Coherent Matrix Completion

7. Proof of Theorem3.2

We prove Theoren3.2 in this section. The high level roadmap of the proof is a standard one: by convex analysis, to
show thatM is the unique optimal solution td), it sufbces to construct@ual certibcatey obeying certain optimality
conditions. One of ,the condltlons requires the spectral noyrh to be small. Previous work bound¥'! by the the

I, norm!Y", = ij u" of a certain matrixy *, which gives rise to the standard and joint mcoherence conditions
involving umform bounds byiy andps, . Here, we derive a new bound using the weighted, norm of Y, which is

the maximum of the weighted row and column norm&of These bounds lead to a tighter bound ¥fl and hence less

restrictive conditions for matrix completion.

We now turn to the details. To simplify the notion, we prove the results for square matnices (n, = n). The

results for non-square matrices are proved in exactly the same fashion. A few additional notations are needed. We use
¢ and its derivativesd, ¢y, etc) for universal positive constants, which may differ from place to place wigty high
probability (w.h.p) we mean with probability at leadt" cin” 2, The inner product between two matrices is given by
#,Z$= tracdY?® Z). Recall thaty andV are the left and right singular vectors of the underlying mattix We need

several standard projection operators for matrices. The proje@ipasmdP: are given by

Pr(z):=uUu®z+2zvv® " uudvzz®

andP;: (Z) = Z" Pt (2). P, (2) is the matrix with (P, (Z))ij = Z; if (i,j) %! and zero otherwise, and
Pic(Z) .= Z" Py (Z). As usual!z!, is the!, norm of the vectorz, and!Z! . and!Z! are the Frobenius norm
and spectral norm of the matrix, respectively. For a linear operatér on matrices, its operator norm is debPned as
IAl o = SUPx g n 1A (X)) /X! . Foreachl & i,j & n, we debne the random variabilg = I ((i,j) %!) ,
wherel (3 is the indicator function. The matrix opera@r : R"&" '( R"&" is debned as

# o1, 8 %

R (Z)= —"j e€,Z a¢’. (9)
ij U

Optimality Condition.  Following our proof roadmap, we now state a sufpcient conditioifdp be the unique optimal
solution to the optimization probleni), This is the content of Propositiohl below (proved in Sectioid.1).

Proposition 7.1. Suppose; ) n% The matrixM is the unique optimal solution td) if the following conditions hold.
1LI!PfR P " Prl o & 3.
2. There exists a dual certibcate %R"&" which satisPeB, (Y) = Y and

(@) §5PT(Y)" Uv$§ &
(b) 'Pri (Y)' & 1.

4n5’

Validating the Optimality Condition. We begin by proving that Condition 1 in Propositi@ri is satisPed under the
conditions of Theoren3.2 This is done in the following lemma (proved in Secti®!®). The lemma shows th&, is
close to the identity operator dn

tr

Lemma7.2. If pj ) mln{co(“' logn, 1} for all (i,j ) and a sufbciently largey, then w.h.p.

1

IPrR P Prlo, & 5. (10)

Constructing the Dual Certibcate. It remains to construct a matri (the dual certibcate) that satisbes the condition 2
in Proposition7.1 We do this using the golbPng schentr¢ss 2011, Cancks et al. 2011). Setky = 20log n. Suppose
the set! of observed entries is generated frorns t‘;l I «, where for eactk = 1,...,ko and matrix indexi, ] ),
PI(i,j) %! «]=0 =1" (1" p Yo independent of all others. Clearly this is equivalent to the original Bernoulli

sampling model. Le¥V, :=0 andfork =1, ..., ko,

Wy := Wiz 1+ R, Pr(UV® " Pr W), (11)
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where the operator R, , is given by
S I
R (2)= —I((i,j)! '«) eg ., Z eg .
ij Gij
The dual certificate is given Y := W), . Clearly P, (Y) = Y by construction. The proof of Theorem 3.2 is completed if
we show that under the condition in theorem, Y satisfies Conditions 2(a) and 2(b) in Proposition 7.1 w.h.p.

