PAC-inspired Option Discovery in Lifelong Reinforcement Learning

Emma Brunskill

EBRUNSKILL@CS.CMU.EDU

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213

Lihong Li

LIHONGLI@MICROSOFT.COM

Microsoft Research, One Microsoft Way, Redmond, WA 98052

Abstract

A key goal of Al is to create lifelong learn-
ing agents that can leverage prior experience
to improve performance on later tasks. In
reinforcement-learning problems, one way to
summarize prior experience for future use is
through options, which are temporally extended
actions (subpolicies) for how to behave. Op-
tions can then be used to potentially accelerate
learning in new reinforcement learning tasks. In
this work, we provide the first formal analysis
of the sample complexity, a measure of learning
speed, of reinforcement learning with options.
This analysis helps shed light on some interesting
prior empirical results on when and how options
may accelerate learning. We then quantify the
benefit of options in reducing sample complexity
of a lifelong learning agent. Finally, the new the-
oretical insights inspire a novel option-discovery
algorithm that aims at minimizing overall sample
complexity in lifelong reinforcement learning.

1. Introduction

A key goal of Al is to create agents that can quickly learn
to act well in new domains. It seems extremely likely
that humans achieve this by leveraging a hierarchical struc-
ture for complex tasks: learning then involves selecting
among temporally extended actions like “drive to the air-
port,” “provide 4 weeks of chemotherapy,” or “use robotic
arm to pick up block,” rather than primitive actions like
“press gas for 1 second”, “radiate skin voxel for 2 seconds”
or “rotate robot arm joint 1 for 1 second.” For people, such
temporally extended actions often arise from chunking of

Proceedings of the 31°" International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

prior experiences into subpieces that can be reused to im-
prove learning speed and performance on future tasks.

Such observations have inspired prior heuristic algorithms
for using temporally extended actions in reinforcement
learning (RL) (Sutton et al., 1999; Barto & Mahadevan,
2003), as well as discovering such actions for use in fu-
ture tasks (Thrun & Mitchell, 1995; Pickett & Barto, 2002;
Mannor et al., 2004; Stolle & Precup, 2002; Konidaris &
Barto, 2007). Past work has produced encouraging exper-
imental evidence that leveraging similarity in policy sub-
structure across tasks can lead to improved performance.

Despite these promising results, recent empirical investi-
gations (Jong et al., 2008) suggests the need for a deeper
understanding of when and how such temporally extended
actions speed up learning. In that paper, backed by ex-
perimental evidence, the authors argued that augmenting
primitive actions with options (a common practice in the
literature on options) can only increase the amount of ex-
ploration required, thereby slowing learning.

Intrigued by the somewhat surprising findings above, and
by the lack of theoretical analysis in the literature, this work
aims to start to provide a theoretical foundation for under-
standing the conditions under which options can acceler-
ate RL, and how such options might be obtained automati-
cally during lifelong learning. Our objective differs from
the interesting recent work of Mann & Mannor (2014),
who prove that leveraging a given set of options can reduce
computation complexity of planning. In contrast, we focus
on analyzing the impact of options on sample complexity,
which is a measure of learning efficiency that counts the
number of steps on which an algorithm may select a non-
near-optimal action (Kakade, 2003; Strehl et al., 2006).

We make several contributions in this work. First, we
present the first formal analysis of how options can im-
prove the sample complexity of RL. This analysis provides
a solid theoretical foundation to explain some of the prior
empirical successes (and surprises). Second, we discuss
the conditions under which we can discover a set of options

PAC Option Discovery

during lifelong learning across a series of RL tasks that is
guaranteed to reduce or match the sample complexity of
single-task learning in future RL tasks. Third, we present a
two-phase lifelong learning algorithm that performs option
discovery and then leverages the prior options. The key
of the algorithm is a greedy option discovery method that
directly leverages the results of our PAC analysis to con-
struct options given experience in tasks in the first phase.
Finally, this approach enables a significant performance
improvement over RL without options on a prior bench-
mark simulation domain, as well as a strong option dis-
covery baseline, and does almost as well as using a set of
expert-constructed options. Under certain conditions, our
discovered options are guaranteed not to lead to a particu-
lar form of negative transfer: using the discovered options
will not result in a worse sample complexity bound for later
tasks, compared to that with primitive actions. This is im-
portant because negative transfer, where prior knowledge
harms future performance, is a common challenge in life-
long learning.

2. Background and Setting

Much of existing RL research is for single-task learning
in a Markov decision process (MDP). An MDP is a tu-
ple M = (S, A P, R,~), where S and A are sets of
state/actions, P(s’|s, a) the transition probabilities, R(s, a)
the reward function, and y € [0, 1) the discount. A policy
7 maps states to actions. Its value in state s, V™ (s), is
the expected total discounted rewards of following 7 start-
ing in s. The Bellman operator V7 (s) = R(s,n(a)) +
v o P(s'|s,m(a))V7(s) can be used to compute the
value of 7, or find an optimal policy and value for a given
MDP. In RL, the transition and/or reward function is ini-
tially unknown, and an algorithm typically aims to find a
policy to maximize the expected total rewards.

