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A. Auxiliary claim (eri⇤ = 1) for the proof of Proposition 1
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where (6) corresponds to the case when ` = i and k = j, (7) corresponds to the case when ` = i and k 6= j, and finally,
(8) corresponds to the case when ` 6= i and k = j. Note that r

i

= er
i

= 1 implies that (6) equals to 1 and that (7) equals to
r

j

� 2. Noting also that (8) cannot exceed r
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� 2 (because it is the sum of r
j

� 2 terms of absolute value at most 1), the
claim follows.

B. Implementation based on quick sort for finding the most probable ranking

Algorithm 6 MALLOWSQUICK(�)
1: for j = 1 ! M do r

j

= 0

2: Set A = {1, . . . ,M}
3: r = MQREC(r, A, �, 1)
4: return r

Procedure 7 MQREC(r, A, �, c)
1: if #A = 1 then
2: Pick index i from A

3: r

i

= c

4: else
5: Pick a random index i 2 A and set A = A \ {i}
6: (A

+

, A�) = MALLOWSHALVING(i, A, �)

7: r

i

= #A

+

+ c

8: if #A

+

> 0 then
9: r = MQREC(r, A

+

, �, c)
10: if #A� > 0 then
11: r = MQREC(r, A�, �, ri)
12: return r
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Procedure 8 MALLOWSHALVING(i, A, �)
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12: A = A \ {j}, A� = A� [ {j}
13: until A = ;
14: return (A

+

, A�)

C. Upper bound for KL-divergence in the case of Mallow’s �-model

Assume that there are given two Mallow’s �-models P(.|�,er) and P(.|b�,er) with the same central ranking er. We will
concisely write dr for d(er, r). Then we have
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D. Sample complexity analysis for the KL divergence case
For the reading convenience we restate the theorem here.

Theorem 10. Assume that the ranking distribution is Mallows with parameters � and er. Then, for any ✏ > 0 and
0 < � < 1, MALLOWSKLD returns parameter estimates br and b� for which KL(P(· |�,er),P(· | b�,br)) < ✏, and the
number of pairwise comparisons requested by the algorithm is
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Proof. As a first step, the MALLOWSKL algorithm calls the MALLOWSMPR algorithm that returns a ranking br which is
equal to er with probability at least 1� �/2. And then, two options i and j are selected for which br

i

= br
i

+ 1. As a second
step, the MALLOWSKL algorithm is comparing options i to option j in order to obtain an estimate for �. Let us denote the
length of the confidence interval of parameter � by C = �
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Based on (5), we know that, when the MALLOWSKL algorithm terminates, it holds that KL(P(.|�,er),P(.|�0
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In order to calculate the sample complexity, let us upper bound (5) by using C. Recall that with probability at least 1��/2,
we have
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where (11) follows from the fact that Z(.) is monotone increasing function. Now let us assume that the first term in (11) is
 ✏/2, which results in the following upper bound for C:
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Next, let us upper bound logZ(�+ C) from (11). Writing concisely dr for d(er, r), we have

logZ(�+ C) = log
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And, in a similar way, one can lower bound logZ(�� C) as
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Now let us assume that the second term in (11) is  ✏/2, which results in the following upper bound for C:

C  �

 
1� 2

exp

�
✏

2

�
+ 1

!
. (13)

Now we can rewrite C as
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Summarizing the calculation above, the width of the confidence interval C for b� needs to satisfy the inequalities given in
(12) and (13) for KL(P(.|�,er),P(.|b�,er)) < ✏. Since (12) is uniformly tighter than (13), therefore the following needs to
be satisfied

C < 6c

i,j

(�+ 1)

2  �

0

@
1� 2

exp

⇣
✏

M(M�1)

⌘
+ 1

1

A

s
1

2n

i,j

log

8n

2

i,j

�

= c

i,j

 �

6(�+ 1)

2

0

@
1� 2

exp

⇣
✏

M(M�1)

⌘
+ 1

1

A

| {z }
= constant and denoted by D(✏)

(15)

The MALLOWSKL first calls the MALLOWSMPR algorithm in order to find the central ranking with �/2, thus the expected
number of pairwise comparison of MALLOWSKL is at most
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where the first term is the sample complexity of MALLOWSMPR based on Theorem 5, and the second term is obtained
from (15). This completes the proof.
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E. Experiments for identifying the most preferred item
E.0.1. NUMERICAL EXPERIMENTS

In Figure 4, we conducted the same experiments like in Section 7.1, but with various M .
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(a) M = 5
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(b) M = 20
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(c) M = 50

Figure 4. Empirical sample complexity for various parameter setting of �. The number of items M is {5, 20, 50}. The results are
averaged out for 100 repetition. The confidence parameter was set to 0.05, and thus, the accuracy was significantly higher than 1� � in
every case.