Concentration Properties The key step in our proof is to show that Y satisfies Condition 2(b) in Proposition 7.1, i.e.,
we need to bound "Pt: (Y)" . Here our proof departs from existing ones, as we establish concentration bounds on this
quantity in terms of (an appropriately weighted version of) the !+, norm, which we now define. The U(# , 2)-norm of a
matrix Z ! R" " is defined as

$ . .
% n n ' )
"Z" . ,=max . max — ZZ max — @ ZZ2
w2 & i Wr o, b ro A

which is the maximum of the weighted column and row norms of Z. We also need the p(# )-norm of Z, which is a
weighted version of the matrix !+ norm. This is given as
+ +

ey Emaxizil o

which is the weighted entry-wise magnitude of Z. We now state three new lemmas concerning the concentration properties
of these norms. The first lemma is crucial to our proof; it bounds the spectral norm of (R, $ 1) Z in terms of the p(# , 2)
and P(# ) norms of Z. This obviates intermediate lemmas required previous approaches (Candes & Tao, 2010; Gross,
2011; Recht, 2009; Keshavan et al., 2010) which use the !+ norm of Z.

Lemma 7.3. Supposé& is a bxech % n matrix. For some universal constant 1, we have w.h.p.

: % 3
2 Z % In Zz In 2) é
"R $1)Z"& ¢’ max Zii. logn + 2 max . max , max Zi logn5 .
( ) Toy ! ¢ & P Pt J
6 7
Ifpy * min{co™ 20 logn, 1}, ((i,j ). then we further have(R, $ 1)Z" & $& "Z" ., + "Z",» , Whp.

The next two lemmas further control the J(# , 2) and p(# ) norms of a matrix after random projections.

Lemma 7.4. Suppos€ is a bxedch % n matrix. If p; mln{co(“' Sl logn, 1} for all i,j and sufbciently largey,
then w.h.p. 6 7
1

"(PrRy $ Pr)Z" 5 & 5 "2y * "2 o

Lemma 7.5. Suppos€ is a bxech % n matrix. If p; mm{co(“' aol logn, 1} for all i,j andcy sufbciently large,

then w.h.p.

(PRI $ Pr)Z", ) & 5"2"

We prove Lemmas 7.3-7.5 in Section 7.2. Equipped with the three lemmas above, we are now ready to validate that Y
satisfies Condition 2 in Proposition 7.1.

Validating Condition 2(a): Set" = UV' $ P71 (W) fork =1,...,Kg. By definition of Wy, we have
"k=(Pr$ PrRi Pr)" ko1 (12)

Note that ! ¢ is independent of " ko1 and G ' pj /Ko ' cS(i + "j)rlog(n)/n under the condition in Theorem 3.2.
Applying Lemma 7.2 with ! replaced by ! ¢ , we obtain that w.h.p.

1
" k"|: &" I:)T $ PTR! kPT"" ! k%l"|: & 5"" k%1"|: .
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Applying the above inequality recursively wikh= ko ko ! 1,...,1 gives
T
I I 1" ko I 1 $_
1 I I I Ll 5
Pr(Y)P UV o= e # S -UV-F#ﬁar#

1
2 4ns’

Validating Condition 2(b): By dePnition,Y can be rewritten a¥ = E"zl Ry, Pr! k1. It follows that

| n
"Pro (Y)" = 1Py (Rr Pr ! Pr)! g 1 # NG DI
) k=1 k=1
We apply Lemm&.3with " replaced by  to each summand in the last RHS to obtain w.h.p.
c % c %
"Pr (V)" # % ey * $a e 2 (13)
k=1 k=1
We bound each summand in the last RHS. Applyikg 1) times (L2) and LemmaZ.5(with " replaced by ), we have
w.h.p.
& PR Gk VY
T d"ywy = Pr! PrR P e 2 n# ) # > UV )

for eachk. Similarly, repeatedly applyindl@), Lemma7.4 and the inequality we just proved above, we obtain w.h.p.

|k L 2 C (14)
=!Pr! PrR P kel iy (15)
1, . 1, "
T R BT (16)
en 1
Lt | " "
Bz WV et e g )
! 1#k Ly ! ) 1#k 1
1 " "
S VIVAL SR UV" 4 2 - (18)
It follows that w.h.p.
C0 " #kl{ 1{ C%"].#kll Il
Pro(Y)# S (k+D) S tuv! !t L+ s > tuvt!t (19)
G k=1 G k=1
6c | O 2c | N
#ec v rstovt (20)
& l E g ) ’ Tir I | ! : ) l | }
Note that for aII(l j) we have UV i (= OAVA # BT A e UV ' =" Fland UV'g-, =
|
hr Hence uVv! | wy 1and uv!! L4 2 = 1. We conclude that

6c
"Pro(Y)"# % S‘ﬁ # =
provided that the constang in Theorem3.2is sufbciently large. This completes the proof of TheoBei

