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Abstract
Matrix completion concerns the recovery of a
low-rank matrix from a subset of its revealed
entries, and nuclear norm minimization has
emerged as an effective surrogate for this com-
binatorial problem. Here, we show that nu-
clear norm minimization can recover an arbi-
trary n⇥n matrix of rank r from O(nr log

2

(n))

revealed entries, provided that revealed entries
are drawn proportionally to the local row and
column coherences (closely related to leverage
scores) of the underlying matrix. Our results
are order-optimal up to logarithmic factors, and
extend existing results for nuclear norm mini-
mization which require strong incoherence con-
ditions on the types of matrices that can be re-
covered, due to assumed uniformly distributed
revealed entries. We further provide extensive
numerical evidence that a proposed two-phase
sampling algorithm can perform nearly as well
as local-coherence sampling and without requir-
ing a priori knowledge of the matrix coherence
structure. Finally, we apply our results to quan-
tify how weighted nuclear norm minimization
can improve on unweighted minimization given
an arbitrary set of sampled entries.

1. Introduction
Low-rank matrix completion has been the subject of much
recent study due to its application in myriad tasks: collab-
orative filtering, dimensionality reduction, clustering, and
localization in sensor networks. Clearly, the problem is ill-
posed in general; correspondingly, analytical work on the
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subject has focused on the joint development of algorithms,
and sufficient conditions under which such algorithms are
able recover the matrix.

While they differ in scaling/constant factors, all existing
sufficient conditions (Candès & Recht, 2009; Recht, 2009;
Keshavan et al., 2010; Gross, 2011; Jain et al., 2012)
and (Negahban & Wainwright, 2012) (with a couple of
exceptions we describe in Section 2) require that (a) the
subset of observed elements should be uniformly randomly
chosen, independent of the values of the matrix elements,
and (b) the low-rank matrix be “incoherent” or “not spiky”
– i.e. its row and column spaces should be diffuse, having
low inner products with the standard basis vectors . Under
these conditions, the matrix has been shown to be provably
recoverable – via methods based on convex optimization
(Candès & Recht, 2009; Recht, 2009; Gross, 2011), alter-
nating minimization (Jain et al., 2012), iterative threshold-
ing (Cai et al., 2010) etc. – using as few as ⇥(nr log n)

observed elements for an n⇥ n matrix of rank r.

Actually, the incoherence assumption is required because
of the uniform sampling: coherent matrices are those which
have most of their mass in a relatively small number of el-
ements. By sampling entries uniformly and independently
at random, most of the mass of a coherent low-rank matrix
will be missed; this could (and does) throw off all existing
recovery methods. One could imagine that if the sampling
is dependent on the matrix, roughly in a way that elements
with more mass are more likely to be observed, then it may
be possible for existing methods to recover the full matrix.

In this paper, we show that the incoherence requirement
can be eliminated completely, provided the sampling distri-
bution is adapted to the matrix to be recovered in the right
way. Specifically, we have the following results.

1. If the probability of an element being observed is de-
pendent on the sum of the corresponding row and col-
umn leverage scores (local coherence parameters) of
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the underlying matrix, then an arbitrary rank-r ma-
trix can be exactly recovered from ⇥(nr log

2 n) ob-
served elements with high probability, using nuclear
norm minimization. In case all leverage scores are
roughly equal, our results reduce to existing guaran-
tees for incoherent matrices using uniform sampling.
Our sample complexity bound ⇥(nr log

2 n) is opti-
mal up to a single factor of log

2 n, since the degrees
of freedom in an n ⇥ n matrix of rank r is 2nr. Our
bounds are also near-optimal with respect to the local
coherence parameters of the matrix.

2. We provide numerical evidence that an adaptive sam-
pling strategy, which assumes no prior knowledge
about the local coherences of the underlying matrix,
can perform on par with the optimal sampling strat-
egy in completing coherent matrices, and significantly
outperforms uniform sampling. Specifically, we con-
sider a two-phase sampling strategy whereby given
a fixed budget of m samples, we first draw a fixed
proportion of samples uniformly at random, and then
draw the remaining samples according to the the local
coherence structure of the resulting sampled matrix.

3. Using our theoretical results, we are able to quantify
the benefit of weighted nuclear norm minimization
over standard nuclear norm minimization, and pro-
vide a strategy for choosing the weights in such prob-
lems given non-uniformly distributed samples so as to
reduce the sampling complexity of weighted nuclear
norm minimization to that of standard nuclear norm.
Our results give the first exact recovery guarantee for
weighted nuclear norm minimization in (Salakhutdi-
nov & Srebro, 2010; Negahban & Wainwright, 2012;
Foygel et al., 2011), thus providing theoretical justifi-
cation for its good empirical performance.

