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Abstract
Efficient detection of multiple object instances is
one of the fundamental challenges in computer
vision. For certain object categories, even the
best automatic systems are yet unable to produce
high-quality detection results, and fully manual
annotation would be an expensive process. How
can detection algorithms interplay with human
expert annotators? To make the best use of
scarce (human) labeling resources, one needs to
decide when to invoke the expert, such that the
best possible performance can be achieved while
requiring a minimum amount of supervision.

In this paper, we propose a principled approach
to active object detection, and show that for a
rich class of base detectors algorithms, one can
derive a natural sequential decision problem for
deciding when to invoke expert supervision. We
further show that the objective function satisfies
adaptive submodularity, which allows us to
derive strong performance guarantees for our al-
gorithm. We demonstrate the proposed algorithm
on three real-world tasks, including a problem
for biodiversity monitoring from micro UAVs
in the Sumatra rain forest. Our results show that
active detection not only outperforms its passive
counterpart; for certain tasks, it also works sig-
nificantly better than straightforward application
of existing active learning techniques. To the
best of our knowledge, our approach is the first to
rigorously address the active detection problem
from both empirical and theoretical perspectives.
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1. Introduction
Object detection is one of the fundamental challenges in
computer vision. Target objects in real-world images not
only exhibit high variance in appearance, but also differ in
various views, scales, illumination conditions, and back-
ground clutter. While object recognition algorithms have
undergone rapid progress, for many practical tasks, a high-
quality fully automatic detection system is still beyond our
reach. A major problem for automatic object detection is
the lack of sufficient training examples, as manual anno-
tations are usually time-consuming and expensive, some-
times even impossible until the task is revealed. For exam-
ple, consider a biodiversity monitoring task as in Fig. 1(a).
In order to obtain accurate and timely data on the orangutan
distribution in the surveyed area, ecologists launch micro
UAVs, “conservation drones”, to take high-quality pho-
tographs of orangutan habitat from above treetops. Fre-
quently going through thousands of those photos to look
for orangutan nests is an extremely tedious task for experts.
On the other hand, an automatic detection system (e.g., the
rightmost figure in Fig. 1(a)) tends to produce many false
positive detections in the high-clutter background, given
limited training samples obtained from the drone missions.

A natural step towards a sustainable and efficient system
is to incorporate human supervision during the detection
process. In such settings, the automatic system and the
human expert collaborate in order to obtain the best
performance: first, the system proposes candidate objects
to the expert for verification, and then the expert provides
feedback in order to guide the system to generate better
detections. To make the best use of the scarce labeling
resources, one needs to decide when to invoke the expert,
or, in other words, in which order to query the candidates,
such that the best possible performance could be achieved
in exchange for the minimum amount of user supervision.
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(a) Orangutan nests detection for biodiversity monitoring (UAV-forest). (Left) Conservation drone (image courtesy of conser-
vationdrones.org). (Middle) An arial image captured by the conservation drone, with two orangutan nests highlighted. (Right)
The response image generated by a base detector.

(b) Pedestrian detection (TUD-crossing) (c) Person detection (PASCAL VOC 2008)

Figure 1. Different object detection tasks and the corresponding response images (in gray scale).

Similar problems (i.e., minimizing the number of user in-
teractions) have been studied extensively as active learning
problems in many other contexts, such as text classifica-
tion (Tong & Koller, 2002), image recognition (Luo et al.,
2004). However, comparing with the classical settings, the
active detection problem studied in this paper is different
in the following aspects:

1. In the classical active learning setting, the learner
queries information at training time, and the goal is
to select examples that are informative with respect to
the set of classifiers. In other words, it aims to actively
produce a classifier that works as well as possible.
In contrast, in active detection, we assume that we
already have access to a base detector / classifier that
can produce certain response for target objects (c.f.
Fig. 1), and the task is to apply the classifier to the
multiple object detection problem. Particularly, we
want to use human feedback to actively change the list
of proposed detections, and produce as many positive
detections as possible. In such cases, the human
expert is involved at test time rather than training
time. Note that one could have used active learning
to train the base detectors, which is orthogonal to the
active detection process.

