PAC Option Discovery

9. Further Details for Section 3
9.1. Proof Sketch of Theorem 1

The proof parallels the proof of Proposition 1 by Strehl
et al. (2006) for MDPs, except the horizon (denoted by T’
in their paper) needs to be redefined:
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This choice of H ensures that, for any epoch ¢, the non-
stationary policy A; in state s; is either O(¢)-optimal, or
will reach an unknown state in H steps with probability at
least €(1 — ). In either case, the algorithm will reach a
next state between step 1= In 5(14777) and H, since with
probability at least 1 — ¢’, the waiting time of taking action
aq in state sy is L + % In % (Lemma 1). Taking a union
bound over all possible non-e-optimal steps (which is poly-
nomial in ¢, 1/¢, 1/6, and 1/(1 — 7)), that is, setting ¢’ to
d/poly(¢,1/€,1/6,1/(1 — v)), we can prove the theorem
as done in Strehl et al. (2006). Note that we need not take
a union over all epochs, but only those where the decision
is potentially non-e-optimal; if A, is e-optimal in epoch ¢,
it does not count towards the sample complexity anyway.

9.2. Definition of Known-state SMDP

Definition 3 Ler M = (S, A, P,R,~) be an SMDP, )
is a state—action value function, and K C S x A a set
of “known” state—actions. Define the known state—action
SMDP (with respect to K) as Mx = (S, A, Px, Rc,7),
where

/ .
Pi(s',7]s,a) = P(s ,T|/57a); lf(s,a)' c K
[(s=s',7=1), otherwise
RIC(S,CL) — R(S,a)a lf(s’a). eK
(1 —=7)Q(s,a), otherwise.

In other words, the known state—action SMDP My has
identical dynamics to M except in unknown state—actions
where (i) the transitions are all self-loops with unit waiting
time, and (ii) the (Q-values are exact.

9.3. Proof of Theorem 2

Clearly, the construction leads to optimistic value func-
tions, so the first condition of Theorem 1 holds.

We now consider when a state—action pair (s, a) becomes
known. Define the effective transition probabilities by

(s']s,a) = ZPS T|s,a)y

and the marginal distribution of waiting time by

ZPS T|s,a).

T(1]s,a)

We first generalize the simulation lemma (see, e.g., Kearns
& Singh (2002); Strehl et al. (2009)) for MDPs to SMDPs,
giving a bound on the value function differences in terms
of model estimation errors:

Lemma 5 Let M; = (S, A, P;,R;,v) (i = 1,2) be two
SMDPs that differ only in reward and transition functions,

and V;* and Q} the respective optimal value functions. Let
7s,a be the effective discount factor for (s, a) under My:

Vs,a = ZVTPQT(T‘S’G)'

and define the discount-adjusted model estimation error by

1
€s,a = 1 _ Yoo ( ‘Rl(sa a) - R2(Sa a)|
+Vinax ||P1$’(|S7a) - PQS(|S7 a’)Hl )
Then, for any s and a,
Q1(s,a) = Qa(s,a)] < maxes,
IVi(s,a) = V5'(s,a)] < maxeggq

Proof Let (s, a) be the state—action pair that achieves max-
imum difference of |Q7(-,-) — Q3(-,-)|- To simplify nota-

tion, define
ER = ‘Rl(’S?a) 7R2(57a)‘
Ep = ||Pls(|85a)_PQS(|S7a')||1
A = ‘QT(&G) - Q;(S’a)l
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Then,

A= Qi (s,a) — Q3(s,a)|

= Ri(s,a) + ZVTPl(s’,ﬂs,a)Vl*(s’)

s

— | Ra(s,a) + ZWTPQ(S/>T|37 a)Vy (s')

s',T

< |Ri(s,a) — Ra(s,a)l
+ 1) A (Pu(s 75 a) — Po(s, 7]s, ) Vi (s)
+ ) A Pa(s 7l @) (Vi (s)) = Vi (s))

< er+ Viaxep + A|Y Y Po(s,7]s,q)

s’ T
= (ER + V;nang) + '_Ys,aA
(1 - :}/s,a)gs,a + :}/s,aA-

Rearranging terms, we have

A<esq <maxey g
s’,a’

The case for V* follows immediately from the following
observation: for any state s,

Vi () = V3 (3)] = |max Qi (s, @) — max Q3(s, )

< max|Qi(s,a) = Q2(s,a)| < A.
O

Clearly, R(s,a) € [0, ﬁ] Using a concentration argu-
ment based on Hoeffding’s inequality, one can establish
that O (1/(*(1 — v)?)) samples suffice to ensure & accu-
racy in the reward estimate. Similarly, the effective tran-
sition probabilities P(s’|s, a) can also be estimated within
¢ total variation with O (Nsa / 52) samples. Therefore, by
setting ¢ appropriately, the accuracy condition in Theo-

rem 1 can be satisfied.