Our main theoretical results are achieved by a new analysis
based on bounds involving the weighted `1,2

matrix norm,
defined as the maximum of the appropriately weighted row
and column norms of the matrix. This differs from previous
approaches that use `1 or unweighted `1,2

bounds (Gross,
2011; Chen, 2013). In some sense, using the weighted
`1,2

-type bounds is natural for the analysis of low-rank
matrices, because the rank is a property of the rows and
columns of the matrix rather than its individual entries, and
the weighted norm captures the relative importance of the
rows/columns. Therefore, it is interesting to see if the tech-
niques in this paper are relevant more generally, beyond the
specific settings and algorithms considered here.

2. Related work
There is now a vast body of literature on matrix completion,
and an even bigger body of literature on matrix approxima-

tions more generally; we restrict our related work review
here to papers that are most directly related.

Exact Completion, Incoherent Matrices, Random Sam-
ples: The first algorithm and theoretical guarantees for the
exact recovery of a low-rank matrix from a subset of ele-
ments appeared in (Candès & Recht, 2009); there it was
shown that algorithm (1) above works when the low-rank
matrix is incoherent, and the sampling is uniform random
and independent of the matrix. Subsequent works have
refined provable completion results for incoherent matri-
ces under the uniform random sampling model, both via
nuclear norm minimization (Candès & Tao, 2010; Recht,
2009; Gross, 2011; Chen, 2013), and other methods like
SVD followed by local descent (Keshavan et al., 2010), al-
ternating minimization (Jain et al., 2012) etc, and also with
both sparse errors and additive noise (Candes & Plan, 2010;
Chen et al., 2013; Chandrasekaran et al., 2011).

Matrix approximations via sub-sampling: Weighted
sampling methods have been widely considered in the re-
lated context of matrix sparsification, where one aims to
approximate a large dense matrix with a sparse matrix.
The strategy of element-wise matrix sparsification was in-
troduced in (Achlioptas & Mcsherry, 2007). They pro-
pose and provide bounds for the L

2

element-wise sam-
pling model, where entries of the matrix are sampled with
probability proportional to their squared magnitude. These
bounds were later refined in (Drineas & Zouzias, 2011).
Alternatively, (Arora et al., 2006) proposed the L

1

entry-
wise sampling model, where entries are sampled with prob-
abilities proportional to their magnitude. This model was
further investigated in (Achlioptas et al., 2013) and argued
to be almost always preferable to L

2

sampling.

Closely related to the matrix sparsification problem is the
matrix column selection problem, where one aims to find
the “best” k column subset of a matrix to use as an ap-
proximation. State-of-the-art algorithms for column subset
selection (Boutsidis et al., 2009; Mahoney, 2011) involve
randomized sampling strategies whereby columns are se-
lected proportionally to their statistical leverage scores –
the squared Euclidean norms of projections of the canon-
ical unit vectors on the column singular subspaces. The
statistical leverage scores of a matrix can be approxi-
mated efficiently, faster than the time needed to compute an
SVD (Drineas et al., 2012). Statistical leverage scores have
been used extensively in statistical regression analysis for
outlier detection (Chatterjee & Hadi, 1986). More recently,
statistical leverage scores were used in the context of graph
sparsification under the name of graph resistance (Spiel-
man & Srivastava, 2011). The sampling distribution we
use for the matrix completion in this paper is based on sta-
tistical leverage scores. As shown in Section 4.1, sampling
as such outperforms both L

1

and L
2

entry-wise sampling,
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at least in the context of matrix completion.

Weighted sampling in compressed sensing: This paper
is similar in spirit to recent work in compressed sensing
which shows that sparse recovery guarantees traditionally
requiring mutual incoherence can be extended to systems
which are only weakly incoherent, without any loss of ap-
proximation power, provided measurements from the sens-
ing basis are subsampled according to their coherence with
the sparsity basis. This notion of local coherence sampling
seems to have originated in (Rauhut & Ward, 2012) in the
context of sparse orthogonal polynomial expansions, and
has found applications in uncertainty quantification (Yang
& Karniadakis, 2013), interpolation with spherical har-
monics (Burq et al., 2012), and MRI compressive imag-
ing (Krahmer & Ward, 2012).

Finally, closely related to our paper is the recent work
by (Krishnamurthy & Singh, 2013), which considers ma-
trix completion where only the row space is allowed to be
coherent. Their proposed algorithm selects columns to ob-
serve in their entirety and requires a total of O(r2n log r)
observed entries, which is quadratic in r.