2. In our setting, the system only queries objects which
it believes to be in the positive class, and the human
expert either confirms or rejects the proposed detec-
tion. As a result, the updates on our base detector
often require asymmetric treatments on positive and
negative feedbacks.

3. The queries proposed by an active detector are part of
the detection process. On one hand, we seek to use the
current base detector to detect as many true objects as
possible; on the other hand, we would like to correct
common mistakes made by the detector, and hope
that we can improve the performance by adapting to
external feedbacks in the detection process.

Rather than developing novel object recognition algo-
rithms, in this paper, we focus our attention on the study
of techniques for intelligently interacting with users. In
particular, we propose a general framework for active
detection problems, which brings together the quality
of manual annotation and the scalability and speed of
automatic detection, regardless of what base detectors have
been employed. We show how one can, from a given base
detector, derive a natural sequential decision problem. Fur-
ther, its objective function satisfies adaptive submodularity
(Golovin & Krause, 2011), a natural diminishing returns
condition, quantifying how user labels explain the evidence
obtained from the base detector. This insight allows us to
use highly efficient greedy algorithms, with strong theoret-
ical guarantees. To demonstrate the effectiveness of active
detection, we carry out experiments on three different
detection tasks using different base object detectors (see
Fig. 1), and show that active detection does have substantial
advantages over its passive counterpart. In addition, for the
orangutan nest detection task, our algorithm significantly
outperforms a natural baseline based on existing active
learning techniques. To the best of our knowledge, our ap-
proach is the first to rigorously address the active detection
problem from both empirical and theoretical perspectives.



Active Detection via Adaptive Submodularity

In summary, our contributions are as follows:

• We propose a general framework for the active detec-
tion problem,

• prove theoretical performance guarantees for the pro-
posed algorithm,

• show that different base detectors can be integrated
into the framework, and

• demonstrate the effectiveness of our approach on three
real-world detection tasks.

2. Related Work
Multiple object detection via submodular optimization
Sliding-window based algorithms (Felzenszwalb et al.,
2010) and patch based (e.g., Hough transform based) algo-
rithms are two of the most widespread approaches for mul-
tiple object detection. These approaches produce responses
with peaks at candidate object locations (see Fig. 1).
When dealing with overlapping hypotheses, common ob-
ject detection methods use non-maximum suppression or
mode-seeking to locate and distinguish peaks. Such post-
processing requires tuning of many parameters and is often
fragile, especially when objects are located spatially close
to each other. Recently, Barinova et al. (2012) proposes a
new probabilistic framework for multiple object detection,
with an objective function satisfying submodularity, which
can be solved efficiently with a greedy algorithm for sub-
modular maximization (Nemhauser et al., 1978). Hereby,
submodularity captures diminishing returns in the detector
response at nearby object locations. Our work is inspired
by this framework. In contrast to their approach, however,
we consider the active detection setting, where detection is
interleaved with expert feedback.

Learning object detectors with human in the loop
Active learning has been used successfully to reduce
labeling cost in classification (Joshi et al., 2012). However,
it is more challenging for object detection problems. These
approaches start off with few annotated images and then
look at a pool of unlabeled examples, and find the ones
which would most improve the performance of the classi-
fier once their label has been obtained. Such a procedure
has been shown to significantly reduce the number of
required labels (Abramson & Freund, 2004; Kapoor et al.,
2007; Bietti, 2012), and even work well in large scale (Vi-
jayanarasimhan & Grauman, 2011) and in a distributed
pattern (Vijayanarasimhan et al., 2010). However, in these
works, active learning has only been applied at training
time to produce a good base detector. To re-iterate, we
consider the complementary setting, of taking any given
base detector, and applying it in an active manner at test
time, i.e., interleaving automatic detection with expert
feedback. Moreover, many existing algorithms require

retraining the model from scratch on new labels, whereas
we choose to gradually update the base detector on new
observations, which potentially could be much cheaper.