In MDPs, the time to transition between states after tak-
ing an action is constant. Semi-Markov decision pro-
cesses (SMDPs) allow the transition duration (a.k.a. wait-
ing time, 7) to be non-constant and stochastic. An SMDP
is a tuple M = (S, A, P,R,~), similar to a MDP, ex-
cept P(s',7|s,a) is the joint probability of transitioning
to a state s’ in T steps, after taking action « in state s, and
R(s,a) is the expected discounted reward accumulated in
a transition by taking action a in state s. We focus on
SMDPs with finite state/actions and integer-valued waiting
time: S = |S|, A = |A|, 7 € NL. We denote by Ny,
the number of next states reachable by taking a in s, and
N = max, q Nyq. A policy 7 in a SMDP is still a mapping
from states to actions, whose value of a policy is defined
similarly as in MDPs.

One important class of temporally extended actions are
“Markov options” (Sutton et al., 1999) that are non-

interruptible: when an agent chooses an option, it fol-
lows the option policy until it terminates. Formally, an
option consists of three components, o = (Z,, 7, To):
T, C S is the set of initiation states where o can be
started; m, is the option policy, and 7, C & is the set
of termination states where the option ends.! Note that
an analogous Bellman operator exists for MDPs with op-
tions (as it does for generic SMDPs), Q(s,a) = r(s,a) +
Yo oeg P(s'|s,a) max, Q(s',a’), where P(s'|s,a) =
Z;il P(s',7 = j|s,a)y’ (Puterman, 1994; Sutton et al.,
1999), and can be used to efficiently perform planning
given a set of option models.

We are interested in the lifelong learning setting: an agent
acts in a series of RL tasks where the ¢-th task, M, is drawn
ii.d. from a unknown distribution v over an unknown and
possibly infinite set M of MDPs. Similar to Wilson et al.
(2007), these tasks share the same states and actions, but
may differ in rewards and transition probabilities. We as-
sume there exists a good (unknown) underlying set of op-
tions O that is sufficient to achieve near-optimal perfor-
mance for all MDPs in M.> We seek to discover this or
a closely related set, and use that to improve the sample
complexity of exploration as the agent continues to act in
new tasks. Proofs, where omitted, are provided in the sup-
plementary material.

3. Sample-Efficient Learning in SMDPs

Since we wish to discover options to improve learning ef-
ficiency in later tasks, it is necessary to first understand
how options impact learning efficiency in single-task RL.
As shown by Sutton et al. (1999), an MDP with options is
an SMDP. Therefore, we study in this section the sample
complexity of RL in SMDPs. We assume, without much
loss of generality, that the per-step reward is in [0, 1], so the

maximum state value, denoted V., never exceeds ﬁ

We first extend the notion of sample complexity to SMDPs.
An RL algorithm A is interpreted as a non-stationary pol-
icy mapping histories to actions. Starting in state s, at
the ¢-th decision epoch (t = 1,2, ...), based on the history
he = (s1,a1,71,71, S2, G2, T2, T2, . . ., St), A has to choose
ag, and then transitions to a new state s;,; with waiting
time 7 and immediate reward r;. Here, we use “step” for
the actual time, and “epoch” for steps where an action is
chosen. In an MDP, 7, = 1, so every step is an epoch.

Definition 1 Given history h, at epoch t, an RL algorithm
is viewed as a non-stationary policy, denoted A,. For any

"Note that in general an option can terminate stochastically
(the 3 function defined by Sutton et al. (1999)). It suffices for
our purposes to focus on options that end deterministically, since
restricting to deterministic options does not sacrifice optimality.

The set of primitive actions always satisfies this condition.

PAC Option Discovery

fixed €, the sample complexity of exploration (or “sample
complexity”) of A is >, 7 - L(VA(sy) < V*(sy) —€),
where 1 (C') is the set-indicator function that evaluates to 1
if event C occurs and 0 otherwise.

In other words, the sample complexity of an algorithm in
an SMDP is the number of epochs where it takes non-e-
optimal actions, weighted by the (random) weighting time.
Clearly, if 7 is always 1, the definition is consistent with
the counterpart for MDPs, as desired.

Definition 2 An RL algorithm A is said to be PAC-SMDP
(Probably Approximately Correct in SMDPs) if, for any
SMDP, ¢ > 0, and 0 < & < 1, the sample complexity of
A is bounded by some function polynomial in S, A, 1/e,
1/6, and 1/(1 — ~), with probability at least 1 — 4.

3.1. A Generic PAC-SMDP Theorem

Despite the similarity to MDPs, further conditions are re-
quired on the transition probabilities for any algorithm to
be PAC-SMDP. To see this, consider a non-e-optimal ac-
tion a in some state s. If the waiting time 7 of taking a
in state s is infinite, and an algorithm chooses a in s, then
its sample complexity is unbounded, according to Defini-
tion 1. Intuitively, an action that makes the algorithm wait
forever prevents the algorithm from recovering from a sub-
optimal decision, thus the infinite sample complexity.

To prevent this pathological case, we assume there ex-
ist known constants L and C so that for any (s,a), (i)
E[r] < L; (ii) the distribution of 7 is sub-Gaussian
with parameter C, namely, the waiting time 7 satis-
fies Pr (|7 — E[r]s,a])| > A) < 2exp (—C\?). This as-
sumption is rather mild, covering many common distribu-
tions. For instance, if the support of 7 is bounded, meaning
that Pr(7 < 79) = 1 for some fixed 79, then 7 is also sub-
Gaussian. Sub-Gaussianness implies the following lemma:

Lemma 1 If 7 is sub-Gaussian with parameter C, then
with probability at least 1 — §, 7 < L + % In2.