2.1. Organization

We present our main results for coherent matrix comple-
tion in Section 3. In Section 4 we propose a two-phase
algorithm that requires no prior knowledge about the un-
derlying matrix coherence structure. In Section 5 we pro-
vide guarantees for weighted nuclear norm minimization.
We provide the proof of the main theorem in the appendix.

3. Main Results
The results in this paper hold for what is arguably the most
popular approach to matrix completion: nuclear norm min-
imization. If the true matrix is M with entries M

ij

, and the
set of observed elements is ⌦, this method guesses as the
completion the optimum of the convex program:

min

X

kXk⇤
s.t. X

ij

= M
ij

for (i, j) 2 ⌦.
(1)

where the “nuclear norm” k ·k⇤ of a matrix is the sum of its
singular values1. Throughout, we use the standard notation
f(n) = ⇥(g(n)) to mean that cg(n)  f(n)  Cg(n) for
some positive constants c, C, where n := max{n

1

, n
2

}.

We focus on the setting where matrix entries are revealed
from an underlying probability distribution. To introduce
the distribution of interest, we first need a definition.
Definition 3.1. For an n

1

⇥ n
2

real-valued matrix M of

1This becomes the trace norm for positive-definite matrices. It
is now well-recognized to be a convex surrogate for rank mini-
mization.

rank r with SVD given by U⌃V >, the local coherences2 –
µ
i

for any row i, and ⌫
j

for any column j - are defined by
the following relations

�

�U>e
i

�

�

=

r

µ
i

r

n
1

, i = 1, . . . , n
1

�

�V >e
j

�

�

=

r

⌫
j

r

n
2

, j = 1, . . . , n
2

.

(2)

Note that the µ
i

, ⌫
j

s are non-negative, and since U and V
have orthonormal columns we always have

P

i

µ
i

r/n
1

=

P

j

⌫
j

r/n
2

= r.

We are ready to state our main result, the theorem below.
Theorem 3.2. Let M = (M

ij

) be an n
1

⇥ n
2

matrix with
local coherence parameters {µ

i

, ⌫
j

}, and suppose that its
entries M

ij

are observed only over a subset of elements
⌦ ⇢ [n

1

]⇥ [n
2

]. There are universal constants c
0

, c
1

, c
2

>
0 such that if each element (i, j) is independently observed
with probability p

ij

, and p
ij

satisfies

p
ij

� min

⇢

c
0

(µ
i

+ ⌫
j

)r log

2

(n
1

+ n
2

)

min{n
1

, n
2

} , 1

�

(3)

p
ij

� 1

min{n
1

, n
2

}10 ,

then M is the unique optimal solution to the nuclear
norm minimization problem (1) with probability at least
1 � c

1

(n
1

+ n
2

)

�c2 .

We will refer to the sampling strategy (3) as local coher-
ence sampling. Note that the expected number of observed
entries is

P

i,j

p
ij

, and this satisfies

X

i,j

p
ij

� max

8

<

:

c
0

r log

2

(n
1

+ n
2

)

min{n
1

, n
2

}
X

i,j

(µ
i

+ ⌫
j

),
X

i,j

1

n10

9

=

;

= 2c
0

max {n
1

, n
2

} r log

2

(n
1

+ n
2

),

independent of the coherence, or indeed any other property,
of the matrix. Hoeffding’s inequality implies that the actual
number of observed entries sharply concentrates around its
expectation, leading to the following corollary:
Corollary 3.3. Let M = (M

ij

) be an n
1

⇥ n
2

matrix with
local coherence parameters {µ

i

, ⌫
j

}. Draw a subset of its
entries by local coherence sampling according to the pro-
cedure described in Theorem 3.2. There are universal con-
stants c0

1

, c0
2

> 0 such that the following holds with proba-
bility at least 1�c0

1

(n
1

+n
2

)

�c

0
2 : the number m of revealed

entries is bounded by

m  3c
0

max {n
1

, n
2

} r log

2

(n
1

+ n
2

)

2In the matrix sparsification literature (Drineas et al., 2012;
Boutsidis et al., 2009) and beyond, the quantities

��U>ei
��2 and��V >ej

��2 are referred to as the leverage scores of M .
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and M is the unique optimal solution to the nuclear norm
minimization program (1).

We now provide comments and discussion.

