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Abstract
This supplemental document presents details concerning (1) summary of changes in this new submis-

sion and response to reviewers’ comments in Cycle 1; (2) analytical derivations that support the theorems
made in the main text “Near-optimal Joint Object Matching via Convex Relaxation”, submitted to the
31th International Conference on Machine Learning (ICML 2014). One can find here the detailed proof
of main theorems.

1 Response to Reviewer’s Comments in Cycle 1
Dear Meta Reviewer and Reviewers 1, 6, and 7,

We appreciate your constructive comments, several of which have significantly changed the technical
contents, methodologies, and positioning of this paper. In this new submission, we have obtained a more
effective convex formulation that eventually allows us to substantially improve our performance guarantees.
Below we briefly summarize the improvement, and address reviewer’s major comments in Cycle 1. Your
comments are in italics with our response following in plaintext.

1.1 Major Improvements
1. Algorithms. We have derived a more effective convex formulation. Denote by m the size of universe

(i.e. the number of unique elements to be matched), which is usually unknown when matching partially
similar objects. Our new formulation, however, is based on the observation that m can often be pre-
estimated by spectral techniques even under dense errors. With this information at hand, we are able
to derive a strengthened relaxation as follows:

(MatchLift) minimize
X

−
∑

(i,j)∈G

〈
X in
ij ,Xij

〉
+ λ

〈
1 · 1>,X

〉
subject to X ≥ 0,[

m 1>

1 X

]
� 0, (1)

Xii = I, (2)

where λ can be set in a parameter-free manner as
√
|E|

2n . The most crucial changes are the strenghened
PSD constraints (1) that depends on m (compared with X � 0 in the initial submission), which turns
out to be critical in enabling dense error correction. Intuitively, this strengthened constraint presents
us one additional degree of freedom for outlier separation, which often serves to “debias” outliers.

2. Theory (Dense Error Correction). With the tightened convex relaxation, our new algorithm
(called MatchLift) significantly outperforms the originally proposed method. Most remarkably, Match-
Lift enables dense error correction, i.e. the algorithm is guaranteed to work when the portion ptrue of
correct inputs exceeds

ptrue = Ω

(
1√
n

)
.
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That said, in the asymptotic regime, the algorithms works even when almost of the inputs are badly
corrupted by random errors. In contrast, none of the existing algorithms can provably separate more
than 50% errors.

3. Experiments. We have performed substantially more experiments to verify the practical applicability
of our algorithm. First, we compare our algorithm with Jalali et al [1] in synthetic data, where
we compare 31 × 36 sets of different parameters for each of the two scenarios with each parameter
configuration simulated by 10 Monte Carlo trials. Second, we not only run the algorithms on the chair
and building data sets, but also on the CMU Housing and Hotel data sets as suggested by the reviewer.
We have also compared our algorithm against Jalali et al 2011 and two other state-of-the-art graph
matching algorithms on CMU Housing and Hotel. All of these experiments confirm the superiority of
our algorithm in the joint matching problem.

1.2 Response to Meta Reviewer
We thank the meta reviewer for his/her suggestion on how to improve the positioning of our paper. We have
addressed your 3 comments as below.

(1) The authors should make the relationship to clustering problems clear.
We have now discussed the similarity and distinction between the matching problem and the graph

clustering problem. In particular, we have highlighted in several paragraphs the following arguments:

• The joint matching problem can be treated as a structured graph clustering (GC) problem, where
graph nodes represent points on objects and the edge set encodes all correspondences. In this regard,
any GC algorithm provides a heuristic to estimate graph matching. Consequently, the size of the
universe m in our case corresponds to the number of clusters in the clustering problem, which allows
us to immediately see that rank(X) = m.

• Nevertheless, there are several intrinsic structural properties herein that are not explored by any generic
GC approach.

– First, our input takes a block-matrix form, where each block is highly structured (i.e. doubly-
substochastic), sparse, and inter-dependent.

– Second, the points belonging to the same object are mutually exclusive to each other.

– Third, the corruption rate for different entries can be highly non-symmetric – when translated into
GC languages, this means that in-cluster edges might suffer from an order-of-magnitude larger
error rate than inter-cluster edges.

(2) The authors should explicitly show the benefit of imposing the additional constraint, in terms of
any theoretical guarantees they develop (i.e. contrast the guarantees explicitly with unconstrained clustering
guarantees and show the benefit), and in terms of the empirical evaluation.

Our new formulation, which incorporates the feature that points within each set are mutually exclusive,
generates significantly better guarantees than generic GC approaches, both theoretically and empirically.

• Theory. Various approaches for general graph clustering have been proposed with theoretical guaran-
tees under different randomized settings, which typically operate under the assumptions that in-cluster
and inter-cluster correspondences are independently corrupted, which differs drastically from our model.
Due to the block structure input model, these two types of corruptions are highly correlated and usu-
ally experience order-of-magnitude difference in corruption rate. To facilitate comparison, we evaluate
the best-known deterministic guarantees obtained by Jalali et al [2]. The key metric Dmax therein can
be easily bounded by Dmax ≥ 1−ptrue due to significant in-cluster edge errors. The recovery condition
in [2, Theorem 1] requires Dmax <

1
m+1 , and thereby ptrue >

m
m+1 , which is at least 1

3 (in fact, typically
far worse than 1

3 ) even when m = 2. In comparison, our results allow the non-corruption rate ptrue to

be vanishingly small (i.e. ptrue = Ω
(

log2 n√
n

)
), which is significantly better than [2]. This indicates

that generic GC algorithms do not deliver informative guarantees when tailored to our problem.
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• Experiment. We have compared our algorithm with [1] on both synthetic data (with extensive
experiments characterizing the phase transition diagrams) and real-world images, as reported in Section
5 of the main body of the paper. One can see that the GC approach [1] is limited to a small constant
barrier, while MatchLift enables dense error correction as n grows. The performance of MatchLift on
real-world images also significantly outperforms GC approach [1].

(3) They should demonstrate the relevance and importance of the formulation discussed.
Except for its distinction and relevance to the clustering problem that we detail above, we would like

to highlight the most important feature of our new algorithm, which is dense error correction. None of the
prior algorithm have demonstrated performance guarantees when there are more than 50% errors present,
regardless of how many objects are available. Encouragingly, our algorithm, with the novel constraint we
include, significantly improves our algorithm to enable dense outlier separation. This is very important in
practice and highlights the importance of joint object matching – that said, no matter how bad /noisy the
input sources are, as long as we have sufficiently many instances, we will be able to obtain perfect matching
over all pairs of instances.

1.3 Response to Reviewer 1
We appreciate the reviewer’s helpful comments, especially for singling out our lack of comparison with graph
clustering (GC). We have now substantially changed our algorithm and completely rederived the performance
guarantees (which significantly outperform those derived for the original formulation). Consequently, several
of the reviewer’s comments are no longer relevant to the current formulation. Below we address those
comments that apply to the current formulation.

1. Problem formulation: The formulation is the standard SDP relaxation of Correlation Clustering,
where the idea of dropping the rank-1 and binary constraints dates back to Goemans-Williamson. It is also
well-known that one can improve performance by adding to the convex program any convex constraints that
represent prior structural knowledge, such as must-links (Yi-Zhang-Jin-Qian-Jain, ICML 2013) and cluster
sizes (Ames 2011); in the present case it is the sub-stochastic constraints arising from the known structures
encoded in the S_i’s. More specifically for the matching problem, similar convex relaxation approach has
been proposed in the literature (Huang-Guibas 2013). Given this long line of prior work, the contribution in
this paper seems incremental.

