Coherent Matrix Completion

7. Proof of Theorem 3.2

We prove Theorem 3.2 in this section. The high level roadmap of the proof is a standard one: by convex analysis, to
show that M is the unique optimal solution to (1), it suffices to construct a dual certificate Y obeying certain optimality
conditions. One of the conditions requires the spectral norm ||Y'|| to be small. Previous work bounds ||Y'|| by the the
oo norm [[Y]| =37, |Yl’j| of a certain matrix Y’, which gives rise to the standard and joint incoherence conditions
involving uniform bounds by 1o and pi4,-. Here, we derive a new bound using the weighted ¢ » norm of Y’ which is
the maximum of the weighted row and column norms of Y”. These bounds lead to a tighter bound of ||Y|| and hence less
restrictive conditions for matrix completion.

We now turn to the details. To simplify the notion, we prove the results for square matrices (ny = no = n). The
results for non-square matrices are proved in exactly the same fashion. A few additional notations are needed. We use
c and its derivatives (¢, cg, etc) for universal positive constants, which may differ from place to place. By with high
probability (w.h.p.) we mean with probability at least 1 — ¢yn~“2. The inner product between two matrices is given by
(Y, Z) = trace(Y T Z). Recall that U and V are the left and right singular vectors of the underlying matrix M. We need
several standard projection operators for matrices. The projections Pr and Py are given by

Pr(Z):=UU"Z+4+2VV' —U0U'VZZ"

and Pr.(Z) = Z — Pr(Z). Po(Z) is the matrix with (Po(2)),; = Z;; if (i,j) € € and zero otherwise, and
Poc(Z) := Z — Po(Z). As usual, ||z]|, is the £5 norm of the vector z, and || Z|| and ||Z|| are the Frobenius norm
and spectral norm of the matrix Z, respectively. For a linear operator .A on matrices, its operator norm is defined as
[All,, = supxepnxn [A(X)|| /[ X|| . For each 1 < i,5 < n, we define the random variable 0;; := I((i, ) € ),
where I(-) is the indicator function. The matrix operator Rg : R"*™ — R™*"™ is defined as

1
Ra(Z) = Z —0; (eie] , Z) eze] . )
i Dij
Optimality Condition. Following our proof roadmap, we now state a sufficient condition for M to be the unique optimal
solution to the optimization problem (1). This is the content of Proposition 7.1 below (proved in Section 7.1).
Proposition 7.1. Suppose p;; > n% The matrix M is the unique optimal solution to (1) if the following conditions hold.
1. ||PrRoPr — PTHop < %
2. There exists a dual certificate Y € R"*™ which satisfies Po(Y) =Y and

(@) |Pr(Y)=UVT||, < g5
(b) ||Pre(Y)] < 4.

Validating the Optimality Condition. We begin by proving that Condition 1 in Proposition 7.1 is satisfied under the
conditions of Theorem 3.2. This is done in the following lemma (proved in Section 7.2). The lemma shows that R, is
close to the identity operator on 7.

Lemma 7.2. Ifp;; > min{cow logn, 1} for all (i, j) and a sufficiently large ¢, then w.h.p.

1

||PTRQPT_PTHop < > (10)

Constructing the Dual Certificate. It remains to construct a matrix Y (the dual certificate) that satisfies the condition 2
in Proposition 7.1. We do this using the golfing scheme (Gross, 2011; Candes et al., 2011). Set ky = 20logn. Suppose
the set €2 of observed entries is generated from Q@ = UZ[’Zl Qy, where for each k = 1,..., ko and matrix index (i, j),
P[(i,5) € Q] = qij :== 1 — (1 — p;;)*/*° independent of all others. Clearly this is equivalent to the original Bernoulli
sampling model. Let Wy :=0and for k =1,..., ko,
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where the operator Rq, is given by

Rou(2) = 3 —1((1.5) € ) (ee]  Z) exe]

iy 11

The dual certificate is given Y := Wy, . Clearly Po(Y) = Y by construction. The proof of Theorem 3.2 is completed if
we show that under the condition in theorem, Y satisfies Conditions 2(a) and 2(b) in Proposition 7.1 w.h.p.