(A) Roughly speaking, the condition given in (3) ensures
that entries in important rows/columns (indicated by large
local coherences µ

i

and ⌫
j

) of the matrix should be ob-
served more often. Note that Theorem 3.2 only stipulates
that an inequality relation hold between p

ij

and {µ
i

, ⌫
j

}.
This allows for there to be some discrepancy between the
sampling distribution and the local coherences. It also has
the natural interpretation that the more the sampling distri-
bution {p

ij

} is “aligned” to the local coherence pattern of
the matrix, the fewer observations are needed.

(B) Sampling based on local coherences provides close to
the optimal number of sampled elements required for ex-
act recovery (when sampled with any distribution). In par-
ticular, assume n

1

= n
2

= n and recall that the number
of degrees of freedom of an n ⇥ n matrix with rank r is
2nr(1� r/2n). Hence, regardless how the entries are sam-
pled, a minimum of ⇥(nr) entries is required to recover
the matrix. Theorem 3.2 matches this lower bound, with an
additional O(log

2

(n)) factor.

(C) Our work improves on existing results even in the case
of uniform sampling and uniform incoherence. Recall that
the original work of (Candès & Recht, 2009), and subse-
quent works (Candès & Tao, 2010; Recht, 2009; Gross,
2011) give recovery guarantees based on two parameters of
the matrix M : a global incoherence parameter µ

0

which is
a uniform bound on the (above-defined) local coherences –
i.e. every µ

i

 µ
0

and every ⌫
j

 µ
0

– and a joint inco-

herence parameter µ
str

defined by kUV >k1 =

q

rµstr

n1n2
.

With these definitions, the current state of the art states that
if the uniform sampling probability satisfies

p
ij

⌘ p � c
max{µ

0

, µ
str

}r log

2 n

n
,

when n
1

= n
2

= n, where c is a constant, then M will be
the unique optimum of (1) with high probability. A direct
corollary of our work improves on this result, by removing
the need for extra constraints on the joint incoherence; in
particular, it is easy to see that our theorem implies that a
uniform sampling probability of p � cµ0r log

2
n

n

– that is,
with no µ

str

– guarantees recovery of M with high proba-
bility. Note that in general, µ

str

can be as high as µ
0

r; our
corollary thus removes this sub-optimal dependence on the
rank and on the joint incoherence. This improvement was
recently observed in (Chen, 2013).
Remark 3.4. Suppose n

1

= n
2

= n. If the column space
of M is incoherent with max

i

µ
i

 µ
0

and the row space
is arbitrary, then one can randomly pick ⇥(µ

0

r log n) rows
of M and observe all their entries, and compute the local

Algorithm 1 Two-phase sampling for coherent matrix
completion
input Sampled matrix P

⌦

(M), rank parameter r, and m,
� such that |⌦| = �m.

1: Compute the rank-r SVD of P
⌦

(M), ˜U ˜

⌃

˜V >.

2: Estimate the local coherences by µ̃
i

=

n1
r

�

�

�

˜U>e
i

�

�

�

2

and ⌫̃
j

=

n2
r

�

�

�

˜V >e
j

�

�

�

2

.

3: Generate a set of (1 � �)m new samples ˜

⌦ distributed
as p̃

ij

= min

n

c
0

(µ̃i+⌫̃j)r log

2
(n1+n2)

min{n1,n2} , 1
o

.

4: ˆM = arg min kXk⇤ s.t P
⌦[˜

⌦

(X) = P
⌦[˜

⌦

(M).
output Completed matrix ˆM .

coherences of the space spanned by these rows. These pa-
rameters will be equal to the ⌫

j

’s of M with high probabil-
ity. Based on these values, we can perform non-uniform
sampling according to (3) and exactly recover M . This
procedure does not require any prior knowledge about the
local coherences of M . It uses a total of ⇥(µ

0

rn log

2 n)

samples. This improves on the ⇥(µ2

0

r2n log r) sample
complexity in (Krishnamurthy & Singh, 2013), which is
quadratic in µ

0

r. We prove this remark in the supplement.

4. A two-phase sampling procedure
We have seen that one can exactly recover an arbitrary n⇥n
low-rank matrix using ⇥(nr log

2

(n)) entries if sampled in
accordance with the local coherences. In practical appli-
cations of matrix completion, even when the user is free
to choose how to sample the matrix entries, she likely will
not be privy to the local coherence parameters {µ

i

, ⌫
j

}. In
this section we propose a two-phase sampling procedure,
described below and in Table 1, which assumes no a priori
knowledge about the matrix coherence structure, yet is ob-
served to be competitive with the “oracle” local coherence
distribution (3).