Prior work on RL with primitive actions (Kearns & Singh,
2002; Brafman & Tennenholtz, 2002; Strehl et al., 2006)
proves efficient exploration can be achieved by tracking
a set of known state—actions whose rewards and transi-
tions have been estimated to sufficient accuracy, and us-
ing this information to guide exploration. We take a sim-
ilar approach for SMDPs, and define X, a known set of
state—action pairs. K are state—action pairs for which we
have a good estimate of their reward and transition distri-
butions, quantified by absolute error for rewards and to-
tal variation for transition probabilities. Given a set K we
define a known state—action SMDP, Mjc,, whose state—
action model parameters are identical to the true SMDP

on state—action pairs in /C, and have a reward of Ry,,x =
Vinax(1 — =) and self-loop dynamics for unknown state—
action pairs.

We can now provide a SMDP-analogue of the PAC-MDP
result of Strehl et al. (2006).

Theorem 1 Let A be an algorithm that chooses actions
greedily according to its estimated state—action value func-
tion, denoted Q) at step t. Define V; = maxq,ec4 Qi(s,a)
and my = argmax,c 4 Qi(s,a). In every step t, there is
a set of known state—action pairs K; C S x A that de-
pends only on the algorithm’s history up to t. We assume
Ky = Kyy1, unless either one of the following happens: (i)
Qi+1 # Qu or (ii) (s¢,ar) ¢ Ky Let My, be the known
state—action SMDP and w; be the greedy policy with re-
spect to Q. Suppose that for any € and § (both known to
the algorithm), the following conditions hold for all steps t
with probability at least 1 — § /2:

1. (Optimism) Vi(sy) > V*(s) — €/4;

2. (Accuracy) Vi(st) — V]C,[jct (s¢) < €/4; and

3. (Bounded Surprises) The total number of steps where
either an update to the Q-function occurs or the agent

visits an unknown state—action pair is bounded by a
Sunction ¢ = ((e,9).
Then, with probability 1 — 0§, the sample complexity of A is

Vinax 1 In s(ll—'y) 1 VmaxC
In - — 4+ L4+ —In———"— .
@< € (C+n5)< -y Ve e -)

The E3 (Kearns & Singh, 2002) and RMAX algo-
rithms (Brafman & Tennenholtz, 2002; Kakade, 2003) can
be extended to SMDPs and analyzed similarly. For con-
creteness, we describe SMDP-RMAX, a straightforward
extension of RMAX to SMDPs, a variant of which was
used in our experiments. It takes as input the states and
actions of an SMDP M. At each step, the agent main-
tains an SMDP M, with the same states and actions, but
where the known state—action pairs’ transitions and rewards
are maximume-likelihood estimates given the agent’s expe-
rience, and the unknown state—action pairs’ dynamics are
set to a self-loop with maximum reward. SMDP-RMAX
then uses value iteration to compute an optimal policy m;
for My, which can be done efficiently (Puterman, 1994).

Theorem 2 SMDP-RMAX is PAC-SMDP with a sample
complexity of, ignoring logarithmic terms,

- (V3. Nsa 1 1
@(. 2(17%)2 (17+L+\@)>. (1)

s,a

where Ny, is the number of reachable next states of
(s,a), ¥s = max,y. " P(7|s,a), and P(r|s,a) =
>« P(8',7|s, a) is the marginal waiting-time distribution.

PAC Option Discovery

Note that Equation 1 uses slightly less standard notation
of summing over all state—action pairs rather than the S A
dependence typical in MDPs. We do so because different
states may have access to different numbers of options.

3.2. Applications to MDPs with Options

The general results just derived for SMDPs also apply to
MDPs with options, as a MDP M with options O defines a
SMDP M’ = (§',0, P, R',~) (Sutton et al., 1999). The
resulting SMDP only must include states where at least one
option may be initiated, S’ = Uyc0Z,.

Note the sample complexity bound for using options can be
a significant improvement over that with primitive actions.
To see this, we compare the sample complexity of RMAX

in MDPs (Kakade, 2003), © (V—3 SIALY) to the bound
in Theorem 2 (with S = |S’| and A = |.A’|). The bound
with options is lower when the effective discount factors 7
are smaller than ~y and the waiting time is not much larger
than ﬁ, and/or when the number of state—options pairs is

smaller than the number of state—action pairs.

The above observation provides useful insights to under-
stand empirical results with options, and to guide options
design in practice. For example, Jong et al. (2008) re-
ported several surprising empirical results that showed in-
cluding options as well as primitive actions may worsen
learning speed, compared to agents with primitive actions.
This is as we would expect given our sample complexity
bound Equation 1, which predicts an increase if more state—
action tuples are added. In contrast, if the agent can only
take options in some states and primitive actions in others,
Jong et al. observed a substantial learning speedup. We cal-
culated the sample complexity bound in Theorem 2 using
the same options as in their domain. Our numbers are con-
sistent with their empirical results: restricting some states
to options and others to primitive actions (c.f., Figure 6 of
Jong et al. (2008)) reduces the sample complexity bound
by over 80%, compared to the primitive-action case, high-
lighting the potential benefit of introducing a smaller set of
good options to replace some state—primitive—action pairs.