Thanks much for pointing our our lack of comparison with clustering problem. We have now derived a
new theorem based on a new conic constraint[

m 1>

1 X

]
� 0,

where the knowledge of m is pre-estimated by spectral methods. It turns out that this constraint, together
with the mutually exclusive constraint Xii = I, allows us to significantly improve the error-correction ability,
both theoretically and empirically. In the presence of this tightened conic constraint, the improvement
incurred by sub-stochastic constraints becomes marginal, provided that m can be accurately estimated.
However, ifm cannot be reliably estimated, then the sub-stochastic constraints will be critical in guaranteeing
perfect recovery with a constant portion (e.g. 50%) of input errors, although dense error correction might
not be guaranteed.

2. Algorithm: It is also standard practice in graph clustering/partitioning to solve the convex relaxation
via first order methods and do a heuristic rounding of the optimal solution. This paper uses ADMM and a
particular rounding heuristic, with no further justification for their choices. There are many other possible
options, some of which come with rigorous theoretical guarantees (e.g. Mathieu-Schudy).

ADMM formulation has been shown to converge for semidefinite program, which has now been very pop-
ular. Most importantly, ADMM usually converges to modest accuracy within a reasonable amount of time,
and produces desired results with the assistance of appropriate rounding procedures. This is particularly ap-
pealing in our case, whereby the ground truth is a 0-1 matrix. Empirically, ADMM generates desired results
in practice and converges for all our experiments. In terms of being rigorous, applying provably accurate
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interior point methods like MOSEK for our formulation leads to worst case complexity (nm)
6, while that of

Mathieu et al exceeds (nm)9. Practically, we have not been able to let Mathieu et al work except for very
small dimentionality. This computational limitation was also reported in Jalali et al [1].

3.1 It is somewhat difficult to interpret their results.
Thanks for pointing out the confusing part of our previous theorem. We have derived completely new

guarantees, which we hope are sufficiently clean to interpret.

3.2 The authors do not discuss if the additional complexities in their formulation lead to any improvements
over standard graph clustering algorithms. For example, if we assume p_set, m and pfalse are all O(1), then
their results guarantee success when pobs > 1/n. Modulo some mild differences in the generative models,
the same performance can be achieved via existing graph clustering methods (e.g. Jalali et al 2011) without
using any additional structures of the matching problem. While this does not exclude the possibility that the
proposed method have better performance in other settings, there is no discussion of this issue in the current
paper.

Thanks for bringing to our attention the graph clustering algorithms. We note that prior work on
randomized model does not deliver guarantee for our problem, as our inputs are highly structured and the
errors are mutually dependent. Most importantly, the error rate for in-cluster edges (which can be as worse
as 1 − 1√

n
) and for inter-cluster edges (which is 1

m ) are drastically different. If we apply the most recent
deterministic guarantees like [2, Theorem 1], the recovery condition therein requires Dmax < 1

m+1 , and
thereby ptrue >

m
m+1 , which is at best 1

3 (usually far worse than 1
3 ) even when m = 2. In contrast, our results

allow the non-corruption rate ptrue to be vanishingly small (i.e. ptrue = Ω
(

log2 n√
n

)
), which significantly

outperforms [2]. This indicates that generic GC algorithms do not deliver informative guarantees when
tailored to our problem.

4. Implementation: Convex optimization approaches often suffer from scalability issues. The proposed
approach has many additional constraints, which might further degrade scalability. Their experiments use
small datasets with 24 elements and 32 sets, which is not quite convincing.

In our new examples, we perform extensive experiments (in order to plot phase transition diagram) when
the matrix is as large as 2000×2000. In practice, our ADMM code can solve problems of size 6000×6000 on
a regular computer. A more scalable solution is indeed very interesting and important future work.

5(1) Any deterministic guarantee for GC (e.g. Jalali-Srebro 2012) would imply a guarantee that can
be compared with Theorem 3. It would be helpful to show that incorporating the additional sub-stochastic
constraints indeed leads to stronger guarantees than general GC methods without these constraints.

See the response to comment 3.2.

5(2) There are also some theories in Huang-Guibas’s paper. The authors may want to discuss how hard
to extend those results to the partial matching setting.

We have now substantially changed our paper, which now demonstrates an ability to correct arbitrarily
dense errors. In comparison, Huang-Guibas only reported theoretical support when there are fewer than
50% errors present. Both the results and analyses are drastically different from Huang-Guibas.

6. The paper has "matrix completion" in its title, while their method is only marginally related to matrix
completion (for which the standard approach is nuclear norm minimization) but is actually more in line with
standard SDP relaxations for graph partitioning.

Indeed, our original title on “matrix completion” is not precise enough. We have now removed “matrix
completion” from our title – thanks for the suggestion.

1.4 Response to Reviewer 6
The approach is neat and elegant. My only concern is the experimental evaluation. The dataset considered
does not seem to me a challenging benchmark, and more extensive evaluation would be valuable. For instance,
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the authors should benchmark the approach on the CMU House and Hotel dataset. Also, the evaluation
measure is questionable as it is sensitive to denser matches. The experiments should include comparison
using more standard evaluation measures; see eg [3] for evaluation measures to be considered.

Thanks much for helping us improve our empirical experiments. In additional to several tens of thousands
more experiments on synthetic data, we have applied our new method to more benchmark datasets including
CMUHouse and Hotel datasets (as well as the Graf and Bikes datasets from http://www.robots.ox.ac.uk/~vgg/research/affine),
as suggested by the reviewers. The detailed comparison and empirical performance are detailed in Section
6. Also, thanks for the suggestion on more standard evaluation measures. We have now applied the metric
described in HaCohen et al [3], which evaluates the deviations of manual feature correspondences.

1.5 Response to Reviewer 7
1. It is not clear to me that Fig.2 really corresponds to the numbers stated in the text next to the figure.

We appreciate your comment in pointing out the inconsistency – these were indeed typos. In the current
submission, we have derived new (and significantly better) algorithms, and hence these plots for the old
methodologies are no longer included in the current version.

2. The experiments on real data are fine, but only two images sets seem quite few. In the context
of local descriptor evaluation, there exists at least one dataset that provides images of the same structure
seen under different viewing conditions: http://www.robots.ox.ac.uk/~vgg/research/affine. It would be nice
if some additional experiments could be performed on this data.

Thanks for pointing out the lack of experimental evaluation in our initial evaluation. According to
the reviewers’ suggestion, we have added four benchmark data sets: (the Graf and Bikes datasets from
http://www.robots.ox.ac.uk/~vgg/research/affine, as well as CMU Housing and Hotel), and compared our
algorithm against the best-known graph clustering and graph matching algorithms on these real-world data
sets as well as synthetic data. All of them confirm the practical ability of MatchLift, which outperforms all
other algorithms. Details can be found in Section 6.

3. The idea follows the work of Huang and Guibas, but is novel enough.
We have now derived completely new formulation, which is significantly different from Huang and Guibas.

Our theoretical guarantees, which allow dense error correction, also significantly outperforms those reported
in Huang and Guibas (which requires that no more than 50% errors are present).

2 Notation and Convention
Let Ii (1 ≤ i ≤ m) denote the index set of the shapes containing points i, and let ni := |Ii| (1 ≤ i ≤ m)
represent the number of shapes containing point i. Define N := n1 + · · · + nm. We also set [m] :=
{1, 2, · · · ,m}.

Some useful notation is summarized in Table 1.