Human feedback has been used in different levels: e.g.,
image-level (Vijayanarasimhan & Grauman, 2008), object
and attribute levels (Kovashka et al., 2011; Shrivastava
et al., 2012), and part-level annotations (Wah et al., 2011).
Parkash & Parikh (2012) consider attribute feedback (at
training time), but on negative labels, the human expert also
tries to communicate an explanation for why the learner’s
belief is wrong, and the learner can then propagate the feed-
back to many unlabeled images. Our work is similar in that
we also treat positive and negative feedbacks differently,
but we only require object level feedback (at test time) to
update the prediction model.

Object recognition with test-time feedback Branson
et al. (2010) and Wah et al. (2011) study fine-grained
classification problems, where the goal is to recognize bird
species, with the help from an expert answering actively
selected questions pertaining to visual attributes of the
bird. Similarly, Branson et al. (2011) focus on interactive
labeling, where users can adjust incorrect labels (e.g., the
expert can drag misplaced parts to correct locations). In
these works, they consider posing multiple queries on part
attributes for each test image, and allow symmetric updates
for both positive and negative labels. In contrast, we focus
on a different problem setting: active detection of multiple
object instances (with asymmetric updates upon different
labels), where user only provides a single “yes” or “no”
feedback on each proposed candidate.

3. Active Detection as a Coverage Problem
Motivating Example: Hough-transform based method
Hough-transform based detection algorithms work by
transforming the input image into a new representation in
a domain called the Hough space (Hough, 1959; Ballard,
1981). Each point in the Hough space corresponds to a hy-
pothesis of existence of an object instance with some par-
ticular configuration. The Hough image is built by aggre-
gating the contributions of the individual voting elements,
taken from the image or some appropriate sets of features
of it. The detections will then be identified as peaks in the
Hough image, with the height of the peak as an indicator
of the confidence in the detection. As an example, to de-
tect lines in an image, one can search through the peaks in
the 2-d Hough space (with each axis corresponding to one
parameter of the line function), and find a subset of line
parameters that have the highest accumulated votes. Simi-
larly, to detect natural objects, one needs to create individ-
ual voting elements that vote for a certain configuration of
the whole object. See Fig. 1(b) for an illustration.



Active Detection via Adaptive Submodularity

More generally: Votes and Hypotheses Suppose we are
given a finite set H of hypotheses h1, . . . , hn, where each
hypothesis hi ∈ H represents a possible configuration of
the target object at location xi. We use Y1, . . . , Yn ∈ O =
{+1,−1} to denote the (initially unknown) labels of the
hypotheses, such that Yi = +1 if hypothesis hi is true (i.e.,
there exists an object at xi), and Yi = −1 otherwise. We
use YH = {Y1, . . . , Yn} to refer to the collection of all
variables. Whenever a hypothesis hi is selected, the corre-
sponding variable Yi is revealed as yi. Similarly, if we se-
lect a set of hypotheses A, the corresponding observations
are represented as yA ∈ 2H×O.

We further assume a finite set of evidence V . Each item
vi ∈ V corresponds to a voting element that can cast votes
for a set of hypotheses. A base object detector proposes a
voting scheme that connects the hypotheses set H and the
evidence set V . The interaction between hypotheses and
voting elements can be formally represented as a bipartite
graph G(V,H, E); each edge (v, h) ∈ E is assigned with a
score (e.g., confidence, probability estimation given by the
base object detector) with which v votes for hypothesis h.
We will give concrete examples in Section 5.

Active Detection as a Sequential Decision Problem We
consider a sequential strategy, where the detector proposes
a hypothesis hi ∈ H, and receives a label yi from the ex-
pert. Whenever a label is revealed, we update the under-
lying bipartite graph, which represents the current state of
the base detector. In particular, we perform the updates by
only reducing the weights associated with the voting ele-
ments (i.e., covering the edges in G), as observations will
keep explaining the votes proposed by the base detector.
Our goal, therefore, is to propose a strategy that can cover
the entire set of edges as soon as possible.

4. The Active Detection Framework
We begin with the case where the votes generated by the
base detector only have binary values, and then generalize
to the setting with real-valued votes. In Section 4.3, we
provide an efficient greedy solution to the active detection
problem, and present our main results.

4.1. Binary Votes Setting

We first study a simple case, where the voting elements
can only cast binary votes (i.e., 0/1) for the presence of
an object with configuration/location x encoded by some
hypotheses h ∈ H.