Consider a total budget of m samples, and a set of sampled
indices ⌦ such that |⌦| = �m, where � 2 [0, 1]. Let P

⌦

()

be the sampling operator which maps the matrix entries not
in ⌦ to 0. The first step of the algorithm is to take the rank-
r SVD of P

⌦

(M), ˜U ˜

⌃

˜V >, where ˜U, ˜V 2 Rn⇥r and ˜

⌃ 2
Rr⇥r. Use the local coherences µ̃

i

, ⌫̃
j

of ˜U, ˜V respectively
as estimates for the local coherences of M . Let

p̃
ij

= min

⇢

c
0

(µ̃
i

+ ⌫̃
j

)r log

2

(n
1

+ n
2

)

min{n
1

, n
2

} , 1

�

. (4)

Now generate the remaining (1 � �)m samples of matrix
M according to this distribution (4). Let ˜

⌦ denote the
new set of samples. Using the combined set of samples
P
⌦[˜

⌦

(M) as constraints, run the nuclear norm minimiza-
tion program (1). Let ˆM be the optimum of this program.
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To understand the performance of the two-phase algorithm,
assume that the initial set of m

1

= �m samples P
⌦

(M) are
generated uniformly at random. If the underlying matrix M
is incoherent, then already the algorithm will recover M if
m

1

= ⇥(max{n
1

, n
2

}r log

2

(n
1

+n
2

)). On the other hand,
if M is highly coherent, having almost all energy concen-
trated on just a few entries, then the estimated local coher-
ences (4) from uniform sampling will be poor and hence the
recovery algorithm suffers. Between these two extremes,
there is reason to believe that the two-phase sampling pro-
cedure will provide a better estimate to the underlying ma-
trix than if all m entries were sampled uniformly. Indeed,
numerical experiments suggest that the two-phase proce-
dure can indeed significantly outperform uniform sampling
for completing coherent matrices.

4.1. Numerical experiments

We now analyze the performance of the two-phase sam-
pling procedure outlined in Algorithm 1 through numerical
experiments. For this, we consider rank-5 matrices of size
500 ⇥ 500 of the form M = DUV >D, where the entries
of matrices U and V are i.i.d. Gaussian N (0, 1) and D is
a diagonal matrix with power-law decay, D

ii

= i�↵, 1 
i  500. We refer to such constructions as power-law ma-
trices. The parameter ↵ adjusts the coherence of the matrix
with ↵ = 0 being incoherent and ↵ = 1 corresponding to
maximal coherence µ

0

= ⇥(n).

We normalize M to make kMk
F

= 1. Figure 1 plots
the number of samples required for successful recovery (y-
axis) for different values of ↵ (x-axis) using Algorithm 1
with initial samples ⌦ taken i.i.d. uniform. Successful re-
covery is defined as when at least 95% of trials have rel-
ative error in the Frobenius norm not exceeding 0.01. To
put the results in perspective, we plot it in Figure 1 against
the performance of pure uniform sampling, as well as other
popular sampling distributions from the matrix sparsifica-
tion literature (Achlioptas & Mcsherry, 2007; Achlioptas
et al., 2013; Arora et al., 2006; Drineas & Zouzias, 2011),
namely, in step 3 of the algorithm, sampling proportional
to entry (p̃

ij

/ | ˜M
ij

|) and sampling proportional to entry
squared (p̃

ij

/ ˜M2

ij

), as opposed to sampling from the dis-
tribution (4). In all cases, the estimated matrix ˜M is con-
structed from the rank r SVD of P

⌦

(M), ˜M =

˜U ˜

⌃

˜V >.
Performance of nuclear norm minimization using samples
generated according to the “oracle” distribution (3) serves
as baseline for the best possible recovery, as theoretically
justified by Theorem 3.2. We use an Augmented La-
grangian Method (ALM) based solver by (Chen & Ganesh,
2009) to solve the convex optimization program (1).

Figure 1 suggests that the two-phase algorithm performs
comparably to the theoretically optimal coherence-based
distribution (3), despite not having access to the underlying

local coherences, in the regime of mild to moderate coher-
ence ↵  0.7. While the entrywise sampling strategies per-
form comparable for low values of ↵, the number of sam-
ples for successful recovery increases for ↵ > 0.6. Com-
pletion from purely uniformly sampled entries requires sig-
nificantly more samples at higher values of ↵.