3 Alternating Direction Method of Multipliers (ADMM)
Recall that our algorithm is given by

(MatchLift) minimize
X

−
∑

(i,j)∈G

〈
X in
ij ,Xij

〉
+ λ

〈
1 · 1>,X

〉
subject to X ≥ 0,[

m 1>

1 X

]
� 0, (3)

Xii = I, (4)

where mi := |Si|.
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Symbol Description
1 ones vector: a vector with all entries one

Xij (i, j)-th block of a block matrix X.
〈A,B〉 matrix inner product, i.e. 〈A,B〉 = tr

(
A>B

)
.

diag(X) a column vector formed from the diagonal of a square matrix X
Diag(x) a diagonal matrix that puts x on the main diagonal

ei ith unit vector, whose ith component is 1 and all others 0

⊗ tensor product, i.e. A⊗B =


a1,1B a1,2B · · · a1,n2

B
a2,1B a2,2B · · · a2,n2B

...
...

...
...

an1,1B an1,2B · · · an1,n2
B


Ωgt,Ω

⊥
gt support of Xgt, its complement support

Tgt, T
⊥
gt tangent space at Xgt, its orthogonal complement

PΩgt , PΩ⊥
gt

projection onto the space of matrices supported on Ωgt and Ω⊥gt,
respectively

PTgt
, PT⊥

gt
projection onto Tgt and T⊥gt , respectively

Table 1: Summary of Notation and Parameters

For notational simplicity, we represent the convex program as follows:

minimize 〈W ,X〉 dual variable
subject to A(X) = b, yA

B(X) + t = c, yB

t ≥ 0, z ≥ 0

X ≥ 0, Z ≥ 0

X � 0, S � 0

where the matrices and operators are defined as follows
(i) W encapsulate all block coefficient matrices W ij for all (i, j) ∈ G;
(ii) A(X) = b represents the constraint that Xii = Imi (1 ≤ i ≤ n);
(iii) B(X) + t = c and t ≥ 0 reformulate all constraints Xij1 ≤ 1 and XT

ij1 ≤ 1;
(iv) The variables on the right hand, i.e., yA,yB, z,Z and S, represent dual variables associated with

respective constraints.
The Lagrangian associated with the convex program can be given as follows

L = 〈W ,X〉+ 〈yA,A(X)− b〉+ 〈yB,B(X) + t− c〉 − 〈z, t〉 − 〈Z,X〉 − 〈S,X〉
= 〈W +A∗(yA) + B∗(yB)−Z − S,X〉 − 〈b,yA〉 − 〈c,yB〉 − 〈z − yB, t〉.

where A∗ denotes the conjugate operator w.r.t. an operator A. The augmented Lagrangian for the convex
program can now be written as

L1/µ =〈b,yA〉+ 〈c,yB〉+ 〈z − yB, t〉+ 〈Z + S −W −A∗(yA)− B∗(yB),X〉

+
1

2µ
‖z − yB‖2F +

1

2µ
‖Z + S −W −A∗(yA)− B∗(yB)‖2F.

Here, the linear terms above represent the negative standard Lagrangian, whereas the quadratic parts rep-
resent the augmenting terms. µ is the penalty parameter that balances the standard Lagrangian and the
augmenting terms. The ADMM then proceeds by alternately optimizing each primal and dual variable with
others fixed, which results in closed-form solution for each subproblem. Denote by superscript k the iteration
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number, then we can present the ADMM iterative update procedures as follows

y
(k+1)
A = (AA∗)−1

{
A
(
−W + S(k) + µX(k) + Z(k) − B∗

(
y

(k)
B

))
− µb

}
,

y
(k+1)
B = (BB∗ + I)

−1
{
B
(
−W + S(k) + µX(k) + Z(k) −A∗

(
y

(k+1)
A

))
+ z(k) + µt(k) − µc

}
,

z(k+1) =
(
y

(k+1)
B − µt(k)

)
+, (5)

Z(k+1) =
(
W +A∗

(
y

(k+1)
A

)
+ B∗

(
y

(k+1)
B

)
− S(k) − µX(k)

)
+
,

S(k+1) = Ppsd

(
W +A∗

(
y

(k+1)
A

)
+ B∗

(
y

(k+1)
B

)
−Z(k+1) − µX(k)

)
, (6)

X(k+1) = Xk +
1

µ

(
Z(k+1) + S(k+1) −W −A∗

(
y

(k+1)
A

)
− B∗

(
y

(k+1)
B

))
(7)

=− 1

µ
Pnsd

(
W +A∗

(
y

(k+1)
A

)
+ B∗

(
y

(k+1)
B

)
−Z(k+1) − µX(k)

)
, (8)

t(k+1) = t(k) +
z(k+1) − y

(k+1)
B

µ
. (9)

Here, the operator Ppsd (resp. Pnsd) denotes the projection onto the positive (resp. negative) semidefinite
cone, and (·)+ operator projects all entries of a vector / matrix to non-negative values. Within a reasonable
amount of time, ADMM typically returns moderately acceptable results.

4 Proof of Theorem 1
Theorem 1 (Exact Recovery). Consider the randomized model described in the main body of the paper.
There exists a universal constant c > 0 such that if

ptrue > c0
log2 (mn)
√
npobsp2

set

,

then Xgt is the unique solution to MatchLift with probability exceeding 1− 1
(mn)3 .

To prove Theorem 1, we first analyze the Karush–Kuhn–Tucker (KKT) condition for exact recovery, which
provides a sufficient and almost necessary condition for uniqueness and optimality. Valid dual certificates
are then constructed to guarantee exact recovery.

4.1 Preliminaries and Notations
Without loss of generality, we can treat Xgt as a sub-matrix of an augmented square matrix Xgt

sup such that

Xgt
sup := 1 · 1> ⊗ In, (10)

and

Xgt :=


Π1

Π2

. . .
Πn

Xgt
sup


Π>1

Π>2
. . .

Π>n

 , (11)

where the matrices Πi ∈ R|Si|×m are defined such that Πi denotes the submatrix of Im coming from its
rows at indices from Si. For instance, if Si = {2, 3}, then one has

Πi =

[
0 1 0 · · · 0
0 0 1 · · · 0

]
.
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With this notation, ΠiMΠ>j represents a submatrix of M ∈ Rm×m coming from the rows at indices from
Si and columns at indices from Sj . Conversely, for any matrix M̃ ∈ R|Si|×|Sj |, the matrix Π>i M̃Πj converts
M̃ to an m×m matrix space via zero padding.

