9. Further Details for Section 3

9.1. Proof Sketch of Theorem 1

The proof parallels the proof of Proposition 1 by Strehl et al. (2006) for MDPs, except the horizon (denoted by \(T \) in their paper) needs to be redefined:

\[
H = \frac{1}{1-\gamma} \ln \left(\frac{4}{\epsilon (1-\gamma)} \right) + L + \frac{1}{\sqrt{C}} \ln \frac{2}{\delta}.
\]

This choice of \(H \) ensures that, for any epoch \(t \), the non-stationary policy \(\mathbf{A}_t \) in state \(s_t \) is either \(\Theta(\epsilon) \)-optimal, or will reach an unknown state in \(H \) steps with probability at least \(\epsilon (1-\gamma) \). In either case, the algorithm will reach a next state between step \(\frac{1}{1-\gamma} \ln \left(\frac{4}{\epsilon (1-\gamma)} \right) \) and \(H \), since with probability at least \(1-\delta' \), the waiting time of taking action \(a_t \) in state \(s_t \) is \(L + \frac{2}{\sqrt{C}} \ln \frac{1}{\delta} \) (Lemma 1). Taking a union bound over all possible non-\(\epsilon \)-optimal steps (which is polynomial in \(\zeta, 1/\epsilon, 1/\delta, \) and \(1/(1-\gamma) \)), that is, setting \(\delta' \) to \(\delta/\text{poly}(\zeta, 1/\epsilon, 1/\delta, 1/(1-\gamma)) \), we can prove the theorem as done in Strehl et al. (2006). Note that we need not take a union over all epochs, but only those where the decision is potentially non-\(\epsilon \)-optimal; if \(\mathbf{A}_t \) is \(\epsilon \)-optimal in epoch \(t \), it does not count towards the sample complexity anyway.

9.2. Definition of Known-state SMDP

Definition 3 Let \(M = (\mathcal{S}, \mathcal{A}, P, R, \gamma) \) be an SMDP, \(Q \) is a state–action value function, and \(\mathcal{K} \subseteq \mathcal{S} \times \mathcal{A} \) a set of “known” state–actions. Define the known state–action SMDP (with respect to \(\mathcal{K} \)) as \(M_\mathcal{K} = (\mathcal{S}, \mathcal{A}, P_\mathcal{K}, R_\mathcal{K}, \gamma) \), where

\[
P_\mathcal{K}(s', \tau | s, a) = \begin{cases}
P(s', \tau | s, a), & \text{if } (s, a) \in \mathcal{K} \\
P(s = s', \tau = 1), & \text{otherwise} \end{cases}
\]

\[
R_\mathcal{K}(s, a) = \begin{cases}
R(s, a), & \text{if } (s, a) \in \mathcal{K} \\
(1-\gamma)Q(s, a), & \text{otherwise} \end{cases}
\]

In other words, the known state–action SMDP \(M_\mathcal{K} \) has identical dynamics to \(M \) except in unknown state–actions where (i) the transitions are all self-loops with unit waiting time, and (ii) the \(Q \)-values are exact.

9.3. Proof of Theorem 2

Clearly, the construction leads to optimistic value functions, so the first condition of Theorem 1 holds.

We now consider when a state–action pair \((s, a)\) becomes known. Define the effective transition probabilities by

\[
P_S^\tau(s', a, \tau) = \sum_\tau P(s', \tau | s, a) \gamma^\tau,
\]

and the marginal distribution of waiting time by

\[
P_T^\tau(s, a) = \sum_{s'} P(s', \tau | s, a).
\]

We first generalize the simulation lemma (see, e.g., Kearns & Singh (2002); Strehl et al. (2009)) for MDPs to SMDPs, giving a bound on the value function differences in terms of model estimation errors:

Lemma 5 Let \(M_i = (\mathcal{S}, \mathcal{A}, P_i, R_i, \gamma) \) \((i = 1, 2)\) be two SMDPs that differ only in reward and transition functions, and \(V_{i}^\gamma \) and \(Q_{i}^\gamma \) the respective optimal value functions. Let \(\bar{\gamma}_{s,a} \) be the effective discount factor for \((s, a)\) under \(M_2 \):

\[
\bar{\gamma}_{s,a} = \sum_\tau \gamma^\tau P_T^\tau(s, a).
\]

and define the discount-adjusted model estimation error by

\[
\varepsilon_{s,a} = \frac{1}{1 - \bar{\gamma}_{s,a}} \left(|R_1(s, a) - R_2(s, a)| + \max s' \| P_1^\tau(s', a) - P_2^\tau(s', a) \|_1 \right).
\]