Concentration Properties The key step in our proof is to show that Y satisfies Condition 2(b) in Proposition 7.1, i.e.,
we need to bound ||Pr. (Y)|| . Here our proof departs from existing ones, as we establish concentration bounds on this
quantity in terms of (an appropriately weighted version of) the ¢, 2 norm, which we now define. The 1(c0, 2)-norm of a
matrix Z € R™*"™ is defined as

1Z1],,(00,2) = max max IHTZZzb,maX /VJ

which is the maximum of the weighted column and row norms of Z. We also need the ;(c0)-norm of Z, which is a
weighted version of the matrix /., norm. This is given as

n n
|| ||y.(oo) H}%X‘ ]l \/ ,UJZ‘T'N’ vir

which is the weighted entry-wise magnitude of Z. We now state three new lemmas concerning the concentration properties
of these norms. The first lemma is crucial to our proof; it bounds the spectral norm of (Rq — I) Z in terms of the u(oc0, 2)
and p(co) norms of Z. This obviates intermediate lemmas required previous approaches (Candés & Tao, 2010; Gross,
2011; Recht, 2009; Keshavan et al., 2010) which use the ¢, norm of Z.

Lemma 7.3. Suppose Z is a fixed n X n matrix. For some universal constant ¢ > 1, we have w.h.p.

Zy; ¥ 22
|(Ro—1I)Z|| <c|max|—|logn+ |max maxz

b ij

logn

Ifpi; > min{cOW logn, 1},V(4,7), then we further have ||(Rq — I) Z|| < = (||Z||”(OO 121l (o0, 2)) w.h.p.

The next two lemmas further control the (0o, 2) and p(0co) norms of a matrix after random projections.
Lemma 7.4. Suppose Z is a fixed n x n matrix. If p;; > min{cow
then w.h.p.

logn, 1} for all i, j and sufficiently large co,

1
I(PrRe = Pr) 2l ooy = 5 (120huo0) * 120

(pitvy)r
n

Lemma 7.5. Suppose Z is a fixed n x n matrix. If p;; > min{cg logn, 1} for all i, j and cqy sufficiently large,

then w.h.p.

|(PrRa — Pr) Z|| |z

eSS ESE

We prove Lemmas 7.3-7.5 in Section 7.2. Equipped with the three lemmas above, we are now ready to validate that ¥’
satisfies Condition 2 in Proposition 7.1.

Validating Condition 2(a): Set A, = UV " — Pp(W,,) fork = 1,..., ko. By definition of W}, we have
Ay = (Pr — PrRo, Pr) Ag—1. (12)

Note that €, is independent of Ay_q and ¢;; > p;j/ko > ¢{(pi + vj)rlog(n)/n under the condition in Theorem 3.2.
Applying Lemma 7.2 with 2 replaced by €2, , we obtain that w.h.p.

1
Akl < |Pr — PrRo, Pr| |Ak-1]lp < 3 lAk—1llp-
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Applying the above inequality recursively with k = kg ko — 1,...,1 gives

1
| Pr(Y UVTHF = [ Ak llp < (2) HUVTHF 5 Vs 4n5

Validating Condition 2(b): By definition, Y can be rewritten as Y = Z:":l Rq, PrAj_1. It follows that

k}o kO
[Pre(V)ll = (| Pre Y (Ra, Pr— Pr) Ag—a|| < Y [I(Ray, —I) Ap 4]
k=1 k=1

We apply Lemma 7.3 with 2 replaced by {2 to each summand in the last RHS to obtain w.h.p.

ko
c
1P (V)] < —= ZnAk o) T 7z 2o 188 =1luoo.2)
k:l

13)

We bound each summand in the last RHS. Applying (k — 1) times (12) and Lemma 7.5 (with Q replaced by €2;), we have

w.h.p.

1 k—1
18k l00) = |(Pr = PrRa, ,Pr) Ausl|, ) < (2) 1OV

for each k. Similarly, repeatedly applying (12), Lemma 7.4 and the inequality we just proved above, we obtain w.h.p.

Akl

n(00,2)
:H(PT_PTRQk 1PT) Ak_QH,u(oc,?)
1
5 ||Ak 2ll(o0y + 5 1Ak—2ll 1

1 k—1 T 1
< <2> 1V iy + 3 1882 lgoc,29

1 k—1 1 k—1
T
<(3) 10V o+ (3) 10V I

It follows that w.h.p.
c ko 1 k—1 . c ko 1k—1 .
P < = S04 (3) 10V 752 (5) 10V e
2c
HU THM(OO) CO HUVTHM(OO,Q)

Note that for all (i, j), we have ‘(UVT)Z,],‘ = |ef UV Tej| <

’%LT. Hence HUVTHM(OO) < 1and ||UVTHH(OO 9) = 1. We conclude that
6c¢ 2c 1
1Pl s Z=+ <5

provided that the constant ¢ in Theorem 3.2 is sufficiently large. This completes the proof of Theorem 3.2.

