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9. Further Details for Section 3
9.1. Proof Sketch of Theorem 1

The proof parallels the proof of Proposition 1 by Strehl
et al. (2006) for MDPs, except the horizon (denoted by T
in their paper) needs to be redefined:

H =
1

1− γ
ln

4

ε(1− γ)
+ L+

1√
C

ln
2

δ′
.

This choice of H ensures that, for any epoch t, the non-
stationary policy At in state st is either Θ(ε)-optimal, or
will reach an unknown state in H steps with probability at
least ε(1 − γ). In either case, the algorithm will reach a
next state between step 1

1−γ ln 4
ε(1−γ) and H , since with

probability at least 1− δ′, the waiting time of taking action
at in state st is L + 1√

C
ln 1

δ′ (Lemma 1). Taking a union
bound over all possible non-ε-optimal steps (which is poly-
nomial in ζ, 1/ε, 1/δ, and 1/(1 − γ)), that is, setting δ′ to
δ/poly(ζ, 1/ε, 1/δ, 1/(1 − γ)), we can prove the theorem
as done in Strehl et al. (2006). Note that we need not take
a union over all epochs, but only those where the decision
is potentially non-ε-optimal; if At is ε-optimal in epoch t,
it does not count towards the sample complexity anyway.

9.2. Definition of Known-state SMDP

Definition 3 Let M = 〈S,A, P,R, γ〉 be an SMDP, Q
is a state–action value function, and K ⊆ S × A a set
of “known” state–actions. Define the known state–action
SMDP (with respect to K) as MK = 〈S,A, PK, RK, γ〉,
where

PK(s′, τ |s, a) =

{
P (s′, τ |s, a), if (s, a) ∈ K
I (s = s′, τ = 1) , otherwise

RK(s, a) =

{
R(s, a), if (s, a) ∈ K
(1− γ)Q(s, a), otherwise.

In other words, the known state–action SMDP MK has
identical dynamics to M except in unknown state–actions
where (i) the transitions are all self-loops with unit waiting
time, and (ii) the Q-values are exact.

9.3. Proof of Theorem 2

Clearly, the construction leads to optimistic value func-
tions, so the first condition of Theorem 1 holds.

We now consider when a state–action pair (s, a) becomes
known. Define the effective transition probabilities by

PS(s′|s, a) =
∑
τ

P (s′, τ |s, a)γτ ,

and the marginal distribution of waiting time by

PT (τ |s, a) =
∑
s′

P (s′, τ |s, a).

We first generalize the simulation lemma (see, e.g., Kearns
& Singh (2002); Strehl et al. (2009)) for MDPs to SMDPs,
giving a bound on the value function differences in terms
of model estimation errors:

Lemma 5 Let Mi = 〈S,A, Pi, Ri, γ〉 (i = 1, 2) be two
SMDPs that differ only in reward and transition functions,
and V ∗i and Q∗i the respective optimal value functions. Let
γ̄s,a be the effective discount factor for (s, a) under M2:

γ̄s,a =
∑
τ

γτPT2 (τ |s, a).

and define the discount-adjusted model estimation error by

εs,a =
1

1− γ̄s,a
(
|R1(s, a)−R2(s, a)|

+Vmax

∥∥PS1 (·|s, a)− PS2 (·|s, a)
∥∥

1

)
.

Then, for any s and a,

|Q∗1(s, a)−Q∗2(s, a)| ≤ max
s,a

εs,a

|V ∗1 (s, a)− V ∗2 (s, a)| ≤ max
s,a

εs,a

Proof Let (s, a) be the state–action pair that achieves max-
imum difference of |Q∗1(·, ·)−Q∗2(·, ·)|. To simplify nota-
tion, define

εR = |R1(s, a)−R2(s, a)|
εP =

∥∥PS1 (·|s, a)− PS2 (·|s, a)
∥∥

1

∆ = |Q∗1(s, a)−Q∗2(s, a)|
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Then,

