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7. Proof of Theorem 3.2
We prove Theorem 3.2 in this section. The high level roadmap of the proof is a standard one: by convex analysis, to
show that M is the unique optimal solution to (1), it suffices to construct a dual certificate Y obeying certain optimality
conditions. One of the conditions requires the spectral norm kY k to be small. Previous work bounds kY k by the the
`1 norm kY 0k1 :=

P

i,j

�

�Y 0
ij

�

� of a certain matrix Y 0, which gives rise to the standard and joint incoherence conditions
involving uniform bounds by µ

0

and µ
str

. Here, we derive a new bound using the weighted `1,2

norm of Y 0, which is
the maximum of the weighted row and column norms of Y 0. These bounds lead to a tighter bound of kY k and hence less
restrictive conditions for matrix completion.

We now turn to the details. To simplify the notion, we prove the results for square matrices (n
1

= n
2

= n). The
results for non-square matrices are proved in exactly the same fashion. A few additional notations are needed. We use
c and its derivatives (c0, c

0

, etc) for universal positive constants, which may differ from place to place. By with high
probability (w.h.p.) we mean with probability at least 1 � c

1

n�c2 . The inner product between two matrices is given by
hY, Zi = trace(Y >Z). Recall that U and V are the left and right singular vectors of the underlying matrix M . We need
several standard projection operators for matrices. The projections P

T

and P
T

? are given by

P
T

(Z) := UU>Z + ZV V > � UU>V ZZ>

and P
T

?(Z) := Z � P
T

(Z). P
⌦

(Z) is the matrix with (P
⌦

(Z))

ij

= Z
ij

if (i, j) 2 ⌦ and zero otherwise, and
P
⌦

c
(Z) := Z � P

⌦

(Z). As usual, kzk
2

is the `
2

norm of the vector z, and kZk
F

and kZk are the Frobenius norm
and spectral norm of the matrix Z, respectively. For a linear operator A on matrices, its operator norm is defined as
kAk

op

= sup

X2Rn⇥n kA(X)k
F

/ kXk
F

. For each 1  i, j  n, we define the random variable �
ij

:= I ((i, j) 2 ⌦),
where I(·) is the indicator function. The matrix operator R

⌦

: Rn⇥n 7! Rn⇥n is defined as

R
⌦

(Z) =

X

i,j

1

p
ij

�
ij

⌦

e
i

e>
j

, Z
↵

e
i

e>
j

. (9)

Optimality Condition. Following our proof roadmap, we now state a sufficient condition for M to be the unique optimal
solution to the optimization problem (1). This is the content of Proposition 7.1 below (proved in Section 7.1).

Proposition 7.1. Suppose p
ij

� 1

n

10 . The matrix M is the unique optimal solution to (1) if the following conditions hold.

1. kP
T

R
⌦

P
T

� P
T

k
op

 1

2

.

2. There exists a dual certificate Y 2 Rn⇥n which satisfies P
⌦

(Y ) = Y and

(a)
�

�P
T

(Y ) � UV >
�

�

F

 1

4n

5 ,

(b) kP
T

?(Y )k  1

2

.

Validating the Optimality Condition. We begin by proving that Condition 1 in Proposition 7.1 is satisfied under the
conditions of Theorem 3.2. This is done in the following lemma (proved in Section 7.2). The lemma shows that R

⌦

is
close to the identity operator on T .