7.1. Proof of Proposition7.1

Proof. Consider any feasible solutiod to (1) with P, (X) = P, (M). Let G be ann % n matrix which satisbes
"Pr: G" =1, and&+: G,Pr (X! M) = "Pr: (X! M)"4. SuchG always exists by duality between the nuclear
norm and spectral norm. Becaud®/' + P;: G is a sub-gradient of the functidn(Z) = "Z"gatZ = M, we have

+ 1
"X"g!" M"g ( UV +Pp G X! M. (1)
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But (Y, X — M) = (Pa(Y), Po(X — M)) = 0since Po(Y) =Y. It follows that
X, = [|M]], >(UV" + Pr.G-Y,X — M)
= |Pro(X = M), +(UVT = PrY,X — M) — (Pp.Y,X — M)
[Pro(X = M)||, = |[UVT = PrY || L |[Pr(X = M) — | Pro Y| || Pre (X — M),

Y

v

1
3 I1Pr+(X = M| | Pr(X = M),

*_m|

where in the last inequality we use conditions 1 and 2 in the proposition. Using Lemma 7.6 below, we obtain
1 1 1
X[ = 1ML, = 5 1P (X = M), = 5 V20 [|Pro (X = M), > o [[Pro(X = M),
The RHS is strictly positive for all X with Po(X —M) = 0and X # M. Otherwise we must have Pp(X —M) =X -M

and PrPqoPr(X — M) = 0, contradicting the assumption || PrRqPr — PTHOp < 2 This proves that M is the unique
optimum. O

Lemma 7.6. Ifp;; > —i5 forall (i,j) and | PrRoPr — Prll,, < 1, then we have

1PrZ|p < V2n® | Pro(2)||, ,\VZ € {Z: Pa(Z') = 0}. (22)
Proof. Define the operator Réz/ 2 RX" 1y RMXN by

RSIQ/Q(Z) = Z #5@7 <eie;r, Z> eie;.

ij

i
Note that Rgll/ % s self-adjoint and satisfies Rg/ 2R512/ 2= Rq. Hence we have
HR1/2 (Z)HF = /(PrRoPrZ, Pr7) (23)
=\/(PrRoPr — Pr) Z,Pr(2)) + (Pr(Z), Pr(Z)) (24)
> IPr(D)|I% - |PrRaPr — Prl| | Pr(2)]% @5)
> 2 IPr(Z)r 26)

where the last inequality follows from the assumption || Pr Ro Pr — PTHop < % On the other hand, Po(Z) = 0 implies
R;Z/Q(Z) = 0 and thus

|Ril?Pe(2)|| = | Ref*Pre(2)| < (ma.x \/217> 1Pro(2)llp < n® |1 Pra(2)] -

2,] 1]
Combining the last two display equations gives

1Pr(2) || < V20 | Pre(Z)|p < V2n® || Pra(Z)]], -

7.2. Proof of Technical Lemmas

We prove the four technical lemmas that are used in the proof of our main theorem. The proofs use the matrix Bernstein
inequality given as Theorem 10.1 in Section 10. We also make frequent use of the following facts: for all ¢ and j, we have
max{%, V'TT} <1land
(i +vj)r
n

> || Pr(eie; (27)

Dl

We also use the shorthand a A b := min{a, b}.
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7.2.1. ROOF OFLEMMA 7.2

For any matrixZ, we can write

(PrR Pr! Pr)(2Z)=  —6& ! 1 eel

Note thatE [S; | = 0 andS; Os are independent of each other. FaoZ ahd (i, j), we haveS; = 0if pj = 1. Onthe
other hand, whep; " Cow’ then it follows from @7) that

(
1 1 (i + v 1

#S) (Z)#. $ 1 &, (eie} )§§§ #Z#- $ max ERURL HIZH S —— HIH. .
Dij i Dij n cologn

Putting together, we have thia; # $ under the condition of the lemma. On the other hand, we have

Co Iog n
+n ]
) - Fag , %$ %
E'Sj (Z) = E féu 'l eie ,Pr(2) , Pr (ejef e ) Pr (e, )
i . i pjj 3
" 1! pi g gz# 1 $ %
$ m.ax'pi” Pr (eiej )5 eiej ,Pr(Z) Pr(eie)
ij ij ij
$ max Dij (/J’I + Yj )T #PT (Z)#F ,
bl Dij n
. . %‘ ) 2"% 1 . . . . . .
This implies ij E°Sj $ Solog T under the condition of the lemma. Applying the Matrix Bernstein inequality

