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Figure 6. Reduction to canonical form.

A. Proofs
Due to space limitations, we have omitted some proofs
from the main body of the paper. The proofs are provided
below.

A.1. Lemma 1

Proof. Let xv be an observed variable which is contained
in more than one clique or in cliques of size larger than
2. We apply the following simple transformation (see Fig-
ure 6 for directed models): first, replace xv with a a new
hidden variable hnew; for directed models, this means that
the parents and children of xv become the parents and chil-
dren of hnew. Second, create three fresh observed variables
xv1 , xv2 , xv3 , connecting them to hnew, and making all new
nodes to deterministically take on identical values. We add
three copies so that hnew is guaranteed to be a bottleneck.
By construction, there is a one-to-one mapping between the
joint distributions of the old and new graphical models, and
thus the parameters as well. We repeatedly apply this pro-
cedure until the graphical model is in canonical form.

A.2. Lemma 3

In Section 4.2, we compared the asymptotic variance Σcl
S

of the composite likelihood estimator with that of the pseu-
doinverse estimator, Σpi

S , for a subset of hidden variables S.
Now we will derive these asymptotic variances in detail.

Recall, that in Section 4.2 we simplified notation by tak-
ing m = 1 and flattening the moments MV and hidden
marginals ZS into vectors µ ∈ Rd and z ∈ Rk respectively.
The conditional moments, O, is a now matrix O ∈ Rd×k
and the hidden marginals z and observed marginals µ are
related via µ = Oz.

Lemma (Asymptotic variances). The asymptotic vari-

ances of the pseudoinverse estimator ̂̃zpi
and composite

likelihood estimator ̂̃zcl
are:

Σpi = Õ†(D̃ − µ̃µ̃>)Õ†>,

Σcl =
(
Õ>(D̃−1 + d̃−111>)Õ

)−1

,

where D̃ , diag(µ̃) and d̃ , 1− 1>µ̃.

Proof for Lemma 3. First, let us look at the asymptotic
variance of the pseudoinverse estimator ẑpi = Õ†(̂̃µ −
O¬d,k). Note that µ̂ = 1

n

∑n
i=1 xi, where each xi is

an independent draw from the multinomial distribution µ.
Hence the variance of µ̂ is (D−µµ>) whereD , diag(µ).
Recall that ̂̃µ is just the first d− 1 entries of µ̂, so the vari-
ance of ̂̃µ is (D̃ − µ̃µ̃>) where D̃ , diag(µ̃). Since z̃ is
just a linear transformation of µ̃, the asymptotic variance of
̂̃zpi

is:

Σpi = Õ†Var(̂̃µ)Õ†>

= Õ†(D̃ − µ̃µ̃>)Õ†>.

Now, let us look at the variance of the composite likeli-
hood estimator. Using the delta-method (van der Vaart,

1998) we have that the asymptotic variance of ̂̃zcl
=

arg maxz̃ Ê[`(x; z̃)] is,

Σcl = E[∇2`(x; z̃∗)]−1 Var[∇`(x; z̃∗)]E[∇2`(x; z̃∗)]−1,

where `(x; z̃) is the log-likelihood of the observations x
given parameters z̃. We can write `(x; z̃) in terms of z̃ and
Õ as,

`(x; z̃) = log(µ[x])

= log

(
e>x

[
Õ

−1>Õ

]
z̃ + e>x

[
O¬d,k

1− 1>O¬d,k

])
,

where ex is an indicator vector on x.

Taking the first derivative,

∇`(x; z̃) =
1

µ[x]

[
Õ

−1>Õ

]>
ex

=

[
Õ

−1>Õ

]>
D−1ex, (9)

where D , diag(µ).

It is easily verified that the expectation of the first derivative
is indeed 0:

E[∇`(x; z̃)] =

[
Õ

−1>Õ

]>
D−1 E[ex]

=

[
Õ

−1>Õ

]>
D−1µ

=

[
Õ

−1>Õ

]>
1

= Õ>1− Õ>1
= 0.
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Taking the second derivative,

∇2`(x; z̃) =
1

µ[x]2

[
Õ

−1>Õ

]>
exe
>
x

[
Õ

−1>Õ

]

=

[
Õ

−1>Õ

]>
D−1exe

>
xD
−1

[
Õ

−1>Õ

]
. (10)

From Equation 9 and Equation 10, we get

E[∇2`(x; z̃∗)] = −
[

Õ

−1>Õ

]>
D−1 E[exe

>
x ]D−1

[
Õ

−1>Õ

]