7.1. Proof of Proposition 7.1

(14)
15)

(16)

a7

(18)

19)

(20)

— VT and [0V e, =

Proof. Consider any feasible solution X to (1) with Po(X) = Po(M). Let G be an n x n matrix which satisfies
|PrLG| = 1, and (Pr. G, Pro (X — M)) = ||Pro(X — M)||,. Such G always exists by duality between the nuclear

norm and spectral norm. Because UV " + Pp. G is a sub-gradient of the function f(Z) = || Z|, at Z = M, we have

XN, = IM]l, > (UVT+PpG,X - M).

2n
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But (Y, X — M) = (Pa(Y), Po(X — M)) = 0since Po(Y) =Y. It follows that
X, = [|M]], >(UV" + Pr.G-Y,X — M)
= |Pro(X = M), +(UVT = PrY,X — M) — (Pp.Y,X — M)
[Pro(X = M)||, = |[UVT = PrY || L |[Pr(X = M) — | Pro Y| || Pre (X — M),

Y

v

1
3 I1Pr+(X = M| | Pr(X = M),

*_m|

where in the last inequality we use conditions 1 and 2 in the proposition. Using Lemma 7.6 below, we obtain
1 1 1
X[ = 1ML, = 5 1P (X = M), = 5 V20 [|Pro (X = M), > o [[Pro(X = M),
The RHS is strictly positive for all X with Po(X —M) = 0and X # M. Otherwise we must have Pp(X —M) =X -M

and PrPqoPr(X — M) = 0, contradicting the assumption || PrRqPr — PTHOp < 2 This proves that M is the unique
optimum. O

Lemma 7.6. Ifp;; > —i5 forall (i,j) and | PrRoPr — Prll,, < 1, then we have

1PrZ|p < V2n® | Pro(2)||, ,\VZ € {Z: Pa(Z') = 0}. (22)
Proof. Define the operator Réz/ 2 RX" 1y RMXN by

RSIQ/Q(Z) = Z #5@7 <eie;r, Z> eie;.

ij

i
Note that Rgll/ % s self-adjoint and satisfies Rg/ 2R512/ 2= Rq. Hence we have
HR1/2 (Z)HF = /(PrRoPrZ, Pr7) (23)
=\/(PrRoPr — Pr) Z,Pr(2)) + (Pr(Z), Pr(Z)) (24)
> IPr(D)|I% - |PrRaPr — Prl| | Pr(2)]% @5)
> 2 IPr(Z)r 26)

where the last inequality follows from the assumption || Pr Ro Pr — PTHop < % On the other hand, Po(Z) = 0 implies
R;Z/Q(Z) = 0 and thus

|Ril?Pe(2)|| = | Ref*Pre(2)| < (ma.x \/217> 1Pro(2)llp < n® |1 Pra(2)] -

2,] 1]
Combining the last two display equations gives

1Pr(2) || < V20 | Pre(Z)|p < V2n® || Pra(Z)]], -

7.2. Proof of Technical Lemmas

We prove the four technical lemmas that are used in the proof of our main theorem. The proofs use the matrix Bernstein
inequality given as Theorem 10.1 in Section 10. We also make frequent use of the following facts: for all ¢ and j, we have
max{%, %T} <1land
(i +vj)r
n

> || Pr(eie; (27)

Dl

We also use the shorthand a A b := min{a, b}.
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7.2.1. PROOF OF LEMMA 7.2

For any matrix Z, we can write
1
(PTRQPT — PT)(Z) = E (”(51‘]‘ — 1) <eiejT,PT(Z) PT 6Z E SZJ
.. 1]
0,3

Note that E[S;;] = 0 and S;;’s are independent of each other. For all Z and (i, j), we have S;; = 0 if p;; = 1. On the
other hand, when p;; > ¢ w, then it follows from (27) that

1 (M1+V) 1
S; <7 Pr(e; 7l < Wi T VT Ly < A
IS5 < o Pl 121 < o { LU Ay < bz,

Putting together, we have that ||S;;|| < ﬁ under the condition of the lemma. On the other hand, we have

ZE[S%(Z)] = ZE[(})” ><eiejT,PT(Z)>< , Pr(ee])) Pr(ee])

F F

L —pi
< <H11e;X > || Pr(ese; HF> Z(ez e, Pr(Z)) Pr(ee] )
Zj P
1 —pij (s +v5)r
< o { P L) }|PT<Z>|F,
7,7 pij n
This implies HZ E 82 ‘ < & légn under the condition of the lemma. Applying the Matrix Bernstein inequality

(Theorem 10.1), we obtain ||PrRoPr — Pr|| = HZ . Sij

< % w.h.p. for sufficiently large c;.

