ > 0): (i) one-
sided Wilcoxon signed-ranks test; (ii) Bayesian Bootstrap
Dp(s = 0); (iii) prior ignorance Dirichlet process (IDP)
model. The one-sided Wilcoxon test has been implemented
according to the conventional decision criterion:p-value
less thanα = 0.05. To evaluate the performance of the
tests, we have considered the average loss produced by
each method (i.e. the proportion of wrong decisions mul-
tiplied by the corresponding loss) with different values of

(l0, l1). Fig. 2 reports as a function of∆ and for two differ-
ent values of(l0, l1): (i) the loss of the Dp(s= 0) test; (ii)
the loss of the Wilcoxon test; (iii) the loss of the IDP test
when it is determinate; (iv) the indeterminacy of the IDP
test, i.e., the number of runs it returns an indeterminate re-
sponse divided by the total number of Monte Carlo runs.
Let us start comparing Wilcoxon versus Dp(s= 0). From
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Figure 2.Loss forl1 = 4 (left) andl1 = 19 (right).

the plot relative to the loss(l0 = 1, l1 = 4), it can be seen
that Wilcoxon is too conservative towards the null hypoth-
esis. When∆ > 0 it has a greater loss than Dp(s= 0) and,
thus, a lower power. This conservativeness can be quan-
tified by computing the areas under the curves in Fig.2
for the Wilcoxon and Dp(s= 0) tests, i.e., the average loss
(averaged over the Monte Carlo runs and the values of∆).
The results are shown in Table1 for different values of
(l0, l1). It is evident that Dp(s= 0) has always lower av-
erage loss than Wilcoxon, (see in particular(l0, l1) = (1,4)
which corresponds to the plot in Fig.2 (left)). The only
exception is for(l0, l1) = (1,19) (Fig. 2 (right)). In this
case, the DP-based tests declares that classifierY is better
than classifierX when the posterior probability of the hy-
pothesis∆ > 0 is greater than 1−α = 0.95. Thus for this
choice of the loss, Wilcoxon and DP are closely matched.
However, the choice(l0, l1) = (1,19) is extremely conser-
vative, implying that the cost associated to a Type I error
is 19-times greater than the cost associated to a Type II er-
ror. Consider, for instance, that clinical trials (Spiegelhal-
ter et al., 1994) are usually designed to have significance
of 5% and power 80 or 90% (the computation of power re-
quires doing a number of assumptions). We can roughly
infer that in these cases a Type II error is regarded about
two or four times worse than a Type I error. The advan-
tage of the Bayesian test is that one can make decisions
minimizing the expected loss. Conversely, in the frequen-
tist Wilcoxon test, one always makes the myopic choice
α = 0.05 regardless of the loss. Table1 shows that for
a wide variety of values of cost configurations, including
(l0, l1) = (1,2) and (l0, l1) = (1,4), the Bayesian test in-
curs much lower loss than the Wilcoxon signed-rank. To
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Loss,l0 = 1 l1 = 1 l1 = 2 l1 = 4 l1 = 9 l1 = 19

Dp(s= 0) .025 .034 .044 .053 .061
Wilcoxon .048 .049 .050 .054 .061

Table 1.Total average loss.