∆ = |Q∗1(s, a)−Q∗2(s, a)|

=

∣∣∣∣∣∣
R1(s, a) +

∑
s′,τ

γτP1(s′, τ |s, a)V ∗1 (s′)


−

R2(s, a) +
∑
s′,τ

γτP2(s′, τ |s, a)V ∗2 (s′)

∣∣∣∣∣∣
≤ |R1(s, a)−R2(s, a)|

+

∣∣∣∣∣∣
∑
s′,τ

γτ (P1(s′, τ |s, a)− P2(s′, τ |s, a))V ∗1 (s′)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
s′,τ

γτP2(s′, τ |s, a)(V ∗1 (s′)− V ∗2 (s′)

∣∣∣∣∣∣
≤ εR + VmaxεP + ∆

∣∣∣∣∣∣
∑
s′,τ

γτP2(s′, τ |s, a)

∣∣∣∣∣∣
= (εR + VmaxεP ) + γ̄s,a∆

= (1− γ̄s,a)εs,a + γ̄s,a∆.

Rearranging terms, we have

∆ ≤ εs,a ≤ max
s′,a′

εs′,a′ .

The case for V ∗ follows immediately from the following
observation: for any state s,

|V ∗1 (s)− V ∗2 (s)| =
∣∣∣max
a

Q∗1(s, a)−max
a

Q∗2(s, a)
∣∣∣

≤ max
a
|Q1(s, a)−Q2(s, a)| ≤ ∆.

�

Clearly, R(s, a) ∈ [0, 1
1−γ ]. Using a concentration argu-

ment based on Hoeffding’s inequality, one can establish
that O

(
1/(ε2(1− γ)2)

)
samples suffice to ensure ε accu-

racy in the reward estimate. Similarly, the effective tran-
sition probabilities P (s′|s, a) can also be estimated within
ε total variation with O

(
Nsa/ε

2
)

samples. Therefore, by
setting ε appropriately, the accuracy condition in Theo-
rem 1 can be satisfied.

Finally, there are at most SA many state–actions, each be-
coming known when it is visited sufficiently often. The
bounded-surprises condition in Theorem 1 thus holds.

Therefore all three conditions of Theorem 1 hold, and the
result follows.

10. Further Details for Section 4
10.1. Proof Sketch of Lemma 3

Fix a non-ε-optimal option set O′ ⊂ O∗ with |O′| ≤ Ō.
By assumption, it fails to represent a near-optimal policy
for MDPs drawn i.i.d. from ν overM. Following the same
argument for Lemma 1 of Brunskill & Li (2013), p−1

min ln C
δ

many tasks suffices to reveal the non-ε-optimality of O′,
with probability at least 1 − δ/C. Taking a union bound
over allC subsets ofO∗ up to size Ō, one finishes the proof
of the lemma.

10.2. Proof Sketch of Lemma 4

For convenience, define ε1 = (ε − ε)/4. The proof relies
on three major steps, each holding with probability at least
1− δ.

• The MDP models are all estimated to sufficient
accuracy: The condition together with Lemma 2
implies every state–action will be visited at least
Ω(NV 2

maxε
−2
1 (1 − γ)−2 ln 1/δ) times. Applying

Hoeffding’s inequality together with Lemma 8.5.5
of Kakade (2003), the reward and transition prob-
abilities of every state–action pair are estimated
with ε1(1 − γ)/Vmax accuracy. By the simulation
lemma (c.f., Kearns & Singh (2002); Strehl et al.
(2009)),

∣∣∣V ∗M (s)− V ∗
M̂

(s)
∣∣∣ < ε1, and similarly,∣∣∣V ∗M ′(s)− V ∗

M̂ ′(s)
∣∣∣ < ε1, where M and M̂ are the

underlying/estimated MDPs, and M ′ and M̂ ′ the cor-
responding SMDPs induced by the discovered option
set Ô.