Suppose the active learner proposes a hypothetical detec-
tion h+, and receives a positive label from an external ex-
pert. Since a voting element has equal confidence for all its
supporting hypotheses, the true hypothesis then fully ex-
plains the voting elements v ∈ V that voted for h+, thereby

“covering” all votes associated with those voting elements.
We refer to the amount of edges covered by selecting h+
with positive feedback as the positive coverage of h+.

The perhaps more interesting case is when the active detec-
tor makes a false prediction. Let the negative coverage be
the reduction of edge weights in G incurred by a false detec-
tion h− ∈ H. The construction of negative coverage is akin
to that of positive coverage, but with one substantial differ-
ence: while in the positive case we cover the edges which
are neighbors of the edges that directly vote for h+ (i.e.,
stemming from the same voting elements), in the negative
case we will reduce the weight of all edges that are similar
to the ones pointing to the false hypothesis h−. Concretely,
we assume that the votes generated by the base detector are
associated with some features, and thus can be clustered ac-
cordingly. The clustering associated with the base detector
is denoted by means of a function c : V ×H → Z+, which
maps an edge (v, h) ∈ E to its cluster index. A false de-
tection thereby “explains away” (covers) similar votes that
share the same clusters with the potentially false vote(s).
See Fig. 2 for an illustration.

Formally, the fraction of an edge (v, h) ∈ E covered due to
negative observations, could be modeled as a monotone in-
creasing function g : E × 2H×O → [0, 1]. In particular, we
express the coverage as a function q of how frequent sim-
ilar edges have been observed to vote for false hypotheses:
g(v, h,yA) = q(nneg(v, h,yA)), where nneg(v, h,yA) ≡
|{(h′,−1) ∈ yA : ∃v′, c(v′, h′) = c(v, h)}| is the number
of false hypotheses that are being voted for by any edge
in the same cluster as (v, h). In general, we want such a
function to be concave within range [0,1], i.e., the edge
should be largely covered even when nneg is small, and
reach full coverage when nneg approaches infinity. An
extreme choice would be q(n) = min(n, 1): the edge is
fully covered as soon as it is in the same cluster of a vote
for a negative hypothesis. A less aggressive choice of the
concave function, which we adopt in our experiments, is:

q(n) = 1− γn. (4.1)

The negative discount factor γ controls the speed with
which the weights will be discounted. If γ = 0, all the
edges in the cluster c will be fully discounted once one of
them votes for a negative hypothesis; if γ = 1, the edges
will never be discounted.

Now we are ready to construct the coverage function f (1)v,h :

2H×O → R≥0 for any edge (v, h) ∈ E , in the binary votes
setting. Given a set of hypothesesA ⊆ H, and correspond-
ing observations yA ⊆ H × O, the amount by which a
given edge (v, h) is covered is defined as

f
(1)
v,h(yA) =

{
1, if ∃h′ : (h′,+) ∈ yA ∧ (v, h′) ∈ E ;

g(v, h,yA), otherwise.
(4.2)
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(c) (Negative) edge coverage

Figure 2. The voting scheme proposed by a base object detector as a bipartite graph. Edges are drawn between hypotheses (upper nodes)
and voting elements (lower nodes). “Similar” edges share the same color. Fig. 2(a) and 2(b) show two toy examples with binary and
real-value votes, respectively. For example, in Fig. 2(a), if hypothesis 2 is true, then all the edges associated with voting elements 1, 3,
4, 5 will be covered, as those voting elements are “explained away” from other hypotheses. Fig. 2(c) illustrates how we should update
Fig. 2(b) from a negative feedback: if hypothesis 3 in Fig. 2(b) is false, then all the “similar” edges as highlighted are (partially) covered.

4.2. The General Case with Real-valued Votes

The previous approach is limited in that it only allows us to
describe the support given by a voting element to a hypoth-
esis as a binary relation. In practical settings, we would
like to take the strength of confidence into account, i.e.,
each edge (v, h) is associated with a weight wvh ∈ R≥0.
For this more general scenario, we need to redefine “cover-
age”, by allowing edges to be partially covered. Following
the previous example, when an edge (v, h) is covered due
to positive observation, it will also cover its neighbors in
a magnitude that is at most its weight wvh. Since we do
not allow negative weights, if a neighbor edge (v, h′) has a
weight wvh′ < wvh, then it is fully covered. Thus, an edge
(v, h) covers another edge (v, h′) in a magnitude given by
min(wvh, wvh′).