compare Wilcoxon and Dp(s= 0) with IDP, we distinguish
two cases: (i) the instances in which IDP is determinate;
(ii) the instances in which IDP is indeterminate. The loss
(averaged w.r.t.∆ and the Monte Carlo runs) for the first
case is shown in Table2, while for the second case Table3
reports the percentage of times the Wilcoxon and Dp(s= 0)
tests have returned a wrong decision in the two cases where
the truth isH0 or, respectively,H1. From Tables2–3, it
can respectively be seen that: (i) in the IDP determinate in-
stances the loss of Dp(s= 0) coincides with that of IDP;
(ii) in the IDP indeterminate instances Dp(s= 0) is almost
a random guesser. Forl1 < 19, Wilcoxon test has always
greater loss than that of Dp(s= 0) and IDP in the determi-
nate instances and it always returnsH0 in the indeterminate
instances. The only exception is the casel1 = 19 where the
losses coincide in the determinate instances while, in the
indeterminate ones, Wilcoxon is a perfect random guesser.
From Fig.2 (right) it can be seen that the percentage of runs
in which IDP is indeterminate is high (e.g., about 16% for
∆ = 0.05); this means that Dp(s= 0) and Wilcoxon are is-
suing an almost random answer in 16% of the cases, which
is a large percentage (a similar comment can be done for
Dp(s= 0) in the casel1 ≤ 19, see in particularl1 = 4 in
Fig. 2 (left)). For (l0, l1) = (1,19), since in the determi-
nate instances Wilcoxon and IDP have the same loss and in
the indeterminate ones Wilcoxon is a random guesser, we
could paradoxically design a new test that coincides with
IDP in the IDP determinate instances and issues a random
answer in the indeterminate ones that overall has the same
loss of Wilcoxon. This shows that IDP is more reliable
than Wilcoxon. In fact, assume that one is trying to com-
pare the accuracy of two classifiers to determine if “Y is
better than X” and that, given the available data, IDP is in-
determinate. In such a situation the Wilcoxon test always
issues a determinate response (pretending to be able to con-
clude whether “Y is better than X” or not), but its response
is simply random (like tossing a coin). On the other side,
the IDP acknowledges the impossibility of making a deci-
sion (I do not know whether “Y is better than X”). In such
cases one knows that (i) her/his posterior decisions would
depend on the choice ofG0; (ii) reaching a decision given
the observed data is difficult, and in fact the Wilcoxon be-
haves like a random guesser. Based on the indeterminate
outcome of the IDP test, one can for example decide to run
the classifiers on additional datasets to eliminate the inde-
terminacy (in fact when the number of observations goes to
infinity the indeterminacy goes to zero).

Loss,l0 = 1 l1 = 1 l1 = 2 l1 = 4 l1 = 9 l1 = 19

IDP .023 .031 .040 .049 .057
Dp(s= 0) .023 .031 .040 .049 .057
Wilcoxon .047 .047 .048 .051 .057

Table 2.Average loss in the IDP determinate cases.

% H0/H1 l1 = 1 l1 = 2 l1 = 4 l1 = 9 l1 = 19

Dp(s= 0) 45/ 45 43/ 48 43/ 50 43/ 54 42/ 55
Wilcoxon 100/ 0 100/ 0 100/ 0 100/ 0 50/ 50

Table 3.% of H0/H1 decisions in the IDP indeterminate instances
averaged over∆ for l0 = 1 and different values ofl1.

4.1. Practical case studies

We consider three different classifiers: naive Bayes (NB)
and two variants of the tree-augmented naive Bayes (TAN)
(Friedman et al., 1997) which differ as for the score used
for learning the TAN structure. We denote such two vari-
ants of TAN as TANBDeu and TANmdl. We run the WEKA
implementation (Witten et al., 2011) of such classifiers on
70 data sets from the UCI repository: 54 classification data
sets and 16 regression data sets, which we use for classi-
fication having discretized into 4 bins the target variable.
We evaluate via 10 folds cross-validation the accuracy of
each classifier on each data set. Then we compare pairs
of classifiers via the Wilcoxon signed-rank test and its two
novel Bayesian variants (Table4.1). We run the tests in a
one-sided fashion. When comparing NBC with a TAN the
null hypothesis is that the median accuracy of NBC is no
smaller than that of TAN; the alternative hypothesis is that
the median accuracy of TAN is instead greater than that
of NBC. The three tests consistently identify both TANs

Pair Wilcoxon DP(s=0) IDP
of classifiers p-value P(H1|D) [P(H1|D), P(H1|D)]

NBC-TANmdl 1e-06 1 [1, 1]
NBC-TANBDeu 1e-07 1 [1, 1]

TANBDeu-TANmdl .79 .26 [.23. .30]

Table 4.Statistical comparison of pair of classifiers. We report the
posterior probability ofH1 for the test DP(s=0) and the interval of
the posterior probability ofH1 for IDP.

as significantly more accurate than NBC. Indeed, TAN is
well-known to perform better than naive Bayes (Friedman
et al., 1997). For both TANs, the DP(s=0) returns probabil-
ity 1 for the alternative hypothesis. Given the large sample
size (n=70), the upper and lower posterior probability of the
alternative hypothesis computed by IDP collapse on a sin-
gle point, namely 1. On the other hand, the three tests con-
sistently report no significant difference between the two
TANs. The lower and upper posteriors for this last case are
shown in Fig.3.
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Figure 3.Posterior probability for TANBDeu-TANmdl.