4. Lifelong RL with Option Transfer
4.1. Setup

The prior section suggests that a good set of options can
substantially improve the sample complexity of RL. Intu-
itively, if the agent is acting in a series of RL problems
with related structure, the agent may be able to capture this
structure through option discovery, and then leverage the
resulting options to learn more efficiently in later RL tasks.

We now describe more formally how options may be dis-
covered from previously solved tasks to potentially reduce

the sample complexity of learning in future tasks. It is as-
sumed a set O* of candidate options are given, but with no
assumption on how O* is designed. For example, it can
be options that take the same action until a certain termi-
nation state is reached, or options that last up to a certain
steps. As will be made precise later, one needs to control
the cardinality of O* for nontrivial analysis to be possible.

We denote by O* = |O*| the number of candidate options.
Note that O* is always finite since the underlying MDPs
are finite. Given an MDP M and an option set O, an SMDP
M’ is induced, as described in Section 3.2. We also need to
quantify the quality of an option set: O is called e-optimal
for M if e-optimal policies can be found with these options
in M that is, we have Vi, (s) — Vi (s) < eforall s € §'.

4.2. Lifelong Sample Complexity

The primary objective of this section is to show: (1) un-
der some restrictions, if there exists a small set of options
O sufficient to achieve -optimal performance in all MDPs
M the agent will encounter, then the agent can discover
this set; and (2) to bound the total sample complexity in-
curred during this lifelong learning with option discovery.
Whether option discovery results in a reduction in the sam-
ple complexity depends on the properties of O, which ap-
pears directly in the lifelong sample complexity bound. In
the experiments of Section 6, we will provide an exam-
ple where the sample complexity is significantly improved
with discovered options. Our focus here is to formally
quantify the sample complexity, so the computational com-
plexity is ignored at the moment. However, the theory
to be developed here will inspire a computationally more
tractable option discovery algorithm in the next section.

Our analysis makes these assumptions: (1) Tasks are drawn
i.i.d. from an unknown distribution v over M; (2) There is
aset O C O that is e-optimal for all MDPs in M, and
|O| < O for some known constant O; (3) There exists a
known threshold pin € (0, 1) such that: for any O’ C O
with |O’| < O, if O’ is not e-optimal for M, then, with
probability at least p,,;, under v, it fails to represent an e-
optimal policy of MDPs drawn from M; (4) There exists a
known diameter D, such that for every M in M, any state
s’ is reachable from any s in at most D steps on average;

The first assumption is fairly mild and is common in life-
long learning (e.g., Wilson et al. (2007)). The second for-
malizes the intuition that option transfer is useful in lifelong
learning only if there is a small number of them that can
represent near-optimal policies.> The third requires that
each option in O be needed with some minimum proba-

31t is always possible to find e-optimal option sets for all
MDPs in M, for any € > 0. One can simply include all primitive
actions in O to achieve that, although O will be large. In practice,
domain knowledge is needed to design a reasonably small O.

PAC Option Discovery

bility. This assumption essentially rules out options that
are needed to represent e-optimal policies for extremely
rare MDPs. One can avoid this assumption and state the
results below in a different way, but exposition would be
more complicated. The fourth is one of the key assump-
tions needed in the analysis. The diameter, first defined
by Jaksch et al. (2010), measures how many steps it takes,
on average, to navigate from a state to another following
the shortest path between them. The assumption allows the
agent to explore an MDP quickly, if it intends to do so.

To simplify the analysis, a two-phase algorithm is used.
Briefly, for tasks encountered in phase 1, the algorithm per-
forms single-task learning, while trying to construct accu-
rate models of these tasks at the same time. Then, based
on information collected from phase 1, the algorithm dis-
covers a set of options O C O* that e-covers the MDPs
in phase 1. In phase 2, the algorithm uses the discovered
options to solve tasks, treating them as SMDPs induced by
underlying MDPs and O. More details are given below.

In phase 1 that lasts for 73 tasks, a variant of the E3 al-
gorithm is used for each task encountered, as in Brunskill
& Li (2013). For each task, the algorithm keeps track of
“known” states that have been visited sufficiently often, as
controlled by a threshold parameter, so that their transition
and rewards have been estimated accurately. The algorithm
then tries to explore unknown states until all of them be-
come known. As argued by Brunskill & Li (2013), the di-
ameter assumption leads to the following fact:

Lemma 2 [fevery task in phase 1 is run for H steps, then,
with probability at least 1 — §, the number of visits to each
state—action pair is at least) (DLSA In %)

At the end of phase 1, the algorithm uses the observed data
to discover options. We desire to find a subset O c O that
can represent e-optimal policies for tasks to be solved in
phase 2. Note that this is only possible if the best possible
option set O* is capable of representing e-optimal policies*
for all M where ¢ < e. We assume that we have access to
an option-discovery algorithm that can find a set of options

O that achieves the following two conditions: (i) ‘@‘ <O;

and (ii) for every task M encountered in phase 1,

Vi(s) = Vi (s) < (e+e)/2 2)
where M is the model estimate of M (by averaging ob-
served rewarc}s and state transitions), and M’ is the SMDP
induced by M and O. Ties are broken arbitrarily if there
are multiple option subsets that satisfy these conditions.

The core issue in the option discovery step above is to en-
sure the found option set O will not include unnecessary

* Again, we can always ensure this for any ¢, even 0, by select-
ing the primitive action set.

options and is e-optimal for all future tasks. Lemma 3 be-
low quantifies the length of phase 1 so that every option in
O will be useful at least once in phase 1 tasks.