Lemma 7.2. If p
ij

� min{c
0

(µi+⌫j)r

n

log n, 1} for all (i, j) and a sufficiently large c
0

, then w.h.p.

kP
T

R
⌦

P
T

� P
T

k
op

 1

2

. (10)

Constructing the Dual Certificate. It remains to construct a matrix Y (the dual certificate) that satisfies the condition 2
in Proposition 7.1. We do this using the golfing scheme (Gross, 2011; Candès et al., 2011). Set k

0

= 20 log n. Suppose
the set ⌦ of observed entries is generated from ⌦ =

S

k0

k=1

⌦

k

, where for each k = 1, . . . , k
0

and matrix index (i, j),
P [(i, j) 2 ⌦

k

] = q
ij

:= 1 � (1 � p
ij

)

1/k0 independent of all others. Clearly this is equivalent to the original Bernoulli
sampling model. Let W

0

:= 0 and for k = 1, . . . , k
0

,

W
k

:= W
k�1

+ R
⌦kPT

(UV > � P
T

W
k�1

), (11)
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where the operator R
⌦k is given by

R
⌦k(Z) =

X

i,j

1

q
ij

I ((i, j) 2 ⌦

k

)

⌦

e
i

e>
j

, Z
↵

e
i

e>
j

.

The dual certificate is given Y := W
k0 . Clearly P

⌦

(Y ) = Y by construction. The proof of Theorem 3.2 is completed if
we show that under the condition in theorem, Y satisfies Conditions 2(a) and 2(b) in Proposition 7.1 w.h.p.

Concentration Properties The key step in our proof is to show that Y satisfies Condition 2(b) in Proposition 7.1, i.e.,
we need to bound kP

T

?(Y )k . Here our proof departs from existing ones, as we establish concentration bounds on this
quantity in terms of (an appropriately weighted version of) the `1,2

norm, which we now define. The µ(1, 2)-norm of a
matrix Z 2 Rn⇥n is defined as

kZk
µ(1,2)

:= max

8

<

:

max

i

s

n

µ
i

r

X

b

Z2

ib

,max

j

s

n

⌫
j

r

X

a

Z2

aj

9

=

;

,

which is the maximum of the weighted column and row norms of Z. We also need the µ(1)-norm of Z, which is a
weighted version of the matrix `1 norm. This is given as

kZk
µ(1)

:= max

i,j

|Z
ij

|
r

n

µ
i

r

r

n

⌫
j

r
.

which is the weighted entry-wise magnitude of Z. We now state three new lemmas concerning the concentration properties
of these norms. The first lemma is crucial to our proof; it bounds the spectral norm of (R

⌦

� I)Z in terms of the µ(1, 2)

and µ(1) norms of Z. This obviates intermediate lemmas required previous approaches (Candès & Tao, 2010; Gross,
2011; Recht, 2009; Keshavan et al., 2010) which use the `1 norm of Z.
Lemma 7.3. Suppose Z is a fixed n⇥ n matrix. For some universal constant c > 1, we have w.h.p.

k(R
⌦

� I)Zk  c

0

B

@

max

i,j

�

�

�

�

Z
ij

p
ij

�

�

�

�

log n +

v

u

u

u

t

max

8

<

:

max

i

n

X

j=1

Z2

ij

p
ij

,max

j

n

X

i=1

Z2

ij

p
ij

9

=

;

log n

1

C

A

.

If p
ij

� min{c
0

(µi+⌫j)r

n

log n, 1}, 8(i, j), then we further have k(R
⌦

� I)Zk  cp
c0

⇣

kZk
µ(1)

+ kZk
µ(1,2)

⌘

w.h.p.

The next two lemmas further control the µ(1, 2) and µ(1) norms of a matrix after random projections.

Lemma 7.4. Suppose Z is a fixed n ⇥ n matrix. If p
ij

� min{c
0

(µi+⌫j)r

n

log n, 1} for all i, j and sufficiently large c
0

,
then w.h.p.

k(P
T

R
⌦

� P
T

)Zk
µ(1,2)

 1

2

⇣

kZk
µ(1)

+ kZk
µ(1,2)

⌘

Lemma 7.5. Suppose Z is a fixed n ⇥ n matrix. If p
ij

� min{c
0

(µi+⌫j)r

n

log n, 1} for all i, j and c
0

sufficiently large,
then w.h.p.

k(P
T

R
⌦

� P
T

)Zk
µ(1)

 1

2

kZk
µ(1)

.