With this notation, we can represent X in as a submatrix of X in
sup, which is a corrupted version of Xgt

sup

and obeys
X in
ij := Πi

(
X in

sup

)
ij

Π>j . (12)

For notational simplicity, we set

W ij :=

{
−X in

ij +
√
pobs

2 1 · 1>, if (i, j) ∈ G,
√
pobs

2 1 · 1>, else.
(13)

Before continuing to the proof, it is convenient to introduce some notations that will be used throughout.
Denote by Ωgt and Ω⊥gt the support of Xgt and its complement support, respectively, and let PΩgt

and PΩ⊥
gt

represent the orthogonal projection onto the linear space of matrices supported on Ωgt and its complement
support Ω⊥gt, respectively. Define Tgt to be the tangent space at Xgt w.r.t. all symmetric matrices of rank
at most m, i.e. the space of symmetric matrices of the form

Tgt :=




Π1

Π2

...
Πn

M + M> [ Π>1 Π>2 · · · Π>n
]

: M ∈ Rm×N

 , (14)

and denote by T⊥gt its orthogonal complement. We then denote by PTgt
(resp. PT⊥

gt
) the orthogonal projection

onto Tgt (resp. T⊥gt). In passing, if we define

Σ := Diag

{[
n

n1
, · · · , n

nm

]}
, (15)

then the columns of

U :=
1√
n


Π1

Π2

...
Πn

Σ
1
2 (16)

form the set of eigenvectors of Xgt, and for any symmetric matrix M ,

PT⊥
gt

(M) =
(
I −UU>

)
M
(
I −UU>

)
. (17)

Furthermore, we define a vector d to be

d :=


Π1

Π2

...
Πn

Σ1m. (18)

Put another way, if any row index j of Xgt is associated with the element s ∈ [m], then dj = n
ns
. One can

then easily verify that 〈
d · d>,Xgt −

1

m
1 · 1>

〉
=
〈
d · d>,Xgt

〉
− 1

m

(
1> · d

)2
= 0. (19)

In fact, when ni’s are sufficiently close to each other, d · d> is a good approximation of 1 · 1>, as claimed in
the following lemma.
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Lemma 1. Consider a set of Bernoulli random variables νi ∼ Bernoulli (p) (1 ≤ i ≤ n), and set s :=∑n
i=1 νi. Let ni (1 ≤ i ≤ m) be independent copies of s, and denote N = n1 + · · ·+ nm. If p > c7 log2(mn)

n ,
then the matrix

A := (np)
2


1
n1

1n1

1
n2

1n2

...
1
nm

1nm

 [ 1
n1

1>n1

1
n2

1>n2
· · · 1

nm
1>nm

]
(20)

satisfies ∥∥∥∥ 1

m
A− 1

m
1N · 1>N

∥∥∥∥ ≤ c8√np log(mn) (21)

and ∥∥A− 1N · 1>N
∥∥
∞ ≤ c9

√
log(mn)

np
(22)

with probability exceeding 1− 1
m5n5 , where c7, c8, c9 are some universal constants.

Proof. See Appendix A.1.

Since p2d · d> is equivalent to A defined in (20) up to row / column permutation, Lemma 1 reveals that∥∥∥∥p2

m
d · d> − 1

m
1N · 1>N

∥∥∥∥ ≤ c8√np log(mn)

with high probability.
The following bound on the operator norm of a random block matrix is useful for deriving our main

results.

Lemma 2. Let M = [M ij ]1≤i,j≤n be a symmetric block matrix, where M ij’s are jointly independent mi×mj

matrices satisfying

EM ij = 0, E ‖M ij‖2 ≤ 1, and ‖M ij‖ ≤
√
n, (1 ≤ i, j ≤ n). (23)

Besides, mi ≤ m holds for all 1 ≤ i ≤ n. Then there exists an absolute constant c0 > 0 such that

‖M‖ ≤ c0
√
n log (mn)

holds with probability exceeding 1− 1
m5n5 .

Proof. See Appendix A.2.

Additionally, the second smallest eigenvalue of the Laplacian matrix of a random Erdős–Rényi graph can
be bounded below by the following lemma.

Lemma 3. Consider an Erdős–Rényi graph G ∼ G(n, p) and any positive integer m, and let L ∈ Rn×n
represent its (unnormalized) Laplacian matrix. There exist absolute constants c3, c4 > 0 such that if p >
c3 log2 (mn) /n, then the algebraic connectivity a (G) of G (i.e. the second smallest eigenvalue of L) satisfies

a (G) ≥ np− c4
√
np log (mn) (24)

with probability exceeding 1− 2
(mn)5 .

Proof. See Appendix A.3.

Finally, if we denote by ns (resp. ns,t) the number of sets Si (1 ≤ i ≤ n) containing the element s (resp.
containing s and t simultaneously), then these quantities sharply concentrate around their mean values, as
stated in the following lemma.
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Lemma 4. There are some universal constants c8, c9 > 0 such that if p2
set >

log(mn)
n , then

|ns − npset| ≤
√
c8npset log (mn), ∀1 ≤ s ≤ m,∣∣ns,t − np2

set

∣∣ ≤√c8np2
set log (mn), ∀1 ≤ s < t ≤ m,

hold with probability exceeding 1− 1
(mn)10 .

Proof. In passing, the claim follows immediately from the Bernstein inequality that

P

(∣∣∣∣∣
n∑
i=1

νi − np

∣∣∣∣∣ > t

)
≤ 2 exp

(
−

1
2 t

2

np(1− p) + 1
3 t

)
where νi ∼ Bernoulli(p) are i.i.d. random variables. Interested readers are referred to [4] for a tutorial.

4.2 Optimality and Uniqueness Condition
Recall that ni := |Ii|. The convex relaxation is exact if one can construct valid dual certificates, as summa-
rized in the following lemma.

Lemma 5. Suppose that there exist dual certificates α > 0, Z = [Zij ]1≤i,j≤n ∈ SN×N and Y = [Y ij ]1≤i,j≤n ∈
SN×N obeying

Y − αdd> � 0, (25)
PΩgt (Z) = 0, PΩ⊥

gt
(Z) ≥ 0, (26)

Y ij = W ij −Zij , 1 ≤ i < j ≤ n, (27)

Y − αdd> ∈ T⊥gt . (28)

Then Xgt is the unique solution to MatchLift if either of the following two conditions is satisfied:
i) All entries of Zij (∀i 6= j) within the support Ω⊥gt are strictly positive;
ii) For all M satisfying PT⊥

gt
(M) � 0,〈

Y − αdd>,PT⊥
gt

(M)
〉
> 0, (29)

and, additionally,
n

ni
+

n

nj
6= n2

ninj
, 1 ≤ i, j ≤ m. (30)

Proof. See Appendix A.4.

That said, to prove Theorem 1, it is sufficient (under the hypotheses of Theorem 1) to generate, with
high probability, valid dual certificates Y , Z and α > 0 obeying the optimality conditions of Lemma 5. This
is the objective of the next subsection.

4.3 Construction of Dual Certificates
Decompose the input X in into two components X in = X false + Xtrue, where

Xtrue = PΩgt

(
X in

)
, and X false = PΩ⊥

gt

(
X in

)
. (31)

That said, Xtrue (resp. X false) consists of all correct (resp. incorrect) correspondences (i.e. non-zero entries)
encoded in X in. This allows us to write

W ij =

{
−X false

ij +
√
pobs

2 Eij −Xtrue
ij +

√
pobs

2 E⊥ij , if (i, j) ∈ G,
√
pobs

2 Eij +
√
pobs

2 E⊥ij , else,
(32)

10



where E and E⊥ are defined to be

E := PΩgt

(
1 · 1>

)
, and E⊥ := 1 · 1> −E. (33)

We propose constructing the dual certificate Y by producing three symmetric matrix components Y true,1,
Y true,2, and Y L separately, as follows.

1. Construction of Zm and Rm. For any β ≥ 0, define αβ as

αβ := arg min
τ :β1·1>−τd·d>≥0

∥∥∥β1 · 1> − τd · d>
∥∥∥
∞
. (34)

By setting β0 :=
√
pobs

2 − pobs

m −
√

c10pobs log(mn)
np3

set
, we produce Zm and Rm as follows

Zm = PΩ⊥
gt

((√
pobs

2
− pobs

m

)
1 · 1> − αβ0

d · d>
)

(35)

and
Rm = PΩgt

((√
pobs

2
− pobs

m

)
1 · 1> − αβ0

d · d>
)

(36)

for some sufficiently large constant c10 > 0.