Choosing �: Recall that the parameter � in Algorithm 1
is the fraction of number of uniform samples to the total
number of samples. Figure 2(a) plots the number of sam-
ples required for successful recovery (y-axis) as � (x-axis)
varies from 0.1 to 1 for different values of ↵. � = 1 reduces
to purely uniform sampling, and for small values of �, the
local coherences estimated in (4) will be far from the actual
local coherences. Then, as expected, the sample complex-
ity goes up for � near 0 and � = 1. We find that setting
� ⇡ 2/3 results in the lowest sample complexity. Sur-
prisingly, even taking � = 0.9 as opposed to pure uniform
sampling � = 1 results in a significant decrease in the sam-
ple complexity (Figure 2(b)). That is, even budgeting just
a small fraction of samples to be drawn from the estimated
local coherences can significantly improve the success rate
in low-rank matrix recovery as long as the underlying ma-
trix is not completely coherent. In applications like collab-
orative filtering, this would imply (assuming that the local
coherences are smaller (↵  0.5)) that incentivizing just a
small fraction of users to rate a few selected movies accord-
ing to the estimated local coherence distribution obtained
by previous samples has the potential to greatly improve
the quality of the recovered matrix of preferences.

In Figure 3 we compare the performance of the two-phase
algorithm for different values of the matrix dimension
n, and notice for each n a phase transition occurring at
⇥(n log(n)) samples. In Figure 4 we consider the sce-
nario where the samples are noisy and compare the per-
formance of Algorithm 1 to uniform sampling and the
theoretically-optimal local coherence sampling from Theo-
rem 3.2. Specifically we assume that the samples are gen-
erated from M + Z where Z is a Gaussian noise matrix.
We consider two values for the noise �

def
= kZk

F

/kMk
F

:
� = 0.1 and � = 0.2. The figures plot error in Frobe-
nius norm kM � ˆMk

F

(y-axis), vs total number of sam-
ples m (x-axis). These plots demonstrate the robustness of
the algorithm to noise and once again show that sampling
with estimated coherences can be as good as sampling with
exact coherences for matrix recovery using nuclear norm
minimization for ↵  0.7.

5. Weighted Nuclear Norm Minimization
Theorem 3.2 suggests that the more a set of observed en-
tries are aligned with the local coherences of a matrix, the
better will be the performance of nuclear norm minimiza-
tion. Interestingly, Theorem 3.2 can be used in a reverse
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Figure 1. Performance of Algorithm 1 for power-law matrices: We consider rank-5 matrices of form M = DUV >D, where entries
of the matrices U and V are generated from a Gaussian distribution N (0, 1) and D is a diagonal matrix with Dii =

1
i↵ . Higher values

of ↵ correspond to higher coherence. The above simulations are run with two-phase parameter � = 2/3. Sampling (3) gives the best
results of successful recovery using 10n log(n) samples for all values of ↵ in accordance with Theorem 3.2. Surprisingly, sampling
according to (4) with estimated local coherences has almost the same sample complexity for ↵  0.7. Sampling proportional to entry
and entry squared perform as well for low values of ↵, but their sample complexity increases quickly for ↵ > 0.6.

way: one may adjust the local coherences to align with a
given set of observations. Here we demonstrate an appli-
cation of this idea in quantifying the benefit of weighted
nuclear norm minimization for non-uniform sampling.

In many applications of matrix completion, the revealed en-
tries are given to us, and distributed non-uniformly among
the rows and columns. As observed by (Salakhutdinov
& Srebro, 2010), standard unweighted nuclear norm mini-
mization (1) is inefficient in this setting. They propose to
instead use weighted nuclear norm minimization:

ˆX = arg min

X

kRXCk⇤
s.t. X

ij

= M
ij

, for (i, j) 2 ⌦,
(5)

where R = diag(R
1

, R
2

, . . . , R
n1) and C =

diag(C
1

, . . . , C
n2) are diagonal weight matrices with

positive diagonal entries.

We now provide a theoretical guarantee for this method,
and quantify its advantage over unweighted nuclear norm
minimization. Suppose M satisfies the standard incoher-
ence condition max

i,j

{µ
i

, ⌫
j

}  µ
0

. Let bxc denote the
largest integer not exceeding x. Under this setting, we have
the following (proved in the supplementary materials):
Theorem 5.1. Without lost of generality, assume R

1


R

2

 · · ·  R
n1 and C

1

 C
2

 · · ·  C
n2 . There exist

universal constants c
0

, c
1

, c
2

such that M is the unique op-
timum to (5) with probability at least 1 � c

1

(n
1

+ n
2

)

�c2

provided p
ij

� 1

min{n1,n2}10 and

p
ij

�c
0

 

R2

i

Pbn1/(µ0r)c
i

0
=1

R2

i

0

+

C2

j

Pbn2/(µ0r)c
j

0
=1

C2

j

0

!

log

2n. (6)