Lemma 3 [fwe set T} = p;liln In %, then, with probability

at least 1 — §, every non-e-optimal subset of O will fail to
represent e-optimal policy in at least one task in phase 1.

The next lemma considers how large H should be in order
for the discovered options to be e-optimal for all M.

Lemma 4 If the horizon H of tasks in phase 1 is
2
Q (SANDV 111(0/5)) , where N = maxs q Ns,a: then,

max

with probability at least 1 — §, some option set O will sat-
isfy the criterion of Equation 2, and is e-optimal.

In phase 2, equipped with the option set 0, every task en-
countered becomes an SMDP. We may use the single-task
SMDP algorithms like variants of E* and RMAX. Invoking
Theorem 1, we reach the main result of the section:

Theorem 3 (Lifelong sample complexity with option
transfer) Under the conditions in Lemmas 2—4, if the two-
phase algorithm is run for T tasks, then, with probability
1 — 6, the total sample complexity across all T tasks is

(T —T)V3

max max

ele—¢)2(1—~)3 €3

. 3
o (T1SANYV,

NSO]-].
L+ — 3
> ()] o

sES,oG@S

where S = erél'o, N, is the number of next states after
taking option o in state s, for any e > ¢ and § € (0, 1).

This theorem provides a mechanism for avoiding nega-
tive transfer using options, as measured by the sample-
complexity upper bound, since we can always reject the
discovered option set if it increases the sample complexity
bound beyond the bound with primitive actions. As sample
complexity bounds are conservative, empirically the dis-
covered options may not always outperform primitive ac-
tions. However, Section 6 provides promising evidence that
the discovered options do enable improved performance.

Options will be beneficial when the optimal policies of the
set of MDPS M share a significant amount of substructure.
This does not require that the MDPs themselves be identi-
cal, merely that parts of their policies overlap.

5. Option Discovery

It is shown in previous sections that leveraging shared
structure in task policies through options has the potential

PAC Option Discovery

to significantly reduce the sample complexity of later RL
tasks. We now propose an option-discovery algorithm that
is guided by attempting to reduce the sample complexity
of future RL tasks, while preserving high-quality perfor-
mance. We require that given an input set of MDPs M, the
discovered option set should be e-optimal for each MDP in
the set M.> If the input set of MDPs is sufficiently repre-
sentative, under the assumptions discussed in the previous
section, the resulting set of options will also be able to be
used to achieve high performance in future tasks.

There are many such option sets that ensure near-optimal
rewards can be achieved in future tasks (e.g. the set of
primitive state—action pairs suffices), and we wish to select
one that minimizes the sample complexity of performing
reinforcement learning with these options. However, this
represents a computationally challenging task. If we were
provided with a set of possible options to choose among,
then the problem would involve selecting a subset with
the minimal sample complexity that covers at least one e-
optimal action for each (s, m) state—-MDP pair (actions that
are e-optimal for MDP m in state s). We have the additional
condition that any terminal state of one option must also be
an initiation state of another option, in order to guarantee
the agent always has at least one available option to exe-
cute. Therefore, finding an optimal set of options is at least
as hard as the set cover problem, whose complexity is ex-
ponential in S | M|.

Instead, we propose a scalable, greedy approach to op-
tion discovery that avoids the exponential blowup required
by exhaustive enumeration to ensure global optimality.®
Though options can have more than one initiation state, it
does not make a difference from a sample-complexity per-
spective to require them to have a single initiation state,
because it is necessary to separately learn a reward and/or
transition model for each initiation state of an option.
Therefore, without loss of generality, we restrict our atten-
tion to discovering options with a single initiation state.

As outlined in Algorithm 1, our algorithm involves repeat-
edly selecting an initial state, and then trying to grow an
option starting from it to cover the e-optimal policies of a
subset of state—-MDP pairs. Expanding an option involves
adding in states reachable by following the existing op-
tion’s policy from its initial states, and specifying the op-
tion policy for each of these subsequent states. We con-
sider any potential assignment of actions to these successor
states, and select the first evaluated action assignment to
improve an upper bound on the overall sample complexity
of the full set of options, as discussed further below.

> We assume the algorithm is provided as input a list of each
of the e-optimal actions for each state s, for each MDP m € M.

6 It remains an interesting open issue to find approximate al-
gorithms with strong bounds.

Algorithm 1 PAC-Inspired Option-Discovery

1: Input: M, €
2: while uncovered or remaining terminal (s, m) pairs do
3: Initialize new option o from one such state s

4: Assign action to 7,(s) which covers most MDPs
5. while new option improves sample complexity do
6: Add successors s’ reachable under current option
state(s) and policy
7: [is an assignment of e-optimal actions to s’ set
8: FoundImprovement = 0
9: while FoundImprovement == 0 and haven’t
tried all [do
10: sc(l) = sample complexity bound given !
11: if scl(I) improves over sc without option then
12: FoundImprovement = 1
13: Add s’ as leaves of o
14: else
15: Create a new assignment [
16: end if
17: end while

18: end while

19: Mark s as terminal of o, and add o to set of options
20: Update lists of uncovered (s, m) pairs and terminals
21: end while

If no action assignment to the added successor states yields
an improvement in the sample complexity, then all suc-
cessor states are set as terminal states of the option, and
construction of this option completes. The option is then
added to the full option set. The algorithm then removes
all state-MDP pairs whose e-optimal action is covered by
the new option from the set of Uncovered state—-MDP
pairs. Note that the same subset M’ of M are covered
by all of the states inside an option: this is required so
that when an agent initiates an option in the root state, ex-
ecuting that option results in an e-optimal policy for any
states visited until the option terminates, under any MDP
covered by that option.” The algorithm also adds: each
(8root, m') where m’ is a MDP covered by the option to the
list of initiation state—-MDP pairs, InitState M D P, and all
(Sterm,m') terminal-state—-MDP pairs of the option to the
set of UncoveredT erminal pairs, except for pairs that are
already initiation states of other options.