Taking negative coverage into account, the coverage func-
tion for an edge is defined as:

fv,h(yA) = g(v, h,yA) · wvh +

min
{

max
(h′,+1)∈yA

wvh′ , (1− g(v, h,yA)) · wvh

}
(4.3)

We can interpret the first term on the RHS as the fraction
of weight covered due to negative observations, and the
second therm as the fraction of remaining weight (i.e., af-
ter negative discount) covered due to positive observations.
Note that wvh′ does not have a discount factor, since we
know that the edge (v, h′) represents the vote for a positive
hypothesis, and thus it should be fully covered.

Connection with the binary votes setting. We can see
that the coverage function with binary votes (Eq. 4.2) is
a special case of the general coverage function (Eq. 4.3),
when all non-zero weights are set to 1: Assume the edge
(v, h) exists, i.e., wvh = 1. If the maximum among the
weights wvh′ of the first term is 0, then the first term van-
ishes and we are left with g(v, h,yA). Note that all the
wvh′ being 0 is equivalent to the second case of Equa-
tion 4.2. The only alternative is if max(h′,+1)∈yA wvh′ =
1. Since 1− g ≤ 1, we have fv,h(yA) = (1− g) + g = 1.

The objective function. Finally, we can define the ob-
jective function F : 2H×O → R≥0 for the active detec-
tion problem, by summing up weights covered from all the
edges in E :

F (yA) =
∑

(v,h)∈E

fv,h(yA) (4.4)

The goal of active detection, therefore, is to adaptively se-
lect a minimum subset of hypotheses, such that the edges
in the underlying bipartite graph can be fully covered.

4.3. Active Detection: A Greedy Solution

In this section, we show that the active detection problem
defined in the previous section is an adaptive submodular
optimization problem, and thus can be efficiently solved
using a greedy algorithm. First, we show that the objective
function (Eq. 4.4) satisfies submodularity:

Lemma 1. F is monotone submodular.

Formally, a function f : 2H×O → R≥0 is submodular,
if for all (h, yh) ∈ H × O and yA ⊆ yB ⊆ H × O, it
holds that f({(h, yh)} ∪ yA) − f(yA) ≥ f({(h, yh)} ∪
yB) − f(yB). In other words, adding a label helps more
if we have observed few labels so far. The key idea of the
proof is that we can decompose a voting element into many
voting elements, each casts equal votes to its favorable hy-
potheses. Then we just need to prove F in the new evidence
space to be submodular, which is straightforward. We defer
the proof details to the supplementary material.

In active detection, since we have no access to the label
of a hypothesis in advance, we are not able to select
hypothesis-label pairs for each iteration. Instead, we
consider the conditional expected marginal gain of a
hypothesis h (considering any possible label):

∆F (h | yA) = EyH [F (yA ∪ {(h, yh)})− F (yA) | yA] .
(4.5)

Function F together with prior distribution P (YH) is
called adaptive submodular (Golovin & Krause, 2011), if,
whenever yA ⊆ yB ⊆ H ×O, and P (YH) > 0, we have
∆F (h | yA) > ∆F (h | yB). Adaptive submodularity
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Algorithm 1 The active detection algorithm
Input: Bipartite graph G(V,H, E), prior P (YH), dis-
count factor γ, # of detections N
Output: Detections (with associated labels) yA
A ← ∅, yA ← ∅
for i = 1 to N do

for all h inH do %
compute positive and negative coverage:

∆+(h)←
∑

v∈V
∑

h′∈Hmin {wvh, wvh′}
∆−(h)←

∑
c(v′,h′)=c(v,h) {γ · wv′h′}

end for
h∗ ← arg maxh {P (yh = +1)∆+(h)

+P (yh = −1)∆−(h)}
Observe yh∗
for all edges (v, h) in E do %
perform positive and negative updates:

if y∗ = +1 then
wvh ← max {wvh − wvh∗ , 0}

else if c(v, h) = c(v, h∗) then
wvh ← γwvh

end if
end for
A ← A∪ {h∗}, yA ← yA ∪ {(h∗, yh∗)}

end for

characterizes a natural diminishing returns property: the
gain of a new item, in expectation over its unknown label,
can never increase as we gather more information.