(Theoreml10.1), we obtain#Pr R, Pr ! Pr#= $ % w.h.p. for sufbciently largey.

i
7.2.2. ROOF OFLEMMA 7.3

We can write(R, ! I) Z as the sum of independent matrices:
! n 1 # !
(R! ! I) Z = —5"- 1 Zij €j e]-! = Sij .
i Dij ij

Note thatE[S;; | = 0. For all(z, j), we haveS; = 0if p; =1, and

#Si # $ |ZIl .
Moreover,
3 0 " #, .
- - 1 UL
/ S-!- Sij 1§ = Zijz € eJ! €] ei! E féi,- 1 = max - Zij .
ij i Dij 'y P
The quantity i Si S sgs bounded bynax; ) i”:l (1! pj )Zij2 /pi in asimilar way. The Prst part of the lemma

then follpws from the matrix Bernstein inequality (Theord@.1in the Sectionl0). If p; " 1 9 SMi*zl)rign

1%2co EC &' logn, we have for alli and j: #Sj #logn $ (1! I(p; =1)) o |Zj llogn $ 2 #Z#,.
- 1# pi = 1# pi

1 g logn $ G #Z#L . g and L) FPLZP logn $ G #ZH . o
lows again from applying the matrix Bernstein inequality.

. The second part of the lemma fol-
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7.2.3. ROOF OFLEMMA 7.4
LetX =(PrR, ! Pt)Z. By debnition we haveX "“(! 2) = MaXap

K " #

"Xas'y, % "Xa", wherng aaand

p Harl
X g are thea-th row andb-th column of ofX , respectively. We bound each term in the maximum. Observe ”?%*X o
can be written as the sum of independent column vectors:

n % & . | ( . )$T %
X = —"j 11 Zy Pr(egle —= S,
r ij pij !br i
L+ - : :
whereE[S; ] = 0. To control"S; ", and*E ' ; S; S *, we Prst need a bound foiPr (i€ )eb*z. Ifj = b, we
have
ST A A TR T
Pr(eg )& ,=*UU e+(I1 UU Je V& * # ==+ -, (28)
where we use the triangleinequality and the debnitiqmi and!y, . Similarly, ifj $ b, we have
“Pr(e¢ )eb , = (|| Uu' Jeg VV' eb ,# g VV e (29)
*
Now note that'S; ", # (1! I(p; =1)) p” [Zij | *Pr (ee )eo . Using the bound<28) and @9), we obtain that
forj = b,
$___ &$ — '
l n mir o tyr 2
"Sp L # (L) I(py =1 — e o Zp|# ———Z"
/
where we us@p % 1& M andpp %1&c, ET2Togn in the second inequality. F¢r$ b, we have
" " _ 1 , .J br 2 W
Sj ", # (1! |(pij—1))§|zij| ma T n 7 clogn u oy

where we us@j % 1& co HTJT

logn. We thus obtairfi S; ", # "Z" oy forall(i,j).

Co Iogn
On the other hand, note that
+ - . 0& 1, .
: , " : o 1 * " *2 .
B ySiS o= g Bt L 2 2§ "Pr(ag e, dy
2 ! 3 1 pll ) * * n
= =bi v j#bi TZ PT(ee)eb br-
Applying (28), we can bound the brst sum by
% % 11p 2r 1pr3 i 2 n 2
# T b2 a5 HIT L PB4 T Ny w2y w2
o P n n Ior  Golognter “® 27 cilogn wt 2)

i=bi i

where we us@p, % 1& ‘30(“,]7“”” logn in the second inequality. The second sum can be bounded &8nhg (

% #% P2y VVenzl
i#bi  jubi P ' or
% % .
n o w oo 1!
= VvV’ i z§
!brj#b 4 Pij
(a) n % - N .2 1 % n S
g evViet cran Ay
bl ' Cologn . i
1 2 n % ) " 2
——_nz" = EVV e
cologn K2 pr (b ! eb

(b) 1 W2

cologn u(t 2)
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co!jrlogn " " # #2 L
where we usey; | 1" gt S in (a) ag}g th gVVie SR AVAVA &', # % in (b). Cogpé)mlng the bounds
for the two sums, we obtaliE S Sij ## 5 ,og m $Z$2(# 2) - Wecan bouné ' ij Si S #inasimilar way.
Applying the Matrix Bernstein mequahty (Theoreh®.1) w.h.p.

#& # # # '
# ! 1 (
£, 5 _ oy
# br X # - # S'J #2 # 2 $Z$u(# ) + $Z$U~(# ’2)
) #

for ¢y sufpciently large. Similarly we can boumd ” Xaa# by the same quantity. We take a union bound overall
andbto obtain the desired results.