We prove Lemmas 7.3–7.5 in Section 7.2. Equipped with the three lemmas above, we are now ready to validate that Y
satisfies Condition 2 in Proposition 7.1.

Validating Condition 2(a): Set �

k

= UV > � P
T

(W
k

) for k = 1, . . . , k
0

. By definition of W
k

, we have

�

k

= (P
T

� P
T

R
⌦kPT

) �

k�1

. (12)

Note that ⌦

k

is independent of �

k�1

and q
ij

� p
ij

/k
0

� c0
0

(µ
i

+ ⌫
j

)r log(n)/n under the condition in Theorem 3.2.
Applying Lemma 7.2 with ⌦ replaced by ⌦

k

, we obtain that w.h.p.

k�
k

k
F

 kP
T

� P
T

R
⌦kPT

k k�
k�1

k
F

 1

2

k�
k�1

k
F

.
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Applying the above inequality recursively with k = k
0,

k
0

� 1, . . . , 1 gives

�

�P
T

(Y ) � UV >�
�

F

= k�
k0k

F


✓

1

2

◆

k0
�

�UV >�
�

F

 1

4n6

·pr  1

4n5

.

Validating Condition 2(b): By definition, Y can be rewritten as Y =

P

k0

k=1

R
⌦kPT

�

k�1

. It follows that

kP
T

?(Y )k =

�

�

�

�

�

P
T

?

k0
X

k=1

(R
⌦kPT

� P
T

) �

k�1

�

�

�

�

�


k0
X

k=1

k(R
⌦k � I) �

k�1

k .

We apply Lemma 7.3 with ⌦ replaced by ⌦

k

to each summand in the last RHS to obtain w.h.p.

kP
T

?(Y )k  cp
c
0

k0
X

k=1

k�
k�1

k
µ(1)

+

cp
c
0

k0
X

k=1

k�
k�1

k
µ(1,2)

. (13)

We bound each summand in the last RHS. Applying (k � 1) times (12) and Lemma 7.5 (with ⌦ replaced by ⌦

k

), we have
w.h.p.

k�
k�1

k
µ(1)

=

�

�

�

P
T

� P
T

R
⌦k�1PT

�

�

k�2

�

�

µ(1)


✓

1

2

◆

k�1

�

�UV >�
�

µ(1)

.

for each k. Similarly, repeatedly applying (12), Lemma 7.4 and the inequality we just proved above, we obtain w.h.p.

k�
k�1

k
µ(1,2)

(14)

=

�

�

�

P
T

� P
T

R
⌦k�1PT

�

�

k�2

�

�

µ(1,2)

(15)

1

2

k�
k�2

k
µ(1)

+

1

2

k�
k�2

k
µ(1,2)

(16)


✓

1

2

◆

k�1

�

�UV >�
�

µ(1)

+

1

2

k�
k�2

k
µ(1,2)

(17)

k

✓

1

2

◆

k�1

�

�UV >�
�

µ(1)

+

✓

1

2

◆

k�1

kUV k
µ(1,2)

. (18)

It follows that w.h.p.

kP
T

?(Y )k  cp
c
0

k0
X

k=1

(k + 1)

✓

1

2

◆

k�1

�

�UV >�
�

µ(1)

+

cp
c
0

k0
X

k=1

✓

1

2

◆

k�1

�

�UV >�
�

µ(1,2)

(19)

 6cp
c
0

�

�UV >�
�

µ(1)

+

2cp
c
0

�

�UV >�
�

µ(1,2)

. (20)

Note that for all (i, j), we have
�

�

�

�

UV >�
ij

�

�

�

=

�

�e>
i

UV >e
j

�

�  p

µir

n

q

⌫jr

n

,
�

�e>
i

UV >
�

�

2

=

p

µir

n

and
�

�UV >e
j

�

�

2

=

q

⌫jr

n

. Hence
�

�UV >
�

�

µ(1)

 1 and
�

�UV >
�

�

µ(1,2)

= 1. We conclude that

kP
T

?(Y )k  6cp
c
0

+

2cp
c
0

 1

2

provided that the constant c
0

in Theorem 3.2 is sufficiently large. This completes the proof of Theorem 3.2.