We prove this theorem by drawing a connection between
the weighted nuclear norm and the local incoherence pa-
rameters (2). Define the scaled matrix ¯M := RMC. Ob-
serve that the program (5) is equivalent to first solving the
following unweighted problem with scaled observations

¯X = arg min

X

kXk⇤
s.t. X

ij

=

¯M
ij

, for (i, j) 2 ⌦,
(7)

and then setting ˆX = R�1

¯XC�1. In other words, through
the weighted nuclear norm, we convert the problem of
completing M to that of completing ¯M . Therefore, if we
can choose the weights R and C such that the local in-
coherence parameters of ¯M , denoted as {µ̄

i

, ⌫̄
j

}, are
aligned with the non-uniform observations in a way that
roughly satisfies condition (3), then we gain in sample
complexity compared to the unweighted approach. We
now quantify this more precisely for a particular class of
matrix completion problems.

Comparison to unweighted nuclear norm. Suppose
n
1

= n
2

= n and the observation probabilities have a
product form: p

ij

= pr
i

pc
j

, with pr
1

 pr
2

 · · ·  pr
n

and

pc
1

 pc
2

 · · ·  pc
n

. If we choose R
i

=

q

1

n

pr
i

P

j

0 pc
j

0

and C
j

=

q

1

n

pc
j

P

i

0 pr
i

0 (which is suggested by the con-
dition (6)), Theorem 5.1 asserts that the following is suffi-
cient for recovery of M :

pc
j

bn/(µ0r)c
X

i=1

pr
i

& log

2 n, 8j; pr
i

bn/(µ0r)c
X

j=1

pc
j

& log

2 n, 8i. (8)
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Figure 2. We consider power-law matrices with parameter ↵ = 0.5 and ↵ = 0.7. (a): This plot shows that Algorithm 1 successfully
recovers coherent low-rank matrices with fewest samples (⇡ 10n log(n)) when the proportion of initial samples drawn from the uniform
distribution is in the range � 2 [0.5, 0.8]. In particular, the sampling complexity is significantly lower than that for uniform sampling
(� = 1). (b): Even by drawing 90% of the samples uniformly and using the estimated local coherences to sample the remaining 10%

samples, one observes a marked improvement in the rate of recovery.
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Figure 3. (a) & (b):Scaling of sample complexity of Algorithm 1 with n: We consider power-law matrices (with ↵ = 0.5 in plot (a)
and 0.7 in plot (b)). The plots suggest that the sample complexity of Algorithm 1 scales roughly as ⇥(n log(n)).

4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Samples/(nlog(n))

R
el

at
iv

e 
er

ro
r

 

 
two−phase sampling, m =0.1
 two−phase sampling, m =0.2
local−coherence sampling, m =0.1
local−coherence sampling, m =0.2
uniform sampling, m =0.1
uniform sampling, m =0.2

8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Samples/(nlog(n))

R
el

at
iv

e 
er

ro
r

 

 
two−phase sampling, m =0.1
two−phase sampling, m =0.2
local−coherence sampling, m =0.1
local−coherence sampling, m=0.2
uniform sampling, m =0.1
uniform sampling, m =0.2

(a) (b)

Figure 4. (a) & (b):Performance of Algorithm 1 with noisy samples: We consider power-law matrices (with ↵ = 0.5 in plot (a) and
↵ = 0.7 in plot (b)), perturbed by a Gaussian noise matrix Z with kZkF /kMkF = �. The plots consider two different noise levels,
� = 0.1 and � = 0.2. We compare two-phase sampling (Algorithm 1) with � = 2/3, sampling from the exact local coherences, and
uniform sampling. Algorithm 1 has error almost as low as the local-coherence sampling without requiring any a priori knowledge of the
low-rank matrix, while uniform sampling suffers dramatically.
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We compare this condition to that required by unweighted
nuclear norm minimization: by Thm. 3.2, the latter requires

pr
i

pc
j

& µ
0

r

n
log

2 n, 8i, j.

That is, the weighted approach succeeds under much less
restrictive conditions. In particular, the unweighted ap-
proach imposes a condition on the least sampled row and
column, whereas condition (8) shows that the weighted ap-
proach can use the heavily sampled rows/columns to assist
the less sampled. This benefit is most significant precisely
when the observations are very non-uniform.

The weighted nuclear norm approach is shown to be em-
pirically successful in (Salakhutdinov & Srebro, 2010).
There they propose to weigh the rows (columns, resp.) by
the square root of the corresponding row (column, resp)
marginals, which coincides with the R and C chosen ac-
cording to our theory in the last paragraph.