Var[∇`(x; z̃∗)] =

[
Õ

−1>Õ

]>
D−1 E[exe

>
x ]D−1

[
Õ

−1>Õ

]

=

[
Õ

−1>Õ

]>
D−1DD−1

[
Õ

−1>Õ

]

=

[
Õ

−1>Õ

]> [
D̃−1 0

0> d̃−1

][
Õ

−1>Õ

]

= Õ>D̃−1Õ + d̃−1Õ>11>Õ,

where D̃ = diag(µ̃) and d̃ = 1 − 1>µ̃ are the diagonal
elements of D. As expected, E[∇2`(x)] = −Var[∇`(x)]
because ẑ is a maximum likelihood estimator.

Finally, the asymptotic variance of Σcl is,

Σcl = E[∇2`(x; z̃∗)]−1 Var[∇`(x; z̃∗)]E[∇2`(x; z̃∗)]−1

= Var[∇`(x; z̃∗)]−1

=
(
Õ>D̃−1Õ + d̃−1Õ>11>Õ

)−1

.

Given our assumptions, 1 � µ � 0. Consequently, D̃ is
invertible and the asymptotic variance is finite.

A.3. Comparing the pseudoinverse and composite
likelihood estimators

In Lemma 3, we derived concrete expressions for the
asymptotic variances of the pseudoinverse and composite
likelihood estimators, Σpi and Σcl respectively. In this sec-
tion, we will use the asymptotic variances to compare the
two estimators for two special cases.

Recall that the relative efficiency of the pseudoinverse es-
timator with respect to the composite likelihood estimator
is epi = 1

k̃
tr(Σcl(Σpi)−1), where k̃ = k − 1. The Cramér-

Rao lower bound tells us that Σcl � Σpi: thus the relative
efficiency epi lies between 0 and 1. When epi = 1, the
pseudoinverse estimator is said to be efficient.

We will make repeated use of the Sherman-Morrison for-
mula to simplify matrix inverses:

(A+ αuv>)−1 = A−1 − A−1uv>A−1

α−1 + v>A−1u
,

where A is an invertible matrix, u, v are vectors and α is
a scalar constant. Unless otherwise specified, we ‖u‖ to
denote the Euclidean norm of a vector u.

First, let us consider the case where Õ:

Lemma 6 (Relative efficiency when Õ is invertible). When
Õ is invertible, the asymptotic variances of the pseudoin-
verse and composite likelihood estimators are equal, Σcl =
Σpi, and the relative efficiency is 1.

Proof. Given that Õ is invertible we can simplify the ex-
pression of the asymptotic variance of the composite like-
lihood estimator, Σcl, as follows:

Σcl =
(
Õ>(D̃−1 + d̃−111>)Õ

)−1

= Õ−1
(
D̃−1 − d̃−111>

)−1

Õ−>

= Õ−1

(
D̃ − D̃11>D̃

d̃+ 1>D̃1

)
Õ−>.

Note that D̃1 = µ̃ and d̃ = 1− 1>µ̃. This gives us,

Σcl = Õ−1

(
D̃ − µ̃µ̃>

1− 1>µ̃+ 1>µ̃

)
Õ−>

= Õ−1(D̃ − µ̃µ̃>)Õ−>

= Σpi.

Next, we consider the case where the observed moments µ
is the uniform distribution.

Lemma 7 (Relative efficiency with uniform observed mo-
ments). Let the observed marginals µ be uniform: µ = 1

d1.
The efficiency of the pseudoinverse estimator is,

epi = 1− 1

k − 1

‖1U‖22
1 + ‖1U‖22

(
1− 1

d− ‖1U‖22

)
, (11)

where 1U , ÕÕ†1, the projection of 1 onto the column
space of Õ. Note that 0 ≤ ‖1U‖22 ≤ k − 1.

When ‖1U‖2 = 0, the pseudoinverse estimator is efficient:
epi = 1. When ‖1U‖2 > 0 and d > k, the pseudoinverse
estimator is strictly inefficient. In particular, if ‖1U‖22 =
k − 1, and we get:

epi = 1− 1

k

(
1− 1

1 + d− k

)
. (12)
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Proof. Next, let us consider the case where the moments
are the uniform distribution, where µ = 1

d1 and D̃ = 1
dI .