Then, for any \(s \) and \(a \),

\[
|Q_{1}^\gamma(s, a) - Q_{2}^\gamma(s, a)| \leq \max_{s',a} \varepsilon_{s,a}
\]

\[
|V_{1}^\gamma(s, a) - V_{2}^\gamma(s, a)| \leq \max_{s',a} \varepsilon_{s,a}
\]

Proof Let \((s, a)\) be the state–action pair that achieves maximum difference of \(|Q_{1}^\gamma(s', a) - Q_{2}^\gamma(s', a)| \). To simplify notation, define

\[
\varepsilon_R = |R_1(s, a) - R_2(s, a)|
\]

\[
\varepsilon_P = \| P_1^\tau(s', a) - P_2^\tau(s', a) \|_1
\]

\[
\Delta = |Q_{1}^\gamma(s, a) - Q_{2}^\gamma(s, a)|
\]
Then,

\[\Delta = |Q_1^*(s, a) - Q_2^*(s, a)| \]

\[= \left| R_1(s, a) + \sum_{s', \tau} \gamma^\tau P_1(s', \tau)|s, a|V_1^*(s') \right| \\
- \left| R_2(s, a) + \sum_{s', \tau} \gamma^\tau P_2(s', \tau)|s, a|V_2^*(s') \right| \\
\leq |R_1(s, a) - R_2(s, a)| \\
+ \left| \sum_{s', \tau} \gamma^\tau (P_1(s', \tau)|s, a| - P_2(s', \tau)|s, a|) V_1^*(s') \right| \\
+ \left| \sum_{s', \tau} \gamma^\tau P_2(s', \tau)|s, a|(V_1^*(s') - V_2^*(s')) \right| \\
\leq \varepsilon_R + V_{\max|s, a, \tau} - \Delta \left| \sum_{s', \tau} \gamma^\tau P_2(s', \tau)|s, a| \right| \\
= (\varepsilon_R + V_{\max|s, a, \tau}) + \gamma_{s,a,\Delta} \\
= (1 - \gamma_{s,a})\varepsilon_{s,a} + \gamma_{s,a,\Delta}. \\
\]

Rearranging terms, we have

\[\Delta \leq \varepsilon_{s,a} \leq \max_{s',a'} \varepsilon_{s',a}. \]

The case for \(V^*_M - V^*_M \) follows immediately from the following observation: for any state \(s \),

\[|V_1^*(s) - V_2^*(s)| = \max_a Q_1^*(s, a) - \max_a Q_2^*(s, a) \]

\[\leq \max_a |Q_1(s, a) - Q_2(s, a)| \leq \Delta. \]

\[\square \]

Clearly, \(R(s, a) \in [0, \frac{1}{1-\gamma}] \). Using a concentration argument based on Hoeffding’s inequality, one can establish that \(n/(\varepsilon^2(1-\gamma)^2) \) samples suffice to ensure \(\varepsilon \) accuracy in the reward estimate. Similarly, the effective transition probabilities \(P(s'|s, a) \) can also be within \(\varepsilon \) total variation with \(n/(Na_a/\varepsilon^2) \) samples. Therefore, by setting \(\varepsilon \) appropriately, the accuracy condition in Theorem 1 can be satisfied.

Finally, there are at most \(SA \) many state-actions, each known when it is visited sufficiently often. The bounded-surprises condition in Theorem 1 thus holds.

Therefore all three conditions of Theorem 1 hold, and the result follows.

10. Further Details for Section 4

10.1. Proof Sketch of Lemma 3

Fix a non-\(\varepsilon \)-optimal option set \(O' \subset O^* \) with \(|O'| \leq \bar{O} \).

By assumption, it fails to represent a near-optimal policy for MDPs drawn i.i.d. from \(\nu \) over \(\mathcal{M} \). Following the same argument for Lemma 1 of Brunskill & Li (2013), \(p_{\min}\ln \xi \) many tasks suffices to reveal the non-\(\varepsilon \)-optimality of \(O' \), with probability at least \(1 - \delta/C \). Taking a union bound over all \(C \) subsets of \(O^* \) up to size \(\bar{O} \), one finishes the proof of the lemma.

10.2. Proof Sketch of Lemma 4

For convenience, define \(\epsilon_1 = (\varepsilon - \varepsilon)/4 \). The proof relies on three major steps, each holding with probability at least \(1 - \delta \).

- **The MDP models are all estimated to sufficient accuracy:** The condition together with Lemma 2 implies every state-action will be visited at least \(\Omega(NV_{\max|s, a, \tau}^2(1-\gamma)^2 \ln 1/\delta) \) times. Applying Hoeffding’s inequality together with Lemma 8.5.5 of Kakade (2003), the reward and transition probabilities of every state-action pair are estimated with \(\epsilon_1(1-\gamma)/V_{\max|s, a, \tau} \) accuracy. By the simulation lemma (c.f., Kearns & Singh (2002); Strehl et al. (2009)), \(|V^*_M(s) - V^*_M(s)| < \epsilon_1 \), and similarly, \(|V^*_M(s) - V^*_M(s)| < \epsilon_1 \), where \(M \) and \(\hat{M} \) are the underlying/estimated MDPs, and \(M' \) and \(\hat{M}' \) the corresponding SMDPs induced by the discovered option set \(\hat{O} \).