7.1. Proof of Proposition 7.1

Proof. Consider any feasible solution X to (1) with P
⌦

(X) = P
⌦

(M). Let G be an n ⇥ n matrix which satisfies
kP

T

?Gk = 1, and hP
T

?G,P
T

?(X �M)i = kP
T

?(X �M)k⇤. Such G always exists by duality between the nuclear
norm and spectral norm. Because UV >

+ P
T

?G is a sub-gradient of the function f(Z) = kZk⇤ at Z = M , we have

kXk⇤ � kMk⇤ � ⌦

UV >
+ P

T

?G,X �M
↵

. (21)
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But hY,X �Mi = hP
⌦

(Y ), P
⌦

(X �M)i = 0 since P
⌦

(Y ) = Y . It follows that

kXk⇤ � kMk⇤ � ⌦

UV >
+ P

T

?G� Y,X �M
↵

= kP
T

?(X �M)k⇤ +

⌦

UV > � P
T

Y,X �M
↵� hP

T

?Y,X �Mi
� kP

T

?(X �M)k⇤ �
�

�UV > � P
T

Y
�

�

F

kP
T

(X �M)k
F

� kP
T

?Y k kP
T

?(X �M)k⇤
� 1

2

kP
T

?(X �M)k⇤ �
1

4n5

kP
T

(X �M)k
F

,

where in the last inequality we use conditions 1 and 2 in the proposition. Using Lemma 7.6 below, we obtain

kXk⇤ � kMk⇤ � 1

2

kP
T

?(X �M)k⇤ �
1

4n5

·
p

2n5 kP
T

?(X �M)k⇤ >
1

8

kP
T

?(X �M)k⇤ .

The RHS is strictly positive for all X with P
⌦

(X�M) = 0 and X 6= M . Otherwise we must have P
T

(X�M) = X�M
and P

T

P
⌦

P
T

(X � M) = 0, contradicting the assumption kP
T

R
⌦

P
T

� P
T

k
op

 1

2

. This proves that M is the unique
optimum.

Lemma 7.6. If p
ij

� 1

n

10 for all (i, j) and kP
T

R
⌦

P
T

� P
T

k
op

 1

2

, then we have

kP
T

Zk
F


p

2n5 kP
T

?(Z)k⇤ , 8Z 2 {Z 0
: P

⌦

(Z 0
) = 0}. (22)

Proof. Define the operator R1/2

⌦

: Rn⇥n 7! Rn⇥n by

R
1/2

⌦

(Z) :=

X

i,j

1p
p
ij

�
ij

⌦

e
i

e>
j

, Z
↵

e
i

e>
j

.

Note that R1/2

⌦

is self-adjoint and satisfies R1/2

⌦

R
1/2

⌦

= R
⌦

. Hence we have
�

�

�

R
1/2

⌦

P
T

(Z)

�

�

�

F

=

p

hP
T

R
⌦

P
T

Z,P
T

Zi (23)

=

p

h(P
T

R
⌦

P
T

� P
T

)Z,P
T

(Z)i + hP
T

(Z), P
T

(Z)i (24)

�
q

kP
T

(Z)k2
F

� kP
T

R
⌦

P
T

� P
T

k kP
T

(Z)k2
F

(25)

� 1p
2

kP
T

(Z)k
F

, (26)

where the last inequality follows from the assumption kP
T

R
⌦

P
T

� P
T

k
op

 1

2

. On the other hand, P
⌦

(Z) = 0 implies
R

1/2

⌦

(Z) = 0 and thus
�

�

�

R
1/2

⌦

P
T

(Z)

�

�

�

F

=

�

�

�

R
1/2

⌦

P
T

?(Z)

�

�

�

F


✓

max

i,j

1p
p
ij

◆

kP
T

?(Z)k
F

 n5 kP
T

?(Z)k
F

.