7.2.2. PROOF OF LEMMA 7.3

We can write (R — I) Z as the sum of independent matrices:

(Ro—1)Z = Z(% )Z”el ZS”

Note that E[S;;] = 0. For all (4, j), we have S;; = 0if p;; = 1, and

1
S]] < —|Zij -
<z

Moreover,

2
E ZS;ESij ZZQele eje; (;%-—1) —maxz —Pij 5

0 i =1 P

is bounded by max; >_" | (1 — pi;) Z7;/pi; in a similar way. The first part of the lemma

The quantity HIEJ {Z” SijSi—;:|
> 1A w >

then follows from the matrix Bernstein inequality (Theorem 10.1 in the Section 10). If p;; >

1A QCoﬁlogn we have for all ¢ and j: | S;j]logn < (1—1I(p;; = 1)) i % 1Z1],4 (00
Dy 1101-1;” Zlogn < HZH#(OO’Q) and 37, 1pp” Z%logn < ||Z|| . The second part of the lemma fol-

lows again from applying the matrix Bernstein inequality.
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7.2.3. PROOF OF LEMMA 7.4
Let X = (PrRq — Pr) Z. By definition we have | X[, 2) = maxa, {, [ 1 Xl sy /o ||X.b||2}, where X,,. and

X p, are the a-th row and b-th column of of X, respectively. We bound each term in the maximum. Observe that %X b

can be written as the sum of independent column vectors:

n _ 1 o N T | no . N
EX.[, = Z (pijéw 1) Z” (PT((:‘ZGJ- )eb) By = ;SU’

]

where E [S;;] = 0. To control |[.S;]|,, and HE {Z” SZES”}

have
|Prieie]Jes]l, = [TUT e+ (1= UUT)es [VT e[ < /25 + ,/%, (28)

where we use the triangle inequality and the definition of p; and v, . Similarly, if j # b, we have

| Pr(eie] Jes||, = (I =UU N eie] VV |, < |ef VV e (29)

eb” If j = b, we

Now note that [|.Sj;||, < (1 —L(pi; = 1)) 5& [Zij] /3% || Pr(eie] es ||, - Using the bounds (28) and (29), we obtain that
i
for j =10,

Wit VT 2
S 1—-I(p;; =1 Z; < | < —— || Z ,
15551l < ( (pij = )) | bl ot (\/ n + ) \/Wl ogn Zip Colognll Hu(oo)

where we use py, > 1 A w and py, > 1 A cp/#5 %2 log n in the second inequality. For j # b, we have

1 n vir  [upr 2
Siill, < (1 =1(pi; = 1)) — | Zij| | — -] ] — < Z ,
15351l < (1 = 1(py; ))pijl o VTV _Colognl\ 400

where we use p;; > 1 A oy /45 % Jog n. We thus obtain || S|, < - logn 1 Z]],,(o0) for all (i, 7).

On the other hand, note that
n
’ [Ez] ij l] Z’LJE . J HPT 81 ebHQ ﬂ

1 - 1= Dij n
= (Z] bz+2375b z) - Z] HPT 6z eb” E
Applying (28), we can bound the first sum by
— P, ( pir M) LIS 2. 2 o
> < Z e Rva lognw 120]3 < oo 12 ey

j=b,i i

)

where we use p;p > 1 A W(“‘ijl’” log n in the second inequality. The second sum can be bounded using (29):

o< Z ;””Zj |eTVVTeb|

J#bi j#b
_ v T T pm 2
*WZk Vve]Z —L 72
(“) n T T 1 2 N
B W"Z'e v eb' <Colognz;zij”ﬁ“>
1 2 n 2
< (i 120 e VYT

® 1
<

—|Z
o logn || ||H(OO72)7
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where we use p;; > 1 A “471%% iy (4) and Eﬁéb ’e-TVVTeb’2 HVVTebHE < L in (b). Combining the bounds
for the two sums, we obtainHE [Z S5 Si ||| < - logn 11Z|? . We can bound HE [Z - Sij Slj} H in a similar way.
Applying the Matrix Bernstein inequahty (Theorem 10.1) w.h.p.