We now describe how to evaluate the change in sam-
ple complexity of adding a particular option. First, as
discussed in the prior section, learning multi-step op-
tions themselves may reduce the sample complexity, since
the number of mistakes they may incur is bounded by

o) (ﬁ (ﬁ + L+ %)), compared to O (ﬁ)

"If only a subset of an option’s states were covered for a MDP,
then executing that option could yield non-e-optimal performance
for that MDP. So this MDP is not covered by such options.

PAC Option Discovery

for primitive actions, as can be seen from Equation 1. Sec-
ond, creating an option that covers multiple MDPs may
reduce the number of primitive actions required to cover
remaining MDPs. Therefore, we compute a bound on the
sample complexity due to learning the non-terminal option
states both with and without an option, and evaluate if the
option improves the resulting bound. See Appendix 11 for
an example of this calculation.

To further reduce computation, we bound the number of
considered successors s’ at each stage of option construc-
tion. Our experiments in Section 6 used 4 as the threshold.

6. Experiments

We consider a non-episodic variant of the four-room maze
of Sutton et al. (1999). Actions are to go in the 8 directions
and succeed with probability 0.8; otherwise the agent goes
in one of the other orthogonal directions with equal prob-
ability. The transition models in all MDPs are the same.
Potential high reward states lie on the outer edges of the
upper left and lower right rooms. These states also result in
an immediate transition back to the upper right corner.

In phase 1, the agent acts in a series of 40 MDPs with this
underlying structure. Each MDP in phase 1 is generated
by randomly sampling one of the 17 potential high reward
states and assigning it a mean reward of 1.0. The other
potential high reward states are allocated a mean reward of
0.1. All other states have a mean reward of 0. Rewards are
sampled from the mean reward of the state plus Gaussian
noise with a standard deviation of 0.1. The discount factor
~ was set to 0.9 and in each task the agent acts for 200,000
steps. During phase 1 the agent executes the E* PAC-MDP
algorithm in each task, and constructs an estimate of its
optimal state—acton values. After phase 1, the agent uses
the resulting policies to perform option discovery.

In phase 2, the agent uses the discovered options to do RL
in new tasks. One of the benefits of options should be to
generalize to new MDPs with different models but similar
near-optimal policies that can be composed of parts of near-
optimal policies of prior tasks. To explore this, in phase 2
each task involved two high reward states, one in the upper
left room, and the other randomly sampled from the pos-
sible high reward states. In phase 2 the agent ran SMDP-
RMAX with the discovered options, which generally has
better performance than the SMDP version of E3, although
it can be replaced by any PAC-SMDP RL algorithm.

For phase 2, our algorithm was compared to three base-
lines. In the PrimitiveOnly baseline, we compare to an
agent using only the primitive actions. In HandCoded, we
define a set of options that we expect to be the minimum
number needed to obtain good performance: for the upper
left and lower right rooms each state has a single option

that takes it to the upper or right hallway respectively, the
other two rooms have two options per state to take them
to the outgoing hallway, and the upper and right hallways
have options to go to each of the possible goal states. In our
third baseline, we construct a set of options using the Poli-
cyBlocks algorithm (Pickett & Barto, 2002). PolicyBlocks
constructs options by forming subpolicies that cover sub-
sets of the optimal policies of an input set of MDP policies,
and greedily selecting subpolicies with the largest cover-
age, and is similar in performance and spirit to the SKILLS
algorithm (Thrun & Schwartz, 1995). We selected Policy-
Blocks since it has previously demonstrated good perfor-
mance, requires no outside expert knowledge, and like our
algorithm extracts options given an input set of policies.

As there are 8 actions and 104 states, baseline Primi-
tiveOnly has 832 state-option pairs. In contrast, our algo-
rithm discovered 550 pairs (144 multi-step, the rest primi-
tive actions) to cover the 40 MDPs, suggesting a significant
improvement is possible. Constructing options by hand
yielded 189 options: note that this is the minimal set of
options we expect to be needed to achieve an optimal pol-
icy for all possible MDPs, and provides an upper bound on
the potential performance. Interestingly, PolicyBlocks re-
sulted in 985 options, more than the set of primitive actions.
This is because PolicyBlocks extracts subpolicies, subsets
of states with matching policies across subsets of the input
tasks. These subpolicies have no defined initiation set, so
we allowed each state member within a subpolicy to be an
initiation state. Though this yields a large number of possi-
ble options, since a 6-state subpolicy adds an option to each
of these states, it is unclear how else to ensure the original
task policies could be covered given the subpolicies.