2. Construction of Y true,1 and Y true,2. We set

Y true,1
ij =

{
−Xtrue

ij + pobs

m Eij , if i < j,∑n
j=1 ΠiΠ

>
i

(
Xtrue
ij − pobs

m Eij

)
ΠjΠ

>
i , if i = j,

and

Y true,2
ij =

{
Rm
ij , if i < j,

−
∑n
j=1 ΠiΠ

>
i R

m
ijΠjΠ

>
i , if i = j.

3. Construction of Y L and ZL via an iterative procedure. Next, we generate Y L via the following iterative
procedure. Here, for any matrix M , we let M ij(s, s

′) represent the entry in the (i, j)th block M ij

that encodes the correspondence from s to s′.

Construction of a dual certificate Y L.
1. initialize: Set the symmetric matrix Y L,0 such that

Y L,0
ij =

{
−X false

ij + pobs

m E⊥ij , if i < j,

0, if i = j,

and start with ZL = 0.
2. for each non-zero entry Y L,0

ij (s, s′):
3. Set a = Y L,0

ij (s, s′), Bi,j,s,s′ = {l /∈ {i, j} | (s, s′) ∈ Sl} and ns,s
′

i,j = |Bi,j,s,s′ |.
4. for each set l ∈ Bi,j,s,s′ : perform

ZL
il (s, s

′)← ZL
il (s, s

′)− a

ns,s′
i,j

, ZL
li (s′, s)← ZL

li (s′, s)− a

ns,s′
i,j

,

ZL
lj (s, s′)← ZL

lj (s, s′)− a

ns,s′
i,j

, ZL
jl (s

′, s)← ZL
jl (s

′, s)− a

ns,s′
i,j

,

ZL
ll (s, s

′)← ZL
ll (s, s

′) + a

ns,s′
i,j

, ZL
ll (s
′, s)← ZL

ll (s
′, s) + a

ns,s′
i,j

.

5. output: Y L = Y L,0 + ZL.

11



1 2 1 3 2 3 4 2 3
1 0 0 0 0 0 0 0 0 0
2 0 0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
3 0 −1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

1 2 1 3 2 3 4 2 3
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0.5 0 0 0.5
1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0.5 0 0 0.5 0
2 0 0 0 0.5 0 −0.5 0 0 0
3 0 0.5 0 0 −0.5 0 0 0 0
4 0 0 0 0 0 0 0 0 0
2 0 0 0 0.5 0 0 0 0 −0.5
3 0 0.5 0 0 0 0 0 −0.5 0

(a) Input Y 0 (b) ZL

Figure 1: A toy example for constructing ZL, where 4 shapes S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3, 4}, and
S4 = {2, 3} are considered. The input incorrectly maps point 1 to 3 between S1 and S2, and both points are
contained in S3 and S4.

4. Construction of Y and Z: define Y and Z such that

Y = Y true,1 + Y true,2 + Y L + αβ0
d · d>, (37)

Zij =

{
Zm
ij −ZL

ij , if i 6= j,

0, if i = j.
(38)

Remark 1. Below is a toy example to illustrate the proposed procedure for constructing ZL. Consider three
sets S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3, 4}, and S4 = {1, 3}. Suppose that Y L,0 only contains two non-zero
entries that incorrectly maps elements 1 to 3 in Y L,0

12 , as illustrated in Fig. 1(a). The resulting ZL is shown
in Fig. 1(b). Clearly, Y L,0 + ZL obeys Y L,0 + ZL ∈ T⊥gt .

With the above construction procedure, one can easily verify that:
(1) Y true,1, Y true,2 and Y L are all contained in the space T⊥gt ;
(2) PΩgt (Z) = 0;
(3) For any i 6= j, if we set Mm := αβ0

d · d>, then

Y ij =Y true,1
ij + Y true,2

ij + Y L
ij + Mm

ij

=−Xtrue
ij +

pobs

m
Eij + Rm

ij −X false
ij +

pobs

m
E⊥ij + ZL

ij + Mm
ij

=−Xtrue
ij −X false

ij +

√
pobs

2
1 · 1> −

((√
pobs

2
− pobs

m

)
1 · 1> −Rm

ij

)
+ ZL

ij + Mm
ij

=W ij −
(
Zm
ij −ZL

ij

)
. (39)

Furthermore, from Lemma 1 one can obtain

∥∥∥d · d> − 1 · 1>
∥∥∥
∞

= O

(√
log (mn)

npset

)
.

This taken collectively with (34) ensures that

αβ0
=

√
pobs

2
− pobs

m
−O

(√
c10pobs log (mn)

np3
set

)
> 0 (40)

as long as p3
set >

c15 log(mn)
n for some constant c15 > 0.

12



Consequently, we will establish that Y and Z are valid dual certificates if they satisfy{
all entries of Zm

ij −ZL
ij (∀i 6= j) within Ω⊥gt are strictly positive;

Y true,1 + Y true,2 + Y L � 0.
(41)

Lemma 6. There are some universal constants c0, c1 > 0 such that

∥∥∥Y L
∥∥∥ ≤ c0

√
npobs log (mn)

p2
set

and ∥∥∥ZL
ij

∥∥∥
∞
≤

√
c1pobs log (mn)

np3
set

, ∀i 6= j

with probability exceeding 1− 1
(mn)4 .

Proof. See Appendix A.5.

Lemma 7. There are some universal constants c5, c6, c7 > 0 such that if ptruepobspset >
c7 log2(mn)

n , then
with probability exceeding 1− 1

(mn)10 , one has

∥∥Y true,2
∥∥ ≤ c5

√
npobs log (mn)

pset
,

and 〈
vv>,Y true,1

〉
≥ 1

2
npsetptruepobs − c6

√
npsetpobs log (mn)

for all unit vector v satisfying vv> ∈ T⊥gt .

Proof. See Appendix A.6.

Combining Lemmas 6 and 7 yields that there exists an absolute constant c0 > 0 such that if

ptrue > c0
log2 (mn)√
npobsp4

set

,

then
Y = Y true,1 + Y true,2 + Y L � 0.

On the other hand, observe that all entries of the non-negative matrix Zm lying in the index set Ω⊥gt are

bounded below in magnitude by
√

c10pobs log(mn)
np3

set
. For sufficiently large c10, one can conclude that all entries

of Zm
il −ZL

il outside Ωgt are strictly positive.
So far we have justified that Y and Z satisfy (41), thereby certifying that the proposed algorithm correctly

recovers the ground-truth matching.

A Proofs of Auxiliary Lemmas

A.1 Proof of Lemma 1
Denote by A := 1N · 1TN . From Bernstein inequality, ni sharply concentrates around np such that if
p > c6 log2(mn)

n

|ni − np| ≤ c5
√
np log(mn), ∀1 ≤ i ≤ m (42)

13



with probability exceeding 1− (mn)−10, where c5, c6 > 0 are some absolute constants.
The bound (42) also implies that∥∥∥∥∥∥∥∥∥I −


np
n1

np
n2

. . .
np
nm


∥∥∥∥∥∥∥∥∥ ≤ max

1≤i≤m

|ni − np|
ni

≤
c5
√
np log(mn)

np− c5
√
np log(mn)

≤ 2c5

√
log(mn)

np
.

Similarly, one has
|N − nmp| ≤ c5

√
pmn log(mn)

with probability exceeding 1− (mn)−10, which implies that∥∥A∥∥ = N ≤ nmp+ c5
√
pmn log(mn) < 2nmp.