Lemma 2. F is adaptive submodular w.r.t. P (Y1, . . . , Yn)
as long as Y1, . . . , Yn are independent.

Proof. With a factorial distribution over the outcomes, the
adaptive submodularity of F follows immediately from
Lm. 1 and Thm. 6.1 of Golovin & Krause (2011).

With the objective function defined in Section 4.2, we can
associate the following greedy algorithm: It starts with the
empty set, and at each iteration adds to the current setA the
hypothesis h which maximizes the marginal improvement
(Eq. 4.5). Once the label of h is observed, we update the
bipartite graph G with the remaining edges that have not
yet been explained by the current observations yA. Al-
gorithm 1 provides the details of the greedy algorithm. A
major benefit of adaptive submodularity is that we can use a
technique called lazy evaluations to dramatically speed up
the selection process (Golovin & Krause, 2011). A further
benefit is the following performance guarantee, which we
obtain following the analysis in Golovin & Krause (2011).

Corollary 3. Suppose F : 2H×O → R≥0 is defined as
Equation 4.4. Fix any value Q > 0 and β > 0, and
let OPTwc be worst-case cost of an optimal policy that
achieves a maximum coverage value of Q for any realiza-
tion of the variables YH. Let Cgreedy be the cost of Al-

gorithm 1 using a factorial prior on variables Y1, . . . , Yn,
until it achieves expected value Q− β. Then,

Cgreedy ≤ OPTwc

(
ln

(
Q

β

)
+ 1

)
.

Moreover, it holds that under the algorithm’s prior:
P (f(yA) ≥ Q) ≥ 1− β.

Note that the above result provides guarantees even for
worst-case realization of YH (i.e., without assumptions
on P (YH)), as long as our algorithm uses any factorial
prior. Further note that if we choose, in the extreme case,
β = minYH P (YH), we actually guarantee that the algo-
rithm achieves full coverage (f(yA) ≥ Q) for all realiza-
tions of YH. If we do not have a strong prior, we can obtain
the strongest guarantees if we choose a distribution “as uni-
form as possible” (i.e., maximizes minYH P (YH)), while
still guaranteeing adaptive submodularity.

5. Experiments
In this section, we empirically evaluate our active detec-
tion approach on three (substantially different) data sets: an
orangutan nest detection task for biodiversity monitoring, a
pedestrian tracking task in a video sequence, and a standard
object detection task for the PASCAL VOC Challenge. For
each data set we employ different base detector that is most
tailored for the task. Our emphasis is on comparing the
active detection algorithm with classical passive detection
algorithms (and active detection baseline, if applicable), as
well as empirically quantifying the improvement by the ac-
tive detection framework over the base detectors.

Orangutan Nest Detection on UAV-recorded Forest Im-
ages The first application is an interactive orangutan
nests detection system for biodiversity monitoring. To es-
timate the distribution of critically endangered Sumatran
orangutans (Pongo abelii), ecologists deploy conservation
drones above orangutan habitat in surveyed areas, so that
they can obtain timely and high-quality photographs of
orangutan nests high in the tree canopies (Koh & Wich,
2012). Our test set contains 37 full-resolution (4000×3000
pixels) images from two separate drone missions launched
in September 2012, in Sumatra, Indonesia. Each of the tar-
get images contains at least one orangutan nest, and there
are a total number of 45 nests in the data set, with a mini-
mum size of 19× 19 pixels. Selected examples of the nest
and non-nest image patches are shown in Fig. 3.

As we can see from the examples, the positive class has
high intra-class variation. For efficiency considerations,
we reduce the resolution of the original images by half.
We then extract all 45 examples of orangutan nests of size
9 × 9 pixels, as well as 148 background image patches,
as the labeled set. Each training example is represented as
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a 9-d vector which consists of statistics (mean, maximum
and minimum) of three color channels in a patch. Based
on these features, we train a linear discriminant classifier
(LDA) in order to classify orangutan nests vs. background.