- **The discovered option set \(\hat{O} \) is \(\varepsilon \)-optimal for all MDPs in \(\mathcal{M} \):** Using the triangle inequality together with the two inequalities established in the previous step, we have

\[V^*_M(s) - V^*_M(s) \]

\[\leq |V^*_M(s) - V^*_M(s)| + |V^*_M(s) - V^*_M(s)| \]

\[+ |V^*_M(s) - V^*_M(s)| \]

\[\leq 2\epsilon_1 + |V^*_M(s) - V^*_M(s)|. \]

In the option-discovery step, \(\hat{O} \) must satisfy \(V^*_M(s) - V^*_M(s) \leq (\varepsilon + \varepsilon)/2 \). Therefore, \(V^*_M(s) - V^*_M(s) \leq 2\epsilon_1 + (\varepsilon + \varepsilon)/2 = \varepsilon \); that is, the option set \(\hat{O} \) is \(\varepsilon \)-optimal for all MDPs encountered in phase 1. According to Lemma 3, \(\hat{O} \) must also be \(\varepsilon \)-optimal for all MDPs in \(\mathcal{M} \); otherwise, it will fail to represent \(\varepsilon \)-optimal policies in at least one MDP in phase 1.

- **There exists at least one option set that satisfies the criterion of Equation 2:** According to the assumption, there exists some option set \(\hat{O} \) that is \(\varepsilon \)-optimal for \(\mathcal{M} \): for any \(M \) and any \(s, V^*_M(s) - V^*_M(s) < \varepsilon \), where
M′ is the SMDP induced by M and \bar{O}. Using the triangle inequality as well as the accuracy guarantee established in step 1, one gets

$$V^*_{M'}(s) - V^*_{M}(s) < V^*_{M'}(s) + \epsilon_1 - V^*_{M'}(s) + \epsilon_1$$

$$< \epsilon + 2\epsilon_1$$

$$= (\epsilon + \epsilon)/2.$$

In other words, \bar{O} will satisfy Equation 2.

The overall failure probability is at most δ: All three steps above hold with high probability. The first two steps require a union bound over all possible subsets of O^* with size up to \bar{O}. There are $C = \bar{O} \left((O^*)^{\bar{O}} \right)$ many such subsets. It suffices to set $\delta \leftarrow \delta/C$ for the union bound to complete the whole proof.

10.3. Proof of Theorem 3

The sample complexity can be divided into two terms, corresponding to tasks in phase 1 and in phase 2, respectively. The sample complexity of the MDP tasks in phase 1 is simply the number of tasks in phase 1, T_1, multiplied by the sample complexity of the E^3 algorithm.

11. Further Details for Section 5

We now illustrate the process of evaluating the bound on the sample complexity benefit with the small example shown in Figure 1. In this example there are 2 states and 4 MDPs, and each MDP has a single ϵ-optimal action in each state, shown in the Figure’s table. Assume that state s_1 deterministically transitions to s_2. Before introducing an option, there were 4 state-action combinations $(s_1, a_1), (s_1, a_2), (s_2, a_4), (s_2, a_5)$ needed to cover the ϵ-optimal policies of each MDP, resulting in a sample complexity bound of $\bar{O} \left(\frac{4}{1 - \gamma^2} \right)$. Now consider adding the option whose initiation state is s_1 and that takes action a_2 in state s_1 and action a_5 in state s_2. The length of this option is always 2, so from the prior section the option’s contribution to the sample complexity is $\bar{O} \left(\frac{4}{(1 - \gamma^2)(1 - \gamma)^2} \right) \left(2 + \frac{1}{1 - \gamma} \right)$. This option covers MDPs m_3 and m_4. To cover s_1 and s_2 for the remaining uncov-ered MDPs requires just 2 primitive state-action pairs, with a resulting $\bar{O} \left(\frac{2}{(1 - \gamma)^3} \right)$ contribution to the sample complexity bound. Therefore, introducing the option will reduce this upper bound on the sample complexity if

$$\frac{1}{(1 - \gamma^2)(1 - \gamma)^3} (2 + \frac{1}{1 - \gamma}) + \frac{2}{(1 - \gamma)^6} < \frac{4}{(1 - \gamma)^6}$$

$$\Leftrightarrow 5 < 6\gamma + \gamma^2$$

which holds for large γ, such as $\gamma = 0.9$. The algorithm evaluates this expression for the input γ, and keeps the option if the expression holds.