Rewrite A as

A :=


np
n1

Diag (1n1
)

. . .
np
nm

Diag (1nm
)

 ·A ·


np
n1

Diag (1n1
)

. . .
np
nm

Diag (1nm
)

 .
This allows us to bound the deviation of A from A as follows

∥∥A−A
∥∥ ≤

∥∥∥∥∥∥∥A−


np
n1

Diag (1n1
)

. . .
np
nm

Diag (1nm
)

A

∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥


np
n1

Diag (1n1
)

. . .
np
nm

Diag (1nm
)

A−A

∥∥∥∥∥∥∥
≤


∥∥∥∥∥∥∥


np
n1

Diag (1n1
)

. . .
np
nm

Diag (1nm
)


∥∥∥∥∥∥∥+ 1

∥∥A∥∥
∥∥∥∥∥∥∥I −


np
n1

Diag (1n1
)

. . .
np
nm

Diag (1nm
)


∥∥∥∥∥∥∥

≤

(
1 + c5

√
log(mn)

np
+ 1

)
2nmp · 2c5

√
log(mn)

np

≤ c6m
√
np log(mn)

for some universal constant c6 > 0.
On the other hand, it follows immediately from (42) that

∥∥A− 1 · 1>
∥∥
∞ = max

1≤i,j≤m

∣∣∣∣∣ (np)2

ninj
− 1

∣∣∣∣∣ = max
1≤i,j≤m

∣∣∣∣pn (pn− nj) + (pn− ni)nj
ninj

∣∣∣∣
≤ max

1≤i,j≤m

∣∣∣pn+ c5
√
np log(mn)

∣∣∣(
pn− c5

√
np log(mn)

)2 c5
√
np log(mn)

≤ c9

√
log(mn)

np

for some absolute constant c9 > 0.
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A.2 Proof of Lemma 2
The norm of M can be bounded via the moment method, which attempts to control tr(Mk) for some even
integer k. See [5, Section 2.3.4] for a nice introduction.

Specifically, observe that Etr(Mk) can be expanded as follows

Etr
(
Mk

)
=

∑
1≤i1,··· ,ik≤n

Etr (M i1i2M i2i3 · · ·M iki1) ,

a trace sum over all k-cycles in the vertex set {1, · · · , n}. Note that (i, i) are also treated as valid edges. For
each term Etr(M i1i2M i2i3 · · ·M iki1), if there exists an edge occurring exactly once, then the term vanishes
due to the independence assumption. Thus, it suffices to examine the terms in which each edge is repeated at
least twice. Consequently, there are at most k/2 relevant edges, which span at most k/2+1 distinct vertices.
We also need to assign vertices to k/2 edges, which adds up to no more than (k/2)

k different choices.
By following the same procedure and notation as adopted in [5, Page 119], we divide all non-vanishing

k-cycles into (k/2)
k classes based on the above labeling order; each class is associated with j (1 ≤ j ≤ k/2)

edges e1, · · · , ej with multiplicities a1, · · · , aj , where (e1, · · · , a1, · · · , aj) determines the class of cycles and
a1 + · · ·+ aj = k. Since there are at most nj+1 distinct vertices, one can see that no more than nj+1 cycles
falling within this particular class. For notational simplicity, set K =

√
n, and hence ‖M ij‖ ≤ K. By

assumption (23), one has

Etr (M i1i2M i2i3 · · ·M iki1) ≤ mE
(
‖M e1‖

a1 · · ·
∥∥M ej

∥∥aj)
≤ mE ‖M e1‖

2 · · ·E
∥∥M ej

∥∥2
Ka1−2 · · ·Kaj−2

≤ mKk−2j .

Thus, the total contribution of this class does not exceed

mnj+1Kk−2j = mn
k
2 +1.

By summing over all classes one obtains the crude bound

Etr
(
Mk

)
≤ m

(
k

2

)k
n

k
2 +1,

which follows that

E ‖M‖k ≤ Etr
(
Mk

)
≤ m

(
k

2

)k
n

k
2 +1.

If we set k = log (mn), then from Markov’s inequality we have

P
(
‖M‖ ≥ k

2
n

1
2 + 1

k (mn)
5
k m

1
k

)
≤ E ‖M‖k(

k
2n

1
2 + 1

k (mn)
5
k m

1
k

)k ≤ m
(
k
2

)k
n

k
2 +1

m
(
k
2

)k
n

k
2 +1 (mn)

5
≤ 1

(mn)
5 .

Since n
1

log n = O (1), there exists a constant c0 > 0 such that

P
(
‖M‖ ≥ c0n

1
2 log (mn)

)
≤ 1

m5n5
,

which completes the proof.

A.3 Proof of Lemma 3
When G ∼ G(n, p), the adjacency matrixA consists of independent Bernoulli components (except for diagonal
entries), each with mean p and variance p(1− p). Lemma 2 immediately implies that if p > 2 log(mn)

n , then

1√
p(1− p)

∥∥A− p1n · 1>n ∥∥ ≤ c0√n log (mn) + 1 (43)
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with probability at least 1− (mn)−5. That said, there exists an absolute constant c1 > 0 such that∥∥A− p1n · 1>n ∥∥ ≤ c1√pn log (mn) (44)

with probability exceeding 1− (mn)−5.
On the other hand, from Bernstein inequality, the degree of each vertex exceeds

dmin := pn− c2
√
pn log (mn) (45)

with probability at least 1 − (mn)
−10, where c2 is some constant. When p > 2 log(mn)

n , G is connected, and
hence the least eigenvalue of L is zero with the eigenvector 1n. This taken collectively with (44) and (45)
suggests that when p > c23 log2(mn)

n , one has

a (G) ≥ dmin −
∥∥A− p1n · 1>n ∥∥ ≥ pn− c3√pn log (mn)

with high probability.

A.4 Proof of Lemma 5
Suppose that Xgt + H is the solution to MatchLift for some perturbation H 6= 0. By Schur complement

condition for positive definiteness, the feasibility constraint
[
m 1>

1 Xgt + H

]
� 0 is equivalent to

{
Xgt + H � 0,

Xgt + H − 1
m1 · 1> � 0,

which immediately yields
PT⊥

gt
(H) = PT⊥

gt

(
Xgt + H

)
� 0, (46)

and 〈
d · d>,H

〉
=

〈
d · d>,Xgt − 1

m
1 · 1> + H

〉
≥ 0. (47)

The above inequalities follow from the facts PT⊥
gt

(
Xgt

)
= 0 and

〈
d · d>,Xgt − 1

m1 · 1>
〉

= 0.
From Assumption (28), one can derive〈

Y − αd · d>,PT⊥
gt

(H)
〉

+
〈
αd · d>,H

〉
=
〈
Y − αd · d>,H

〉
+
〈
αd · d>,H

〉
= 〈Y ,H〉 =

∑
i 6=j

〈Y ij ,Hij〉 . (48)

This allows us to bound 〈
Y − αd · d>,PT⊥

gt
(H)

〉
+
∑
i6=j

〈Zij ,Hij〉

≤
〈
Y − αd · d>,PT⊥

gt
(H)

〉
+
〈
αd · d>,H

〉
+
∑
i 6=j

〈Zij ,Hij〉 (49)

=
∑
i 6=j

〈Y ij ,Hij〉+
∑
i 6=j

〈Zij ,Hij〉 (50)

=
∑
i 6=j

〈W ij ,Hij〉 , (51)

where the first inequality follows from (47), and the last equality follows from Assumption (27).
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In order to preclude the possibility that Xgt + H is the solution to MatchLift, we need to show that∑
i 6=j 〈W ij ,Hij〉 > 0. From (51) it suffices to establish that〈

Y − αd · d>,PT⊥
gt

(H)
〉

+
∑
i6=j

〈Zij ,Hij〉 > 0 (52)

for any feasible H 6= 0. In fact, since Y − αd · d> and PT⊥
gt

(H) are both positive semidefinite, one must
have 〈

Y − αd · d>,PT⊥
gt

(H)
〉
≥ 0. (53)

On the other hand, the constraints

supp (Z) ⊆ Ω⊥gt, PΩ⊥
gt

(Z) ≥ 0, and PΩ⊥
gt

(H) ≥ 0

imply that ∑
i 6=j

〈Zij ,Hij〉 ≥ 0. (54)

Putting (53) and (54) together gives〈
Y − αd · d>,PT⊥

gt
(H)

〉
+
∑
i 6=j

〈Zij ,Hij〉 ≥ 0.