We remark that Theorem 5.1 is the first exact recovery
guarantee for weighted nuclear norm minimization. It pro-
vides an explanation, complementary to those in (Salakhut-
dinov & Srebro, 2010; Foygel et al., 2011; Negahban &
Wainwright, 2012), for why the weighted approach is ad-
vantageous over the unweighted approach for non-uniform
observations. It also serves as a testament to the power of
Theorem 3.2 as a general result on the relationship between
sampling and local coherence.

6. Proof Outline for Theorem 3.2
The proof proceeds by constructing a dual certificate Y
that obeys certain sub-gradient optimality conditions and
certifies the optimality of M to (1). One of the major dif-
ferences between our proof and existing ones is in validat-
ing one of the optimality conditions, namely, that kY k is
small. In previous work, this is done by bounding kY k by
kY 0k1 :=

P

i,j

�

�Y 0
ij

�

� for a certain matrix Y 0, which even-
tually leads to the standard incoherence conditions. Here,
we derive a new bound using the weighted-`1,2

norm of
Y 0, which is the maximum of the weighted row and col-
umn norms of Y 0, with the weights depending on the local
coherences µ

i

and ⌫
j

. We turn to the details below.

Define the projections P
T

Z := UU>Z + ZV V > �
UU>V ZZ> and P

T

?Z := Z �P
T

Z, and let R
⌦

Z be the
matrix with (R

⌦

Z)

ij

= Z
ij

/p
ij

if (i, j) 2 ⌦ and zero oth-
erwise. As usual, kZk

F

and kZk are the Frobenius norm
and spectral norm of the matrix Z, and kAk

op

is the opera-
tor norm of the mapping A. Using standard convex analy-
sis, we show that M is the unique optimum to (1) if

1. kP
T

R
⌦

P
T

� P
T

k
op

 1

2

, and
2. there exists some Y obeying (a) Y

ij

= 0, 8(i, j) /2 ⌦,
(b)

�

�P
T

Y � UV >
�

�

F

 1

4n

5 , and (c) kP
T

?Y k  1

2

.

We proceed to show that condition 1 above holds with high
probability (w.h.p.) assuming only the local bounds (3) on
sampling and incoherence. We then construct Y using the
Golfing Scheme (Gross, 2011), setting W

0

:= 0,

W
k

:= W
k�1

+ R
⌦kPT

(UV > � P
T

W
k�1

), k 2 [k
0

],

and Y = W
k0 , where the ⌦

k

’s are k
0

:= 20 log n i.i.d. ran-
dom index sets with P((i, j) 2 ⌦

k

) = 1 � (1 � p
ij

)

1/k0

and R
⌦k is defined analogously to R

⌦

. Y satisfies condi-
tion 2(a) above. Setting �

k

= UV > � P
T

W
k

, we verify

k�
k0k

F


⇣

Q

k

kP
T

� P
T

R
⌦kPT

k
op

⌘

�

�UV >�
�

F

,

which implies the condition 2(b) using the condition 1.

It remains to validate the condition 2(c), which is the most
innovative part of our proof. We need the following defini-
tions of weighted `1,2

and `1 norms

kZk
µ(1,2)

:= max

i,j

8

<

:

s

n

µ
i

r

X

b

Z2

ib

,

s

n

⌫
j

r

X

a

Z2

aj

9

=

;

,

kZk
µ(1)

:= max

i,j

|Z
ij

|
r

n

µ
i

r

r

n

⌫
j

r
.

We show, crucially, that these norms have the following
concentration properties

k(R
⌦

� I)Zk  cp
c
0

⇣

kZk
µ(1)

+ kZk
µ(1,2)

⌘

,

k(P
T

R
⌦

� P
T

)Zk
µ(1,2)

 1

2

⇣

kZk
µ(1)

+ kZk
µ(1,2)

⌘

,

k(P
T

R
⌦

� P
T

)Zk
µ(1)

 1

2

kZk
µ(1)

,

which hold w.h.p. for a fixed Z. Using the first inequality
above, we can obtain

kP
T

?(Y )k  cp
c
0

k0
X

k=1

⇣

k�
k�1

k
µ(1)

+ k�
k�1

k
µ(1,2)

⌘

.

We then apply the next two inequalities to show

k�
k

k
µ(1)

 (1/2)

k

�

�UV >�
�

µ(1)

,

k�
k

k
µ(1,2)

 (1/2)

k

⇣

2k
�

�UV >�
�

µ(1)

+ kUV k
µ(1,2)

⌘

.

for each k. The theorem follows from combining the last
three display equations and expressing kUV >k

µ(1,2)

and
kUV >k

µ(1)

in terms of {µ
i

, ⌫
j

}.
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