7.3. Proof of Lemma7.5

*

Fix a matrix index(a, b) and letwa, = E=ETEC. We can write
& & , ]
(PR %Pr)Z], —— = Leiot 7, ed Pried) == s
TR T ab Wl Lo = D ij i €6 ,Pr(€& Wt = i

ij i

which is the sum of independent zero-mean variables. We brst compute the following bound:

Vo Pried) ..
="g UU eg,6 + ¢ (1 %UU )eg,VV' g
3 e UU" e+ € (I %UU" )eag, VV & # 2l + ot j=aj=b
_ & (1 %UU e, VY g, # 6 Vg, '=aj&b, (30)
& UU e, (1 %VY )en # 6 U €, i&a,j=Db
‘6 UU e, VV' g ' # e Ul e, g VV g, i&aj&b

where we use the fact that the matriece®UU" andl %V V" have spectral norm at mokt We proceed to boung; | .
Note that

" 1
[si | # (L%I(p; = 1)) |Zu | e’le Pr (eaeb) .
Wa

We distinguish four cases. Whén= a andj = b, we use 80) andpg, ! 1" Ww to obtain|s; | #
|Zij |/ (wij cologn) #$Z$, .,/ (cologn). Wheni = aandj & b, we apply 80) to get

& & &

Zai Tpr Iir n n (@ n n 1 $2$

s 1% QoI(py =) Ly Drhilg NN, g 10 g —H*)
Paj n Hal !pr Mal !jr Cologn Cologn

4 5
where(a) follows frompy ! min coHie9n 'Og " 1 .In a similar fashion, we can show that the same bound holds when

i & aandj = b. Wheni & aandj & b, we use 80) to get

&

& & _
z i Tpr ir (b) 3 1 $Z3%
mwawm-mhﬂ M&Eﬂ¢ggiL#mm411 g 2N
Pi n n n n Mal !pr Mir !ir cplogn Cologn
) 4« ) 5
where (b) follows fromp; ! 1" ¢ “—Tlogn and max T%r ’Tr # 1. We conclude thats; | #
$2%,4 )/ (cologn) forall (i,j ).
On the other hand, note that
" 6 8. _ .
" "+ " T2 z2 o + + + +
--E7 29%= E —" %l L ee Pr(es) = + + +
i i 2 i
ii " . pu Wab S S . . . .
J 1) i=aj=b i=ajEb ikaj=b ikajEb
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We bound each of the four sums. By (30) and p,;, > 1 A feltatzelriosn > q 5 %W, we have

B P @ @)2 2 121500

~ papw?, n n cologn

i=a,j=b

By (30) and p,jw?2, > w2, A (cow2 2 Jog n), we have

pa] 22 VVT ) || ||M(OO) VvT
'L;;éb %g:bpaj 6J|_ cologn beZ| 6]’

which implies >, _, ., < ||Z||Z(Oo) /(cologn). Similarly we can bound 3 by the same quantity. Finally, by (30)

and p;; > 1A (co™5 % logn), we have

i#a,j=b
2
(1- pw) T T T Te ”Z”/L(DO) T T T T
> <7 > 7]) le] UU Te,| |ef VV e |7Tlogn — Zy UU "ea] Y leg VV es],
i#a,j#£b ab i#a,j#£b v Wap i#a j#£b
which implies 3, ;. < \|Z||i(m) /(co log n). Combining pieces, we obtain

‘E{ ij Z]”<5||Z|| () /(cologn).

Applying the Bernstein inequality (Theorem 10.1), we conclude that

‘[(PTRQPT — P 7], \/Z\/Z _

w.h.p. for ¢ sufficiently large. The desired result follows from a union bound over all (a, b).

1
D siy| < 2 1211
i

8. Proof of Remark 3.4

Recall the setting: for each row of M, we pick it and observe all its entries with probability p. We need a simple lemma.
Let J C [n] be the set of the indices of the row picked, and P;(Z) be the matrix that is obtained from Z by zeroing out the
rows outside .J. Recall that USV T is the SVD of M.