Comparing this with (52), we only need to establish either
〈
Y − αd · d>,PT⊥

gt
(H)

〉
> 0 or

∑
i6=j 〈Zij ,Hij〉 >

0.
i) Suppose first that all entries of Zij (∀i 6= j) in the support Ω⊥gt are strictly positive. If the identity∑
i 6=j 〈Zij ,Hij〉 = 0 holds, then the strict positivity assumption of Zij on Ω⊥gt as well as the constraint

PΩ⊥
gt

(H) ≥ 0 immediately leads to
PΩ⊥

gt
(H) = 0.

Besides, the feasibility constraint requires that PΩgt
(Hij) ≤ 0. If PΩgt

(Hij) 6= 0, then all non-zero entries
of Hij are negative, and hence 〈

d · d>,H
〉

=
〈
d · d>,PΩgt (H)

〉
< 0,

which follows since all entries of d are strictly positive. This contradicts with (47). Consequently, we must
either have H = 0 or

∑
i6=j 〈Zij ,Hij〉 > 0. This together with (52) establishes the claim.

ii) Next, we prove the claim under Assumptions (29) and (30). In fact, Assumption (29) together with
(46) asserts that

〈
Y ,PT⊥

gt
(H)

〉
≤ 0 can only occur if PT⊥

gt
(H) = 0. This necessarily leads to H = 0, as

claimed by Lemma 8.

Lemma 8. Suppose that Xgt + H is feasible for MatchLift, and assume that

n

ni
+

n

nj
6= n2

ninj
, ∀1 ≤ i, j ≤ m. (55)

If PT⊥
gt

(H) = 0, then one has H = 0.

Proof. See Appendix A.7.

In summary, we can conclude that Xgt is the unique optimizer in both cases.
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A.5 Proof of Lemma 6
First, we would like to bound the operator norm of Y L. Since each observed yet corrupted X in

ij is randomly
drawn with mean pobs

m 1 · 1>, it is straightforward to see that

EY L,0 = E
(
−X false +

pobs

m
E⊥
)

= 0.

By observing that ZL is constructed as a linear transform of Y L,0, one can also obtain

EZL = 0, ⇒ EY L = EZL + EY L,0 = 0.

Thus, it suffices to examine the deviation of
∥∥∥Y L

∥∥∥ caused by the uncertainty of X false.

Denote by Ai,j ∈ RN×N the component of ZL generated due to the block −X false
ij , which clearly satisfies

ZL = Ai,j − EAi,j .

For each non-zero entry of X false
ij , if it encodes an incorrect correspondence between elements s and t, then

it will affect no more than 8ns,t entries in Ai,j , where each of these entries are affected in magnitude by
an amount at most 1

ns,t
. Recall that ns,t represents the number of sets Si (1 ≤ i ≤ n) containing s and t

simultaneously, which sharply concentrates within
[
np2

set ±O
(√

np2
set log (mn)

)]
as asserted in Lemma 4.

As a result, the sum of squares of these affected entries is bounded by

8ns,t
n2
s,t

= O

(
1

ns,t

)
. (56)

Moreover, since each row / column of X false
ij can have at most one non-zero entry, we can rearrange Ai,j

with row / column permutation such that Ai,j becomes a block-diagonal matrix, where the components
affected by different entries of X false

ij are separated into distinct diagonal blocks. This together with (56)
leads to ∥∥Ai,j

∥∥ ≤ ∥∥Ai,j
∥∥

F
≤ max

s 6=t

√
8

ns,t
,

and hence ∥∥∥EAi,j
(
Ai,j

)>∥∥∥ ≤ pobs

(
max
s6=t

√
8

ns,t

)2

≤ c16pobs

np2
set

for some absolute constant c16 > 0, where the last inequality follows from Lemma 4.
Observe that Ai,j − EAi,j (i 6= j) are independently generated with mean zero, whose operator norm is

bounded above by 2 maxs6=t
√

8
ns,t

. Applying the matrix Bernstein inequality [6, Theorem 1.4] suggests that

there exist universal constants c5, c6 > 0 such that for any t = O (
√
npoly log (mn)),

P

∥∥∥∥∥∥
∑

(i,j)∈G

Ai,j − EAi,j

∥∥∥∥∥∥ > t

 ≤ n2 exp

− 1
2 t

2

n2
(
c16pobs

np2
set

)
+

2 maxs 6=t

√
8

ns,t

3

 .

Put in another way, there exists a universal constant c6 > 0 such that

∥∥∥ZL
∥∥∥ =

∥∥∥∥∥∥
∑
i 6=j

Ai,j − EAi,j

∥∥∥∥∥∥ < c6

√
npobs

p2
set

log (mn) (57)

holds with probability exceeding 1− 1
(mn)10 . This follows from Lemma 4.
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Additionally, observe that EY L,0
ij = 0 and∥∥∥∥ 1

√
pobs

Y L,0
ij

∥∥∥∥ ≤ √n
as long as pobs >

1
n . Applying Lemma 2 suggests that∥∥∥Y L,0

∥∥∥ < c0
√
npobs log (mn)

with probability at least 1− 1
(mn)5 . This combined with (57) yields

∥∥∥Y L
∥∥∥ ≤ ∥∥∥Y L,0

∥∥∥+
∥∥∥ZL

∥∥∥ < c11

√
npobs log (mn)

p2
set

with probability at least 1− 3
(mn)5 , where c11 is some universal constant.

On the other hand, for each (s, t) entry of ZL
il (i 6= l), it can only be affected by those observed blocks

X false
ij (or X false

jl ) satisfying t ∈ Sj (or s ∈ Sj). Consequently, each entry of ZL
il can be expressed as a sum

of Θ (npsetpobs) zero-mean independent variables, each of them being bounded in magnitude by 1
(mins 6=t ns,t)

.
From Hoeffding’s inequality one can derive

P
(∥∥∥ZL

il

∥∥∥
∞
> t
)
≤ m2P

− t2

c7npsetpobs
1(

min
s 6=t

ns,t

)2

 ≤ m2P

(
− t2

c̃7pobs
1

np3
set

)

for some constants c7, c̃7 > 0, indicating that

∥∥∥ZL
il

∥∥∥
∞
≤

√
c8pobs log (mn)

np3
set

, ∀i 6= l

with probability exceeding 1− 1
(mn)10 .

A.6 Proof of Lemma 7
The matrix Y true,1 can be decomposed into two parts Y

true,1
and Ỹ

true,1
. Here, Y

true,1
consists of all

components satisfying X in
ij = Xgt

ij , while Ỹ
true,1

consists of all X in
ij that are random outliers.