Combining the last two display equations gives

kP
T

(Z)k
F


p

2n5 kP
T

?(Z)k
F


p

2n5 kP
T

?(Z)k⇤ .

7.2. Proof of Technical Lemmas

We prove the four technical lemmas that are used in the proof of our main theorem. The proofs use the matrix Bernstein
inequality given as Theorem 10.1 in Section 10. We also make frequent use of the following facts: for all i and j, we have
max

�

µir

n

,
⌫jr

n

  1 and
(µ

i

+ ⌫
j

)r

n
� �

�P
T

(e
i

e>
j

)

�

�

2

F

. (27)

We also use the shorthand a ^ b := min{a, b}.
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7.2.1. PROOF OF LEMMA 7.2

For any matrix Z, we can write

(P
T

R
⌦

P
T

� P
T

)(Z) =

X

i,j

✓

1

p
ij

�
ij

� 1

◆

⌦

e
i

e>
j

, P
T

(Z)

↵

P
T

(e
i

e>
j

) =:

X

i,j

S
ij

(Z).

Note that E [S
ij

] = 0 and S
ij

’s are independent of each other. For all Z and (i, j), we have S
ij

= 0 if p
ij

= 1. On the
other hand, when p

ij

� c
0

(µi+⌫j)r logn

n

, then it follows from (27) that

kS
ij

(Z)k
F

 1

p
ij

�

�P
T

(e
i

e>
j

)

�

�

2

F

kZk
F

 max

i,j

⇢

1

p
ij

(µ
i

+ ⌫
j

)r

n

�

kZk
F

 1

c
0

log n
kZk

F

.

Putting together, we have that kS
ij

k  1

c0 logn

under the condition of the lemma. On the other hand, we have

�

�

�

�

�

�

X

i,j

E
⇥S2

ij

(Z)

⇤

�

�

�

�

�

�

F

=

�

�

�

�

�

�

X

i,j

E
"

✓

1

p
ij

�
ij

� 1

◆

2

⌦

e
i

e>
j

, P
T

(Z)

↵ ⌦

e
i

e>
j

, P
T

(e
i

e>
j

)

↵

P
T

(e
i

e>
j

)

#

�

�

�

�

�

�

F


✓

max

i,j

1 � p
ij

p
ij

�

�P
T

(e
i

e>
j

)

�

�

2

F

◆

�

�

�

�

�

�

X

i,j

⌦

e
i

e>
j

, P
T

(Z)

↵

P
T

(e
i

e>
j

)

�

�

�

�

�

�

F

 max

i,j

⇢

1 � p
ij

p
ij

(µ
i

+ ⌫
j

)r

n

�

kP
T

(Z)k
F

,

This implies
�

�

�

P

i,j

E
⇥S2

ij

⇤

�

�

�

 1

c0 logn

under the condition of the lemma. Applying the Matrix Bernstein inequality

(Theorem 10.1), we obtain kP
T

R
⌦

P
T

� P
T

k =

�

�

�

P

i,j

S
ij

�

�

�

 1

2

w.h.p. for sufficiently large c
0

.

7.2.2. PROOF OF LEMMA 7.3

We can write (R
⌦

� I)Z as the sum of independent matrices:

(R
⌦

� I)Z =

X

i,j

✓

1

p
ij

�
ij

� 1

◆

Z
ij

e
i

e>
j

=:

X

i,j

S
ij

.

Note that E[S
ij

] = 0. For all (i, j), we have S
ij

= 0 if p
ij

= 1, and

kS
ij

k  1

p
ij

|Z
ij

| .