4.2. Replicability analysis

According to (Bouckaert, 2004), a desirable test has low
Type I error, high power and highreplicability. The replica-
bility is the probability that the same conclusion is achieved
in two experiments involving the same pair of classifiers
(i.e., the null hypothesis is accepted or rejected in both
cases). We follow the experimental setup of (Demšar,
2006). We randomly draw 15 data sets among the 70 avail-
able. We repeat the drawing 1000 times. Every time we
run the statistical tests to compare the accuracy of classi-
fiers on the drawn data sets. We consider two pairs of clas-
sifiers: NB–TANmdl and NB–TANBDeu. This yields 1000
experiments for each pair of classifiers. In the following
we describe how to measure replicability of a hypothesis
test. The outcomeei of the hypothesis test in thei-th exper-
iment is 0 or 1 depending on whether the null hypothesis is
accepted or rejected. The replicabilityR is defined as:

R= 1−2
∑i(ei −e)2

n−1
,

wheree is the mean outcome of the hypothesis test over
the n=1000 repetitions. ThusR ranges between 0.5 (ran-
dom decisions) and 1 (perfectly repeatable decisions). To
allow a fair measure of repeatability we focus on the loss
(l0, l1) = (1,19), in which case the decisions of the fre-
quentist (α=0.05) and that of the Bayesian tests are closely
matched, as already discussed. The IDP test suspends

Pair %H1 %Ind Replicability
Wilcoxon DP (s=0)
Det Ind Det Ind

NB-TANmdl 87 14 .88 .50 .88 .56
TANmdl - TANBDeu 6 8 .94 .51 .95 .50

Table 5.Replicability results. We denote by %H1 the proportion
of times in which the Wilcoxon test rejects the null hypothesis and
by %Ind the proportion of times in which the IDP test becomes
indeterminate.

the judgment becomingindeterminatewhen the decision
is prior-dependent, namely when the loss is minimized by

returning either H0 or H1 depending on the prior. We sep-
arately evaluate the replicability of the decisions made by
the tests when the IDP test is determinate and indetermi-
nate, as reported in Tab.5. Strikingly, a sharp drop of
replicability affects both the Wilcoxon and the DP(s=0) test
when the IDP test becomes indeterminate. For both tests,
when assessing both pairs of classifiers, the replicability
drops from about 90% to about 50%. In practice both the
Wilcoxon and the DP(s=0) test behave as random guessers
when the IDP is indeterminate.

The behavior of the IDP testcannotbe mimicked by a re-
ject option, which would suspend the judgment whenever
the p-value of the frequentist test is close to 0.05. The
IDP test checks whether the decision to be taken is prior-
dependent, yielding a more complex behavior than a reject
option. On the one hand the IDP test doesnot alwaysgets
indeterminate when thep-value is close to 0.05; on the
other hand, in some cases it does get indeterminate when
the p-value is quite far from 0.05. This means that the in-
determinacy of IDP does not only depend on thep-value ,
but on the observations (not only the statistic). However,
the medianp-value of the cases in which IDP suspends
the decision is close to 0.05. Moreover, thep-values of
the cases in which IDP suspends the judgment are (almost)
symmetrically distributed around 0.05. This explains why
the replicability of the Wilcoxon test drops down to 50% in
the IDP indeterminate instances.

5. Conclusions

We have proposed a novel Bayesian method based on
the Dirichlet Processes (DP) for performing the Wilcoxon
signed-rank test. We have developed two tests: one based
on a noninformative prior and one based on a conservative
model of prior ignorance (IDP). The Bayesian approach
is more flexible than the frequentist one, as it allows for
taking decision which minimize the expected loss. Experi-
mental results show that the prior ignorance method is more
reliable than both the frequentist test and the noninforma-
tive Bayesian one, being able to isolate instances in which
these tests are almost guessing at random. We plan to ex-
tend this approach to implement Bayesian versions of mul-
tiple nonparametric tests such as for instance the Friedman
test. In the long run, our aim is to build a statistical package
for Bayesian nonparametric tests.
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