The expressions for Σcl can be simplified as follows,

Σcl =
(
Õ>(dI + d11>)Õ

)−1

=
1

d

(
Õ>Õ + Õ>11>Õ

)−1

=
1

d

(
(Õ>Õ)−1 − (Õ>Õ)−1Õ>11>Õ(Õ>Õ)−1

1 + 1>Õ(Õ>Õ)−1Õ>1

)

=
1

d

(
Õ†Õ†> − (Õ†Õ†>Õ>)11>(ÕÕ†Õ†>)

1 + (1>ÕÕ†)(Õ†>Õ>1)

)
,

where we have used the property (Õ>Õ)−1 = Õ†Õ†>

in the last step. Next, we use the pseudoinverse property,
ÕÕ†Õ†> = Õ†>,

Σcl =
1

d

(
Õ†Õ†> − Õ†11>Õ†>

1 + ‖ÕÕ†1‖2

)

=
1

d

(
Õ†Õ†> − Õ†11>Õ†>

1 + ‖1U‖2

)
,

where 1U , ÕÕ†1 = Õ†>Õ>1 is the projection of 1 onto
the column space of Õ.

Next, we can simplify the expression for (Σpi)−1,

Σpi = Õ†
(
I

d
− 11>

d2

)
Õ†>

(Σpi)−1 =

(
1

d
Õ†Õ†> − 1

d2
Õ†11>Õ†>

)−1

= d

(
(Õ†Õ†>)−1

+
(Õ†Õ†>)−1Õ†11>Õ†>(Õ†Õ†>)−1

d− 1>Õ†>(Õ†Õ†>)−1Õ†1

)
.

Using the properties (Õ†Õ†>)−1 = Õ>Õ and Õ>ÕÕ† =

Õ>, we get,

(Σpi)−1 = d

(
Õ>Õ +

Õ>ÕÕ†11>Õ†>Õ>Õ

d− 1>Õ†>Õ>ÕÕ†1

)

= d

(
Õ>Õ +

Õ>11>Õ

d− ‖Õ†Õ1‖2

)

= d

(
Õ>Õ +

Õ>11>Õ
d− ‖1U‖2

)
.

Now, we are ready to study the relative efficiency.

epi =
1

k̃
tr(Σcl(Σpi)−1)

=
1

k̃
tr

(
1

d

(
Õ†Õ†> − Õ†11>Õ†>

1 + ‖1U‖2

)

d

(
Õ>Õ +

Õ>11>Õ
d− ‖1U‖2

))

=
1

k̃
tr(I) +

1

k̃
tr

(
Õ†Õ†>Õ>11>Õ

d− ‖1U‖2

)

− 1

k̃
tr

(
Õ†11>Õ†>Õ>Õ

1 + ‖1U‖2

)

− 1

k̃
tr

(
Õ†11>Õ†>Õ>11>Õ

(d− ‖1U‖2)(1 + ‖1U‖2)

)

Next we apply the property that the trace is invariant under
cyclic permutations,

epi = 1 +
1

k̃

‖Õ†>Õ>1‖2
d− ‖1U‖2

− 1

k̃

‖ÕÕ†1‖2
1 + ‖1U‖2

− 1

k̃

(1>Õ†>Õ>1)2

(d− ‖1U‖2)(1 + ‖1U‖2)
.

Note that ÕÕ† is a symmetric projection matrix and thus,
ÕÕ† = (ÕÕ†)> and ÕÕ† = (ÕÕ†)(ÕÕ†). Then,

epi = 1 +
1

k̃

‖1U‖2
d− ‖1U‖2

− 1

k̃

‖1U‖2
1 + ‖1U‖2

− 1

k̃

‖1U‖4
(1 + ‖1U‖2)(d− ‖1U‖2)

= 1− ‖1U‖2
k̃(1 + ‖1U‖2)

(
1− 1

d− ‖1U‖2
)
.

Note that 1U is the projection of 1 on to a k-dimensional
subspace, thus, 0 ≤ ‖1U‖2 ≤ k. When 1U = 0, the
relative efficiency epi is 1: the pseudoinverse estimator is
efficient. When ‖1U‖ > 0 and d > k, the pseudoinverse
estimator is strictly inefficient.

Consider the case when ‖1U‖2 = k̃. Then, the relative
efficiency is,

epi = 1− 1

k̃ + 1

(
1− 1

d− k̃

)

= 1− 1

k

(
1− 1

1 + d− k

)
.