Figure 3. Positive (upper) and negative (lower) examples of
orangutan nests in the UAV-recorded forest data set.

The base detector we employ is a sliding-window based
system. As we do not have sufficient (positive) training
data, we use all the labeled images other than those in the
current test image as training set. At runtime, each image
patch located by the current sliding window (of size 9×9) is
evaluated with a pre-trained classifier, and used as a voting
element that casts equal votes to its surrounding area (i.e.,
9 × 9 pixels). The confidence of votes from theses voting
windows are determined by their distances to the classi-
fier’s decision boundary; positive windows that are further
away from the decision boundary have higher confidence
when voting for a nest hypothesis.

To cluster similar voting elements, we apply k-means algo-
rithm on the set of voting windows. Moreover, as negative
detections often occur adjacently (e.g., branches are usually
connected), we also use a local clustering algorithm (i.e.,
segmenting nearby regions), to avoid overwhelming false
detections. The precision-recall curve for active detection
is demonstrated by the red line in Fig. 4(a).

Our first baseline is the “passive” version of Alg. 1, where
the algorithm assumes all detections to be “true”, and thus
only performs positive updates. The only difference be-
tween Alg. 1 and the passive baseline is that for active
detection, we actively update the order of the sequence,
while for the passive baseline we do not (note that the pas-
sive approach also needs expert to verify the detections,
only that it happens after all detections are made). We
can see from Fig. 4(a) that, at 80% recall, active detec-
tion (γ = 0.5) obtains almost twice the precision (0.27
vs. 0.15) as the passive approach. As another baseline,
we compare with an active learning heuristic, where the
base classifier is retrained after each query. More specifi-
cally, at each iteration, the baseline active detector gener-
ates a response image by applying the new classifier, and
removes the surrounding areas of previous candidates by
non-maximal suppression. The next candidate is then lo-
cated through mode-seeking. As shown in Fig. 4(a), al-
though the active baseline (blue curve) comes with no guar-
antees, it still outperforms the passive approach due to extra
feedbacks, but generally performs worse than Alg. 1.

Pedestrian Detection on TUD-crossing Image Sequence
Hough-based approaches offer seamless integration with
the active detection framework. To demonstrate how user
supervision can help such systems, we apply Alg. 1 to the
TUD-crossing sequence, based on the Hough Forest detec-
tor proposed in Gall & Lempitsky (2009). We use a dis-
count factor γ = 0.01 to penalize votes that are “similar”
with any of the incorrect votes. Here votes are considered
“similar” if they are (1) from similar image patches (i.e.,
sharing the same leaf in Hough forest), and (2) pointing to
locations that have the same offset to the voting elements.
We also use “local clusters” to update the bipartite graph
when observing a false hypothesis, similar as the case for
nest detection: edges that share the same voting element
are considered within the same local cluster, and thus will
be discounted if any of them points to a false hypothesis.

Since the background clutter does not change much across
frames, for active detection we choose to share the cluster
updates through the entire video sequence, rather than dis-
card the information acquired from user feedback and start
from scratch (i.e., reset the negative count for each clus-
ter) for each new frame. As baseline, we compare active
detection with the state-of-the-art passive detection results
on this data set, which is given by Barinova et al. (2012).
We find that training a Hough forest detector is very expen-
sive (e.g., it takes > 1 hour to train a forest with 15 trees),
making it highly inefficient to frequently retrain the model.
Therefore, we skip the active baseline for this task.

For evaluation of both algorithms, we apply the Hungarian
algorithm (Kuhn, 1955) to match the set of detections with
the ground truth annotations, based on the Jaccard simi-
larity (≤ 40% are considered as false detections) between
bounding boxes1. We test the candidate algorithms on 41
frames of the TUD-crossing sequence (by sampling every
5th frame of the full video sequence) in the single scale sce-
nario, and show the results in Fig. 4(b). The curves are gen-
erated by varying the stopping threshold on the marginal
gain of new hypotheses. We limited the maximum number
of detections to be 10 for both systems (given there are at
most 8 objects per frame) in order to have a fair compari-
son. As can be seen, with user supervision, our framework
considerably outperforms the baseline detection algorithm.