H(o0,2)

n
— X
r

1
H Up 2 = 2 (HZ”“(OO) + HZHMO@Q))

= HZi,jSij
2

for ¢y sufficiently large. Similarly we can bound H, /ﬁXa.

and b to obtain the desired results.

by the same quantity. We take a union bound over all a
2

7.3. Proof of Lemma 7.5
Fix a matrix index (a, b) and let wq, = (/%2 “2°. We can write

[(PrRq — Pr)Z \/ LT Vbr (Z)w‘sw ) Zij (e < PT(eaeb = Z Sij

which is the sum of independent zero-mean variables. We first compute the following bound:

|<eiejT,PT(ea6bT)>|
= |6ZTUUT€a€;r6j +ef (I — UUT)eaeJVVTeﬂ
leaUUTeq+e) (I —UUT )eqe] VV Tey| < Hal 4 21— g j =b,

n

) ed (I =UU)eae] VV Tej| < lef VV ey, i=a,j#Db, 30)
le] UU T eqey (I = VV T )ey| < |e] UU Teq], i#a,j=0,
|ezTUUTeaeJVVTej‘ < ‘e;UUTea| {e;rVVTej} , i1#a,j#b,

where we use the fact that the matrices I — UU " and I — V'V T have spectral norm at most 1. We proceed to bound |s; ;| .

Note that
1

Wab

1
[sij] < (1=1T(pi; = 1)) — | Zij||(eie] , Pr(eaey )|
P
ij

We distinguish four cases. When 7 = a and j = b, we use (30) and pyp, > 1 A %ﬁlog%") to obtain |s;;| <
1Zij| / (wijeologn) < || Z|[ () / (cologn) . When i = a and j # b, we apply (30) to get

W v;r non | . 1 ||Z||p,(oo)
n n LaT VpT aj uar er Co logn ~ cologn’

vrlogn
n ’1

|sij| < (1= 1(pi; = 1))

where (a) follows from Daj = min {co } . In a similar fashion, we can show that the same bound holds when
i# aand j =b. When i # a and j # b, we use (30) to get

Z’L 1 a b 1 Z
|S”‘<(1—H(p”—].) | J| \/MT/J \/l/b’f'l/g S j| n n < || ||u(oo),
e Vbr WiT v;1 o logn cologn

where (b) follows from p;; > 1 A ¢oy/“5%Clogn and max{\/“;f”/%} < 1. We conclude that |s;;]
HZHH(OO) / (co logn) for all (4, 7).
On the other hand, note that

i%:s?j ZEK% ﬂ ZL’%( Preael)) = Y+ 3+

i=a,j=b i=a,j#b i#a,j=b Z#mﬁfb
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co(tatvp)rlogn co(tatvp)’r® logn

We bound each of the four sums. By (30) and p,;, > , we have

1 _pabZQ (Nar + @)2 2 HZHM(OO) .

<
~ papw?, b\ pn n cologn

i=a,j=b

By (30) and pojw?2, > w2, A (cow?;“2" log n), we have

pa] 22 VVT ) || ||M(OO) VvT
i aXJ:;ﬁb ; Dajw €]| ~ c¢ologn ybr Z| €l

which implies },_, ., < ||Z||Z(OO) /(cologn). Similarly we can bound >, , ;_, by the same quantity. Finally, by (30)
and p;; > 1 A (co®5 % logn), we have

1 Al
PR Q-p)2y. |e] UU Tea| ey VV e L”'ﬂﬂ D [T UUTel 3 | vV Tey
g Wab sy P Colo8T Wap 20 i7b

which implies 3, ., 4, < \|Z||i(oo) /(co log n). Combining pieces, we obtain

‘E{ ij Z]”<5||Z|| () /(cologn).

Applying the Bernstein inequality (Theorem 10.1), we conclude that

Zsm < 312,

‘[(PTRQPT - Pr)Z
HaT Vbr

w.h.p. for ¢( sufficiently large. The desired result follows from a union bound over all (a, b).

8. Proof of Remark 3.4

Recall the setting: for each row of M, we pick it and observe all its entries with probability p. We need a simple lemma.
Let J C [n] be the set of the indices of the row picked, and P;(Z) be the matrix that is obtained from Z by zeroing out the
rows outside .J. Recall that UXV T is the SVD of M.