Moreover,
�

�

�

�

�

�

E

2

4

X

i,j

S>
ij

S
ij

3

5

�

�

�

�

�

�

=

�

�

�

�

�

�

X

i,j

Z2

ij

e
i

e>
j

e
j

e>
i

E
✓

1

p
ij

�
ij

� 1

◆

2

�

�

�

�

�

�

= max

i

n

X

j=1

1 � p
ij

p
ij

Z2

ij

.

The quantity
�

�

�

E
h

P

i,j

S
ij

S>
ij

i

�

�

�

is bounded by max

j

P

n

i=1

(1 � p
ij

)Z2

ij

/p
ij

in a similar way. The first part of the lemma

then follows from the matrix Bernstein inequality (Theorem 10.1 in the Section 10). If p
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7.2.3. PROOF OF LEMMA 7.4
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where we use p
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Applying the Matrix Bernstein inequality (Theorem 10.1) w.h.p.
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We bound each of the four sums. By (30) and p
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Applying the Bernstein inequality (Theorem 10.1), we conclude that
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8. Proof of Remark 3.4
Recall the setting: for each row of M , we pick it and observe all its entries with probability p. We need a simple lemma.
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where �
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 µ
0

r

n
.

Therefore, the value of the minimization above is lower-bounded by

min

z2Rn

n

X

i=1

R2

i

z
i

s.t.
n

X

i=1

z
i

= 1, 0  z
i

 µ
0

r

n
, i = 1, . . . , n.

(32)

From the theory of linear programming, we know the minimum is achieved at an extreme point z⇤ of the feasible set. The
extreme point z⇤ satisfies z⇤

i

� 0, 8i and n linear equalities

n

X

i=1

z⇤
i

= 1

z⇤
i

= 0, for i 2 I
1

z⇤
i

=

µ
0

r

n
, for i 2 I

2

for some index sets I
1

and I
2

such that I
1

\ I
2

= ',|I
1

| + |I
2

| = n� 1. It is easy to see that we must have |I
2

| =

j

n

µ0r

k

.
Since R

1

 R
2

 . . .  R
n

, the minimizer z⇤ has the form

z⇤
i

=

µ
0

r

n
, i = 1, . . . ,

�

n

µ
0

r

⌫

,

z⇤
i

= 1 �
�

n

µ
0

r

⌫

· µ0

r

n
, i =

�

n

µ
0

r

⌫

+ 1,

z⇤
i

= 0, i =

�

n

µ
0

r

⌫

+ 2, . . . , n,

and the value of the minimization (32) is at least

bn/(µ0r)c
X

i=1

R2

i

µ
0

r

n
.

This proves that �2

r

(RU) � µ0r

n

Pbn/(µ0r)c
i=1

R2

i

. Combining with (31), we obtain that

µ̄
i

r

n
 R2

i

Pbn/(µ0r)c
i

0
=1

R2

i

,
⌫̄
j

r

n
 C2

j

Pbn/(µ0r)c
j

0
=1

C2

j

0

;

the proof for ⌫̄
j

is similar. Applying Theorem 3.2 to the equivalent problem (7) with the above bounds on µ̄
i

and ⌫̄
j

proves
the theorem.
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10. Matrix Bernstein Inequality
Theorem 10.1 ((Tropp, 2012)). Let X

1

, . . . , X
N

2 Rn1⇥n2 be independent zero mean random matrices. Suppose

max

(

�

�

�

�

�

N

X

k=1

X
k

X>
k

�

�

�

�

�

,

�

�

�

�

�

N

X

k=1

X>
k

X
k

�

�

�

�

�

)

 �2 (33)

and kX
k

k  B almost surely for all k. Then for any c > 0, we have
�

�

�

�

�

N

X

k=1

X
k

�

�

�

�

�

 2

p

c�2

log(n
1

+ n
2

) + cB log(n
1

+ n
2

). (34)

with probability at least 1 � (n
1

+ n
2

)

�(c�1).