We now examined the sample-complexity bound for the
different discovered option sets. For our approach, this
yielded a bound of 511,605 for the discovered set com-
pared to 832,000 if primitive state—action pairs were used,
suggesting a potential advantage if the options were useful
in the task in phase 2. The bound for hand-defined options
was 85,765 and for the PolicyBlocks was 942,450.

To evaluate the discovered options, we first examined if the
discovered options were capable of representing the opti-
mal value function of MDPs in phase 2, if the MDP models
were known. To do so, we computed the optimal value
of MDP models with the just-described structure. We then
computed the discovered option models given the true tran-
sition and reward probabilities, and then computed the best
value function using the discovered options. The loss from
using options was only approximately 2-3%. Therefore
the discovered options are capable of representing close-
to-optimal policies for the tasks in phase 2.

We then evaluated whether the discovered options could be
used with SMDP-RMAX to improve performance in phase

PAC Option Discovery

Table 1. Average Reward in Phase 2 with Different Option Sets

PAC-inspired PrimitiveOnly HandCoded PolicyBlocks

13145 10470 14178 11229

2. We sampled 100 tasks with the structure just described,
and report in Table 1 the average of the total rewards in
these tasks for each of the algorithms. As expected, the
hand-coded options did the best. But our approach was the
best that requires no human input, and obtained 93% of the
reward of the hand-coded options designed with substantial
domain knowledge. Our approach achieved over 25% more
reward than using primitive actions alone, and this differ-
ence was statistically significant (t-test, p < 1071%). Our
discovered options also did about 16% better than those
found by PolicyBlocks (t-test, p < 10716). PolicyBlocks
did slightly better than PrimitiveOnly, likely because, due
to the starting state and our assumed deterministic comple-
tion of options (they only finish when a terminal state is
reached), many states are never reached when options from
earlier states are chosen, and therefore do not need to be
explored.

The reader may be curious about the relatively poor per-
formance of RMAX with primitive actions, since the al-
gorithm is able to learn the optimal policies if we set c,
the threshold for making a state—action known, sufficiently
large. However, a too large c value results in suboptimal
performance for finite-horizon problems; for instance, the
average reward with ¢ = 75 is much worse than that in Ta-
ble 1, although optimal policies are always identified. We
thus manually searched, for each baseline algorithm, over
c values, and report returns for the best possible settings.

These encouraging results show our option discovery al-
gorithm is capable of discovering options that can allow
good performance in new, related tasks, almost as good as
if given expert-tuned options, and outperform primitive ac-
tions and another option-discovery baseline.

7. Related Work

There has been limited work on theoretical justifications for
lifelong RL, and most has considered transfer between a
source and a target task (e.g. Sorg & Singh (2009); Lazaric
& Restelli (2012); Mann & Choe (2012)). In lifelong RL,
every current task is a target task, and will be one of the
source tasks in the future. Perhaps the closest work is the
sample-complexity analysis of sequential multi-task RL by
Brunskill & Li (2013). However, they assume the agent
repeatedly acts in a finite set of MDPs, whereas here the
set of possible MDPs may be infinite, yet option discovery
can still help if the MDP policies share substructure.

Options have been studied by many authors as a form
of knowledge transfer between tasks. The SKILLS algo-

rithm (Thrun & Schwartz, 1995) uses a description length
device to discover common pieces of policies in multiple
related tasks. In our experiments, we compared to the Pol-
icyBlocks algorithm of Pickett & Barto (2002) which is
similar to SKILLS. Stolle & Precup (2002) and Mannor
et al. (2004) discover sub-goals, and create options towards
those sub-goals. Homomorphisms (Soni & Singh, 2006)
and shared features (Konidaris & Barto, 2007) can be used
to discover useful options across multiple tasks with differ-
ent state/action spaces. In contrast to all previous work we
are aware of, this paper proposes the first discovery algo-
rithm that is theoretically sound, justifying how and when
option transfer improves sample complexity in lifelong RL,
compared to single-task RL.

Finally, our results were developed with typical PAC anal-
ysis in the literature (e.g., Strehl et al. (2009)), which can
be improved with a tighter analysis. For instance, an in-
teresting observation in Lattimore & Hutter (2012) is that
one can use variance information in empirical Bernstein in-
equalities to get a sharper bound on the speed of model
parameter concentration. Their bound has a better depen-
dency on 1/e and 1/(1—7), attained by a more complicated
algorithm UCRL~. Applying the same idea to SMDPs and
lifelong RL appears to be highly nontrivial, and is an inter-
esting and worthwhile avenue for future work.

8. Future Work and Conclusions

In addition to the direction just described for a tighter anal-
ysis, there remain a few interesting areas for future work. It
could be helpful to employ intra-option learning, and move
to incremental discovery instead of a two-phase approach.
Also, algorithms like RMAX tend to explore all states, but
in some cases prior experience, encoded by options, may
suggest it is suboptimal to visit certain states (driving on
the highway at rush hours is bad on almost all weekdays),
and we would like to create RL algorithms capable of better
leveraging such knowledge. We could also use richer types
of temporally extended actions, like hierarchical or nested
policies, which have proven beneficial in planning.

To conclude, we presented the first, to our knowledge, for-
mal analysis of how temporally extended actions can affect
and benefit the sample complexity of RL, providing the-
oretical support for some of the surprising results in the
literature. We showed how an agent performing lifelong
learning across a series of tasks can learn a set of options
that is e-optimal for all tasks the agent may encounter, and
analyzed the sample complexity of lifelong learning with
the discovered option. We also presented a PAC-inspired
option discovery heuristic algorithm, and showed that it
enables us to achieve significantly better performance in
a benchmark domain. Our results support the substantial
benefit that temporally extended actions can have in RL.