Lemma 8.1. If max; HUTej H = max; /55 </ and p > COWfor some universal constant cg, then with high
probability,

||UTPJ(U) - Ir><1r-” <

)

N |

where L.y, is the identity matrix in R™*",

Proof. Letn; =1(i € J), where I(-) is the indicator function. Note that

n

1
UTPy(U) = Ly =UTP;(U) ~U U =Sy = <p”" — 1) Ulee] U

i=1
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! " # # # #
Note thatE S, =0, %5, # < L#UTe# < tor and
T
#E SiySw #= #E SiySay #
i=1 =,
1-p %‘W %
= = 2% Ulewe,UU eie] Ut
po#_ #
# ( #
# % #
1— # #
= J #UT eie;-r #UTei#z Uﬁ
p # . #
ﬁ% #z_ # #
< }ﬁ elelT #UTel#iﬁ
p#z=l #
1 # #
= “max#UTe M < B
p 7 pn

It follows from the matrix Bernstein (Theoref®.1) that
# # ) o
AUTPHU) = Lo #* < cmax 2% 1ogn, % logn <
pn pn

NI =

sincecy in the statement of the lemma is sufpciently large. O

Note thatﬁUTPJ(U) — I,.X,.# < 3 implies that T P;(U) is invertible, which further implie$>;(U) € R"*" has ranke.
The rows picked ar@; (M) = P;(U)! VT, which thus have full rank-and their row space must be the same as the row
space of\/. We can then compute the local coherenges from these rows, and sampled a set of entrie&/cdiccording
to the distribution +

(ko + v;)rlog’ n
co—.

n
Applying Theorem3.2, we are guaranteed to recovief exactly w.h.p. from these entries. Note that expectation of the
total number of entries we have observed is
% -
pn + pij =" "porlogn + (porn + rn)login =
iJ

Pij = min
w o 2 "
uornlogn |

and by HoeffdingOs inequality, the actual number of observations is at most two times the expectation whsufter
ciently large.

9. Proof of Theorem 5.1

Suppose the rank-SVD of M is ¥9PT; so¥9¥ T = RMC = RU! VT C. By debnition, we have
Bir _ 5 ooy2
o [Py (el

where P, (-) denotes the projection onto the column spacé& pfvhich is the same as the column spaceRéf. This
projection has the explicit form

Pg(e))= RU'UTRAU U Re;.
It follows that

#

. - #2
’”;Lr SRUUT R2U 1UTReﬁ2

ReJU'UTRU ‘UTe;
44
< R2[o, (RO 2 PU T e
< BB [0, (RU) 2, (31)
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where o,.(+) denotes the 7-th singular value and the last inequality follows from the standard incoherence assumption
max; j{ti, v} < po. We now bound o, (RU). Since RU has rank r, we have

!n " "
o2 (RU) = min |RUz; = min  R?"; Us™.
P FE

"o n2 . .
If we let z; := e, Uz~ for each i € [n], then z; satisfies

! n
2 2
zi = Uzly = |l=ll; =1
i=1
and by the standard incoherence assumption,
B B Ko™
5 <PU e ||zll5 < —

Therefore, the value of the minimization above is lower-bounded by

min R?z;
Z#R" 1
i=
In . (32)
S.t. zi =1, ngig&,izl,...,n.
n
i=1

From the theory of linear programming, we know the minimum is achieved at an extreme point 2* of the feasible set. The
extreme point 2* satisfies zf > 0,Vi and n linear equalities

zf =1
=1
zf =0, foriel
r
zf = &, fori € I
n
$ %
for some index sets I3 and Iy such that Iy N Iy = ¢,[I1] + |I2| = n — 1. Itis easy to see that we must have |I5| = o .
Since R; < Ry < ... < R,,, the minimizer 2% has the form
&
& ' Ho & '
n r n
P P L L
pgrn Hor
n
Z§:O7Z: — +27 » 1,
HoT
and the value of the minimization (32) is at least
% f(poT)&
' R2Ho”
(2 n *
i=1

This proves that o2 (RU) > £~ ( Yu/(kor)& B2 Combining with (31), we obtain that

fir R} ur i :
—_ 0, ) —_ 0, I
v S Oy 0 g

the proof for 7; is similar. Applying Theorem 3.2 to the equivalent problem (7) with the above bounds on fi; and ; proves
the theorem.
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10. Matrix Bernstein Inequality

Theorem 10.1((Tropp, 2012). LetX4,..., Xy ! R"! "2 be independent zero mean random matrices. Suppose

L w o w3
max 1 XeXin.noo X Xeno t12 (33)
k=1 k=1
and#X#" B almost surely for alk. Then for anyc > 0, we have
N %
n Xk " 2 cl?log(ng + nz) + cBlog(ny + ny). (34)
k=1

with probability at leastL $ (ng + np)* (¢# 1),