Finally, there are at most S A many state—actions, each be-
coming known when it is visited sufficiently often. The
bounded-surprises condition in Theorem 1 thus holds.

Therefore all three conditions of Theorem 1 hold, and the
result follows.

10. Further Details for Section 4
10.1. Proof Sketch of Lemma 3

Fix a non-e-optimal option set O’ C O* with |O'| < O.
By assumption, it fails to represent a near-optimal policy
for MDPs drawn i.i.d. from v over M. Following the same
argument for Lemma 1 of Brunskill & Li (2013), p;iln In %
many tasks suffices to reveal the non-e-optimality of O,
with probability at least 1 — §/C. Taking a union bound
over all C' subsets of O* up to size O, one finishes the proof
of the lemma.

10.2. Proof Sketch of Lemma 4

For convenience, define e, = (e — £)/4. The proof relies
on three major steps, each holding with probability at least
1-9.

e The MDP models are all estimated to sufficient
accuracy: The condition together with Lemma 2
implies every state—action will be visited at least
QINV2, _e7%(1 — 4)"2In1/6) times. Applying
Hoeffding’s inequality together with Lemma 8.5.5
of Kakade (2003), the reward and transition prob-
abilities of every state—action pair are estimated
with € (1 — 7)/Viax accuracy. By the simulation
lemma (c.f,, Kearns & Singh (2002); Strehl et al.

(2009)), ‘Vjﬁ[(s)—V;j(s)’ < e, and similarly,
‘VJV*I’ (s) = Vy, (s)’ < €1, where M and M are the

underlying/estimated MDPs, and M’ and M’ the cor-
responding SMDPs induced by the discovered option
set O.

o The discovered option set Ois e-optimal for all MDPs
in M: Using the triangle inequality together with the
two inequalities established in the previous step, we
have

Vir(s) = Vi (s)
< |Vir(s) = Vi ()] + [Vap () = Vi (s)]
+ |VA*4(5) — V;I/(s)|

< 26 + ’VA’Z(S) - V;[,(s)| .
In the option-discovery step, O must satisfy Vi(s) —
Ve (s) < (€ +¢€)/2. Therefore, Vi (s) — V]*V[,A(s) <
2¢1 + (€ + €)/2 = ¢; that is, the option set O is e-
optimal for all MDPs encountered in phase 1. Ac-
cording to Lemma 3, O must also be e-optimal for
all MDPs in M; otherwise, it will fail to represent e-
optimal policies in at least one MDP in phase 1.

o There exists at least one option set that satisfies the
criterion of Equation 2: According to the assumption,
there exists some option set O that is e-optimal for M:
for any M and any s, V;;(s) — Vi (s) < e, where
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Figure 1. Example for sample complexity calculation illustration.
The table shows the e-optimal actions for each MDP. There are 5
actions but a3 is never optimal for any MDP.

M’ is the SMDP induced by M and O. Using the
triangle inequality as well as the accuracy guarantee
established in step 1, one gets

Vig(s) =V (s) < Vi(s)+ e =Vip(s) +a

< €—|—2€1
= (e+¢)/2.

In other words, O will satisfy Equation 2.

The overall failure probability is at most §: All three steps
above hold with high probability. The first two steps re-
quire a union bound over all possible subsets of O* with

size up to O. There are C = O ((O*)O) many such sub-

sets. It suffices to set 6 < &/C for the union bound to
complete the whole proof.

10.3. Proof of Theorem 3

The sample complexity can be divided into two terms, cor-
responding to tasks in phase 1 and in phase 2, respectively.
The sample complexity of the MDP tasks in phase 1 is sim-
ply the number of tasks in phase 1, 73, multiplied by the
sample complexity of the £ algorithm.

11. Further Details for Section 5

We now illustrate the process of evaluting the bound on
the sample complexity benefit with the small example
shown in Figure 1. In this example there are 2 states
and 4 MDPs, and each MDP has a single e-optimal ac-
tion in each state, shown in the Figure’s table. Assume
that state s; deterministically transitions to s,. Before
introducing an option, there were 4 state—action combi-
nations (81, a1), (81, az), (s2,a4), (s2, as) needed to cover
the e-optimal policies of each MDP, resulting in a sam-

ple complexity bound of O (ﬁ) Now consider

adding the option whose initiation state is s; and that
takes action a, in state s; and action as in state s5. The
length of this option is always 2, so from the prior sec-
tion the option’s contribution to the sample complexity is

(0) (m (2 + ﬁ)) This option covers MDPs
ms and my. To cover s; and s, for the remaining uncov-

ered MDPs requires just 2 primitive state—action pairs, with
a resulting O ﬁ) contribution to the sample com-

plexity bound. Therefore, introducing the option will re-
duce this upper bound on the sample complexity if

1 2+ 1 )+ 2 4
(1=92A =72 1-9" (1-=7)° (1=7)°
& 5 < 6y+7°

which holds for large «, such as v = 0.9. The algorithm
evaluates this expression for the input v, and keeps the op-
tion if the expression holds.