PAC Option Discovery

References

Barto, Andrew and Mahadevan, Sridhar. Recent advances
in hierarchical reinforcement learning. Discrete Event
Dynamic Systems: Theory and Applications, 13(1-2):
41-77, 2003.

Brafman, Ronen 1. and Tennenholtz, Moshe. R-max—a
general polynomial time algorithm for near-optimal re-
inforcement learning. Journal of Machine Learning Re-
search, 3:213-231, October 2002.

Brunskill, Emma and Li, Lihong. Sample complexity
of multi-task reinforcement learning. In Proc. of the
Twenty-Ninth Conf. on Uncertainty in Artificial Intelli-
gence, pp. 122-131, 2013.

Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-
optimal regret bounds for reinforcement learning. Jour-
nal of Machine Learning Research, 11:1563-1600,
2010.

Jong, Nicholas K., Hester, Todd, and Stone, Peter. The
utility of temporal abstraction in reinforcement learn-
ing. In Proc. of the Seventh Int’l Conf. on Autonomous
Agents and Multiagent Systems (AAMAS-08), pp. 299—
306, 2008.

Kakade, Sham. On the Sample Complexity of Reinforce-
ment Learning. PhD thesis, Gatsby Computational Neu-
roscience Unit, University College London, UK, 2003.

Kearns, Michael J. and Singh, Satinder P. Near-optimal
reinforcement learning in polynomial time. Machine
Learning, 49(2-3):209-232, 2002.

Konidaris, George and Barto, Andrew G. Building portable
options: Skill transfer in reinforcement learning. In
Proc. of the Twentieth Int’l Joint Conf. on Artificial In-
telligence, pp. 895-900, 2007.

Lattimore, Tor and Hutter, Marcus. PAC bounds for dis-
counted MDPs. In Proc. of the Twenty-Third Int’l Conf.
on Algorithmic Learning Theory (ALT-12), volume 7568
of Lecture Notes in Computer Science, pp. 320-334,
2012.

Lazaric, Alessandro and Restelli, Marcello. Transfer from
multiple MDPs. In Advances in Neural Information Pro-
cessing Systems, pp. 1746—-1754, 2012.

Mann, Timothy A. and Choe, Yoonsuck. Directed explo-
ration in reinforcement learning with transferred knowl-
edge. In Proc. of the Tenth European Workshop on Rein-
forcement Learning, 2012.

Mann, Timothy A. and Mannor, Shie. Scaling up approx-
imate value iteration with options: Better policies with
fewer iterations. In Proc. of the Int’l Conf. on Machine
Learning, 2014.

Mannor, Shie, Menache, Ishai, Hoze, Amit, and Klein, Uri.
Dynamic abstraction in reinforcement learning via clus-
tering. In Proc. of the Twenty-First Int’l Conf. on Ma-
chine Learning, pp. 560-567, 2004.

Pickett, Marc and Barto, Andrew G. PolicyBlocks: An
algorithm for creating useful macro-actions in reinforce-
ment learning. In Proc. of the Nineteenth Int’l Conf. on
Machine Learning, pp. 506-513, 2002.

Puterman, Martin L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley-Interscience,
New York, 1994. ISBN 0-471-61977-9.

Soni, Vishal and Singh, Satinder P. Using homomor-
phisms to transfer options across continuous reinforce-
ment learning domains. In Proc. of the Twenty-First
National Conf. on Artificial Intelligence, pp. 494-499,
2006.

Sorg, Jonathan and Singh, Satinder P. Transfer via soft
homomorphisms. In Proc. of the Eighth Int’l Conf. on
Autonomous Agents and Multiagent Systems, pp. 741—
748, 2000.

Stolle, Martin and Precup, Doina. Learning options in re-
inforcement learning. In Proc. of the Fifth Int’l Symp. on
Abstraction, Reformulation and Approximation, volume
2371 of Lecture Notes in Computer Science, pp. 212—
223, 2002.

Strehl, Alexander L., Li, Lihong, and Littman, Michael L.
Incremental model-based learners with formal learning-
time guarantees. In Proc. of the Twenty-Second Conf. on
Uncertainty in Artificial Intelligence, pp. 485-493, 2006.

Strehl, Alexander L., Li, Lihong, and Littman, Michael L.
Reinforcement learning in finite MDPs: PAC analysis.
Journal of Machine Learning Research, 10:2413-2444,
2009.

Sutton, Richard S., Precup, Doina, and Singh, Satinder P.
Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial In-
telligence, 112(1-2):181-211, 1999.

Thrun, Sebastian and Mitchell, Tom M. Lifelong robot
learning. Robotics and Autonomous Systems, 15(1-2):
25-46, 1995.

Thrun, Sebastian and Schwartz, Anton. Finding structure
in reinforcement learning. In Advances in Neural Infor-
mation Processing Systems 7, pp. 385-392, 1995.

Wilson, Aaron, Fern, Alan, Ray, Soumya, and Tadepalli,
Prasad. Multi-task reinforcement learning: A hierarchi-
cal Bayesian approach. In Proc. of the Twenty-Fourth
Int’l Conf. on Machine Learning, pp. 1015-1022, 2007.