Lemma 8.1. [f max; HUTej H = max; /55 </ and p > COWfor some universal constant cg, then with high
probability,

||UTPJ(U) - Ir><1r-” <

)

N —

where I, is the identity matrix in R"*".

Proof. Letn; =1(i € J), where I(-) is the indicator function. Note that

n

1
UTPy(U) = Ly =UTP;(U) ~U U =Sy = <p”" — 1) Ulee] U

i=1
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< BT “and

H2 pn ?
EZ%%]
=1

E| 5(1')55)] |
=1

Note that E [S(;)] =0

Sl < 5 |UTes

_1- ZUTeie:UUTeie?U
LA | et
— 1- Ut ieie—-r ||UT61-||2 U
p i=1 ' 2
<- Zez T vmel
Tp

Ko™

- %mZaXHUTein <&

It follows from the matrix Bernstein (Theorem 10.1) that

HUTPJ(U) — ITXTH < cmax{wlogn, Wlogn} <
pn V' pn

since cg in the statement of the lemma is sufficiently large. O

N =

Note that H UTPy(U) = I, H < % implies that U " P;(U) is invertible, which further implies P;(U) € R™*" has rank-r.
The rows picked are P;(M) = P J(U )XV T, which thus have full rank-r and their row space must be the same as the row
space of M. We can then compute the local coherences {v;} from these rows, and sampled a set of entries of M according
to the distribution )

irl

Pij = min {Co —(MO Tvi)rlog n}

n
Applying Theorem 3.2, we are guaranteed to recover M exactly w.h.p. from these entries. Note that expectation of the
total number of entries we have observed is

pn + Zpij =0 (,uorlogn + (porn + 1) log? n) =0 (uorn log? n) ,
j
and by Hoeffding’s inequality, the actual number of observations is at most two times the expectation w.h.p. for ¢y suffi-
ciently large.

9. Proof of Theorem 5.1
Suppose the rank-r SVD of M is USV T;s0 ULV T = RMC = RUXV T C. By definition, we have

,uz 2
— =IPalelly
where P (-) denotes the projection onto the column space of U, which is the same as the column space of RU. This
projection has the explicit form

Py(ei) = RU (UTR*U) " U™ Re;.

It follows that

i1 _ 2
P ||ru (UTR20) T U Re|

= R2]U(UTRU) ' UTes
< R [0 (RU) U e
< R (o (RU)) (3D)
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where o,.(+) denotes the 7-th singular value and the last inequality follows from the standard incoherence assumption
max; j{ti, v} < po. We now bound o, (RU). Since RU has rank r, we have

n

02 (RU) = min ||RUz| = min R? |€ZTU.’L“2.

=1 =1
] leli=1 &=

2 , .
If we let z; := |e/ Ux|” for each i € [n], then z; satisfies

n

2 2
Yz = Uzl =lzl; =1
i=1

and by the standard incoherence assumption,

a < [ Terl; llells < B

Therefore, the value of the minimization above is lower-bounded by

min >Rz
i=1
(32)

From the theory of linear programming, we know the minimum is achieved at an extreme point z* of the feasible set. The
extreme point z* satisfies z;° > 0, Vi and n linear equalities

zi =0, foriely

r .
z; = H%, fori € I,

for some index sets [; and I such that Iy N Iy = ¢,|I1| 4 |I2| = n — 1. Itis easy to see that we must have |I5| = [ﬁJ

Since R; < Ry < ... < R,,, the minimizer z* has the form

x_W,i_l,...,VJ,
n LoT

and the value of the minimization (32) is at least

[n/(por)]
Z R2HoT
=1 ' n

This proves that o2 (RU) > Lo~ S kn/tkor)] B2 Combining with (31), we obtain that

_ 2 — 2
pr R 7T C;

J S SGen ] s
n ZZL,”:/l(MOT)J Rlz n Z]L/:/Yto )] ng/

)

the proof for 7; is similar. Applying Theorem 3.2 to the equivalent problem (7) with the above bounds on fi; and ; proves
the theorem.
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10. Matrix Bernstein Inequality

Theorem 10.1 ((Tropp, 2012)). Let X1, ..., Xn € R™"*"2 pe independent zero mean random matrices. Suppose

N
ax{ ZXkX,;r } o? (33)
k=1

and || Xy|| < B almost surely for all k. Then for any ¢ > 0, we have
< 24/co?log(ny + n2) + cBlog(ny + ng). (34)

N

S X

k=1

with probability at least 1 — (nq + ny)~ (=1,