Object detection on PASCAL VOC Data Set The third
data set differs from the previous two in the sense that it
contains object classes that exhibit much richer structural
features (e.g., the “person” class includes examples of a
high variability of poses and shapes). The state-of-the-art
results for this dataset are obtained by the sliding-window

1Greedy matching is problematic for data sets that exhibit
sufficient overlap between objects, because once a detection is
matched to an object, it cannot switch to another even if the sec-
ond is a better matching.
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Figure 4. Performance of the active detection on three different tasks

based, multi-scale, deformable parts model (MDPM) of
Felzenszwalb et al. (2010). To convey the idea that our
framework can incorporate different base detectors, we
build our bipartite graph upon an earlier release (voc-
release3 ) of their system, as it already incorporates most of
the important innovations of the MDPM, without extra ex-
pensive components (e.g., grammar models as in Girshick
et al. (2011)) that are designed specifically for certain tasks.

In MDPM, each category is modeled by a “root” filter that
describes the shape of the object, and a fixed number of
part filters that describe important sub-areas of the object
at a higher resolution. For multi-scale detection, we keep a
feature pyramid that consists image cells (of size 8×8, rep-
resented by a 31-d HOG descriptor (Dalal & Triggs, 2005))
from a pile of rescaled versions of the image. A hypothesis
z is then characterized by a triplet (x, y, s) corresponding
to the location and scale of an object, and is scored jointly
by both root filter and associated parts filters.

To build a bipartite graph, we assume that voting elements
correspond to image patches (i.e., cells in the feature pyra-
mid), and will cast equal votes for a hypothesis h given
that they are inside its associated window. The total sum
of votes h receives from the voting cells amount to the
score given by the underlying MDPM. To handle the de-
formable parts, we further assume two types of hypothe-
ses: “root hypotheses” that represent the existence of an
object, and “part hypotheses” as intermediate nodes in the
bipartite graph, that can be voted by (part) cells. Each hy-
pothesis node in the bipartite graph will eventually receive
(direct) votes from the root cells, as well as (indirect) votes
from the part cells, that are weighted by the deformation
coefficient (Felzenszwalb et al., 2010) of the part window.

Edge similarity is measured based on two sets of features:
the filter type of the window associated with h, and the
HOG descriptor of the voting cell v. To construct clusters,
we first group the windows by filter type, and then employ
a hierarchical clustering method to retrieve similar edges
(i.e., small cosine distance between HOG descriptors).

Fig. 4(c) shows our results on the Person category of the
VOC2008 data set (4133 test images). Each detector makes
16 detections per image. Unlike the nest detection task, re-
training a deformable parts model after each detection is
a prohibitive task (it would have taken weeks to retrain ≈
66K MDPMs). Without a better choice for active baselines,
we show how human feedbacks can be used to improve
the base detector. The red curve shows the performance of
our active detector (AUC 0.566), which only uses root fil-
ters, yet it already outperforms the baseline system (Felzen-
szwalb et al. (2010), AUC 0.516) that utilizes both root
and parts filters. Note that in principle we can incorporate
feedback of part filters as well. We also find that the pas-
sive approach under our framework (i.e., “active detection”
assuming all detections are true) also considerably out-
performs the baseline (AUC 0.544). One possible reason
is that, when identifying multiple objects, our framework
does not suffer from problems caused by the non-maximum
suppression approach, and thus has better recall.

6. Conclusion
In this paper, we propose an active detection framework
that enables turning existing base detectors into automatic
systems for intelligently interacting with users. Our ap-
proach reduces active object detection to a sequential edge
covering optimization problem. We show that the objective
function satisfies adaptive submodularity, allowing us to
use efficient greedy algorithms, with strong theoretical per-
formance guarantees. We demonstrate the effectiveness of
the active detection algorithm on three different real-world
object detection tasks, and show that active detection not
only works for various base detectors, but also provides
substantial advantages over its passive counterpart.
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