E.0.2. RESULTS ON REAL DATA

We conducted experiments on real data to asses the efficiency of our method if the model assumption is violated to some
extent. We used various datasets taken from the PrefLib ranking data repository6. The most important statistics of the
datasets are shown in Table 1. Each dataset consists of full and partial ranking7. To asses to what extent the data fit to
a Mallows �-model, we calculated a statistic based goodness-of-fit statistic as follows. We compute an estimate for all
p

i,j

based on the data which we denote bbp
i,j

. Then we fit a model by using the method of Cheng et al. (2009). Based
on this fitted model, we computed the p

i,j

values according to Theorem 2. The statistic we calculated then is �

2

=P
i 6=j

(

bbp
i,j

�p

i,j

)

2

/

bbp
i,j

. This statistic reflects to how the pairwise marginal probabilities computed based on the data fits to
the ones that are computed based on the fitted model. Clearly, the more close �2 is to 1, the more the data fits to a Mallow’s
�-model (at least in terms of pairwise marginals).

Table 1. The most important statistics of the ranking datasets.

DATA SET ID ITEMS RANKINGS �

2

1 ED-7-71 7 239 0.17

2 ED-7-35 6 32 0.87

3 ED-7-76 5 110 0.91

4 ED-7-51 6 60 1.52

5 ED-7-64 4 33 1.52

6 ED-7-37 10 446 1.58

7 ED-7-50 10 82 6.65

We run the MALLOWSMPI, BEATTHEMEAN and IF(10000) on the datasets used 100 times, and we plotted the average
of their sample complexity which is shown in Figure 5. The results reveal a few general trends. First, the MALLOWSMPI
achieves lower sample complexity on almost every datasets. Second, the improvement of MALLOWSMPI in terms of
sample complexity is more pronounced on the datasets which meets more with our modeling assumption, namely, it fits

6http://www.preflib.org
7Each dataset we considered contain complete, transitive, and anti-symmetric relation over a group of objects. We handle the outcome

of the comparison of two items with the same rank as tie. Essentially, this means that these outcomes are treated in a neutral way.
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Figure 5. The empirical sample complexity of various methods on real data.

better to Mallow’s �-model. Note that, the better the fit, the more close �

2) value is to 1. Finally, the BEATTHEMEAN
achieves the worst sample complexity which might be explained by the fact that its modeling assumption is the most
relaxed among the methods we tested in our experiments.

E.1. Merge sort vs. Quick sort

Our MALLOWSMPR algorithm is based on top-down, two-way merge sort, but as we pointed out, other sorting algorithm
could be also extended so as it will be amenable to find the most probable ranking in our online learning framework. We
described the extended version of quick sort in Appendix B which is called MALLOWSQUICK. The quick sort algorithm
is considered one of the most efficient one in practice among the sorting algorithms, therefore we compared the quick sort
based algorithm called MALLOWSQUICK to the merge sort based one called MALLOWSMPR. In Figure 6, we plotted the
sample complexity achieved by MALLOWSMPR and MALLOWSQUICK. We run the algorithms with various underlying
Mallows model with parameters from a wide range (M 2 {50, 100, 200} and � 2 {0.1, 0.3, 0.5, 0.7, 0.8}). The center
ranking was selected uniformly random in each run. We found that the MALLOWSQUICK achieves marginally higher
sample complexity than MALLOWSMPR. This can be explained by that the confidence interval in MALLOWSQUICK is
calculated with �/M

2, because the worst case performance of quick sort is O(M

2

), whereas the confidence interval for
MALLOWSMPR is calculated with only O(M log

2

M).
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(a) M = 50
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(b) M = 100
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Figure 6. Empirical sample complexity of MALLOWSMPR and MALLOWSQUICK for various parameter setting of �. The number of
options M was set to 50, 100 and 150. The results are averaged out for 100 repetition. The confidence parameter was set to 0.05 for
every run.