• The discovered option set Ô is ε-optimal for all MDPs
inM: Using the triangle inequality together with the
two inequalities established in the previous step, we
have

V ∗M (s)− V ∗M ′(s)

≤
∣∣V ∗M (s)− V ∗

M̂
(s)
∣∣+
∣∣V ∗M ′(s)− V ∗

M̂ ′(s)
∣∣

+
∣∣V ∗
M̂

(s)− V ∗
M̂ ′(s)

∣∣
≤ 2ε1 +

∣∣V ∗
M̂

(s)− V ∗
M̂ ′(s)

∣∣ .
In the option-discovery step, Ô must satisfy V ∗

M̂
(s)−

V ∗
M̂ ′(s) ≤ (ε + ε)/2. Therefore, V ∗M (s) − V ∗M ′(s) ≤

2ε1 + (ε + ε)/2 = ε; that is, the option set Ô is ε-
optimal for all MDPs encountered in phase 1. Ac-
cording to Lemma 3, Ô must also be ε-optimal for
all MDPs inM; otherwise, it will fail to represent ε-
optimal policies in at least one MDP in phase 1.

• There exists at least one option set that satisfies the
criterion of Equation 2: According to the assumption,
there exists some option set Ō that is ε-optimal forM:
for any M and any s, V ∗M (s) − V ∗M ′(s) < ε, where
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s2

s1

a1/ a2
         m1   m2    m3    m4

s1     a1    a1     a2     a2
s2     a4    a4     a5     a5

Figure 1. Example for sample complexity calculation illustration.
The table shows the ε-optimal actions for each MDP. There are 5
actions but a3 is never optimal for any MDP.

M ′ is the SMDP induced by M and Ō. Using the
triangle inequality as well as the accuracy guarantee
established in step 1, one gets

V ∗
M̂

(s)− V ∗
M̂ ′(s) < V ∗M (s) + ε1 − V ∗M ′(s) + ε1

< ε+ 2ε1

= (ε+ ε)/2.

In other words, Ō will satisfy Equation 2.

The overall failure probability is at most δ: All three steps
above hold with high probability. The first two steps re-
quire a union bound over all possible subsets of O∗ with
size up to Ō. There are C = O

(
(O∗)Ō

)
many such sub-

sets. It suffices to set δ ← δ/C for the union bound to
complete the whole proof.

10.3. Proof of Theorem 3

The sample complexity can be divided into two terms, cor-
responding to tasks in phase 1 and in phase 2, respectively.
The sample complexity of the MDP tasks in phase 1 is sim-
ply the number of tasks in phase 1, T1, multiplied by the
sample complexity of the E3 algorithm.

11. Further Details for Section 5
We now illustrate the process of evaluting the bound on
the sample complexity benefit with the small example
shown in Figure 1. In this example there are 2 states
and 4 MDPs, and each MDP has a single ε-optimal ac-
tion in each state, shown in the Figure’s table. Assume
that state s1 deterministically transitions to s2. Before
introducing an option, there were 4 state–action combi-
nations (s1, a1), (s1, a2), (s2, a4), (s2, a5) needed to cover
the ε-optimal policies of each MDP, resulting in a sam-
ple complexity bound of O

(
4

(1−γ)6

)
. Now consider

adding the option whose initiation state is s1 and that
takes action a2 in state s1 and action a5 in state s2. The
length of this option is always 2, so from the prior sec-
tion the option’s contribution to the sample complexity is
O
(

1
(1−γ2)2(1−γ)3

(
2 + 1

1−γ

))
. This option covers MDPs

m3 and m4. To cover s1 and s2 for the remaining uncov-

ered MDPs requires just 2 primitive state–action pairs, with
a resulting O

(
2

(1−γ)6

)
contribution to the sample com-

plexity bound. Therefore, introducing the option will re-
duce this upper bound on the sample complexity if

1

(1− γ2)2(1− γ)3
(2 +

1

1− γ
) +

2

(1− γ)6
<

4

(1− γ)6

⇔ 5 < 6γ + γ2

which holds for large γ, such as γ = 0.9. The algorithm
evaluates this expression for the input γ, and keeps the op-
tion if the expression holds.