By Lemma 3, one can verify that for all unit vector v such that vv> ∈ T⊥gt ,〈
vv>,Y

true,1
〉
≥
(

1− pobs

m

)
min

1≤s≤m
(nsptruepobs − c4

√
nspobs log (mn))

≥ 1

2
npsetptruepobs − c5

√
npsetpobs log (mn) (58)

for some constant c5 > 0. Here, we have made use of the concentration result stated in Lemma 4. In
addition, each non-zero entry of Ỹ

true,1
has mean zero and variance pobs

m

(
1− pobs

m

)
. Consequently, applying

Lemma 2 gives ∥∥∥Ỹ true,1
∥∥∥ ≤ c15 max

1≤s≤m

√
pobsns log (nm) < c̃15

√
npsetpobs log (nm) .

This taken collectively with (58) yields that〈
vv>,Y true,1

〉
≥ 1

2
npsetptruepobs − (c5 + c̃15)

√
npsetpobs log (mn) . (59)
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On the other hand, we know from the construction procedure and Lemma 1 that

‖Rm‖∞ ≤

√
c10pobs log (mn)

np3
set

for some constant c10 > 0, and a crude upper bound yields

∥∥Y true,2
∥∥ ≤ ∥∥Y true,2

∥∥
1
≤ c11npset

√
pobs log (mn)

np3
set

= c11

√
npobs log (mn)

pset

for some universal constant c11 > 0.

A.7 Proof of Lemma 8
Define an augmented matrix Hsup such that

Hsup
ij = Π>i HijΠj . (60)

Recall that ni denotes the number of sets containing element i, and that

Σ :=


n
n1

n
n2

. . .
n
nm

 .
The assumption that PT⊥

gt
(H) = 0 can be translated into(

I − 1

n
(1n ⊗ Im) Σ (1n ⊗ Im)

)
Hsup

(
I − 1

n
(1n ⊗ Im) Σ (1n ⊗ Im)

)
= 0.

We can easily compute that

Hsup
ii −ΣH

sup

·i −H
sup

i· Σ + ΣH
sup

·· Σ = 0, 1 ≤ i ≤ n,

where 
H

sup

·i := 1
n

∑n
j=1 H

sup
ji ,

H
sup

i· := 1
n

∑n
j=1 H

sup
ij ,

H
sup

·· := 1
n2

∑n
i=1

∑n
j=1 H

sup
ij .

This combined with the identity Hii = 0 (and hence Hsup
ii = 0) yields

ΣH
sup

·· Σ = ΣH
sup

·i + H
sup

i· Σ, 1 ≤ i ≤ n.

Summing over all i leads to

ΣH
sup

·· Σ = Σ

(
1

n

n∑
i=1

H
sup

·i

)
+

(
1

n

n∑
i=1

H
sup

i·

)
Σ = ΣH

sup

·· + H
sup

·· Σ.

Expanding it yields
n2

ninj

(
H

sup

··

)
i,j

=

(
n

ni
+

n

nj

)(
H

sup

··

)
i,j
, 1 ≤ i, j ≤ m.

From our assumption that n2

ninj
6= n

ni
+ n

nj
, we can derive

H
sup

·· = 0. (61)

Due to the feasibility constraint, all diagonal entries of Hsup
ij are non-positive, and all off-diagonal entries

of Hsup
ij are non-negative. These conditions together with (61) establish that H = 0.
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A.8 Proof of Lemma 9
Lemma 9. Given any set of n permutation matrices P i ∈ Rm×m (1 ≤ i ≤ n), generate a random matrix
M via the following procedure.

1. Generate a symmetric block matrix A = [Aij ]1≤i,j≤n such that Aii = I for all 1 ≤ i ≤ n, and for all
i < j,

Aij =


0, if µij = 0,

P iP
>
j , if νij = 1 and µij = 1,

U ij , else,
(62)

where νij ∼ Bernoulli (p) and µij ∼ Bernoulli (τ) are independent binary variables, and U ij ∈ Rm×m
are independent random permutation matrices obeying EU ij = 1

m1m · 1>m.

2. M is a principal minor of A from rows / columns at indices from a set I ⊆ {1, 2, · · · ,mn}, where
each 1 ≤ i ≤ mn is contained in I independently with probability q.

Then there exist absolute constants c1, c2 > 0 such that if p ≥ c1 log2(mn)
q
√
τn

, one has{
λi (M) ≥

(
1− 1

log(mn)

)
τpqn, if 1 ≤ i ≤ m

λi (M) ≤ c2
√
τn log (mn) < τpqn

log(mn) , if i > m
(63)

with probability exceeding 1− 1
m5n5 . Here, λi(M) represents the ith largest eigenvalue of M .

Proof. See Appendix A.8.

Without loss of generality, we assume that P i = Im for all 1 ≤ i ≤ n, since row / column permutation
A does not change its eigenvalues. For convenience of presentation, we write A = Y + Z such that for all
1 ≤ i ≤ j ≤ n:

Y ij =


0, if µij = 0,

Im, if νij = 1 and µij = 1,

U ij , else,
(64)

and

Zij =


Im, if i = j and µij = 0,

Im −U ii, if i = j, µij = 1 and νii = 0,

0, else.
(65)

Apparently, Z is a block diagonal matrix satisfying

‖Z‖ ≤ 2, (66)

which is only a mild perturbation of Y . Thus, one has reduced to the case when all blocks are i.i.d., which
is slightly easier to analyze.

Decompose Y into 2 components Y = Y mean + Y var such that for all 1 ≤ i ≤ j ≤ n,

Y mean
ij = τ

(
(1− p)
m

1m · 1>m + pIm

)
, (67)

Y var
ij =


−τ
(

(1−p)
m 1m · 1>m + pIm

)
, if µij = 0,

(1− τp) Im − (1−p)
m 1m · 1>m, if νij = 1 and µij = 1,

U ij − τ
(

(1−p)
m 1m · 1>m + pIm

)
, else.

(68)

In other words, Y mean represents the mean component of Y , while Y var comprises all variations. It is
straightforward to check that Y mean � 0 and rank (Y mean) ≤ m + 1. If we denote by Y mean

I the principal
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minor coming from the rows and columns of Y at indices from I, then from Weyl’s inequality one can easily
see that

λi (M) ≥ λi (Y mean
I )− ‖Y var‖ − ‖Z‖ ≥ λi (Y mean

I )− ‖Y var‖ − 2, 1 ≤ i ≤ m (69)

and
λi (M) ≤ ‖Y var‖+ ‖Z‖ ≤ ‖Y var‖+ 2, i > m. (70)

In light of this, it suffices to evaluate ‖Y var‖ as well as the eigenvalues of Y mean
I .

We are now in position to quantify the eigenvalues of Y mean
I . Without affecting its eigenvalue distribution,

one can perform row / column permutation of Y mean
I so that

Y mean
I

(permutation)
= τp

 1n1 · 1>n1

. . .
1nm

· 1>nm

+
τ (1− p)

m
1N · 1>N . (71)

Here, ni (1 ≤ i ≤ m) denotes the cardinality of a set Ii generated by independently sampling n elements
each with probability q, and we set N := n1 + · · ·+nm for simplicity. From Bernstein inequality, there exist
universal constants c5, c6 > 0 such that if q > c5 log(mn)

n , then

|ni − nq| ≤ c6
√
nq log (mn), 1 ≤ i ≤ m (72)

holds with probability exceeding 1− (mn)
−10.

Since Y mean
I is positive semidefinite, from (71) one can see that all non-zero eigenvalues of Y mean

I are
also eigenvalues of the following (m+ 1)× (m+ 1) matrix

Y
mean
I : = τ


√
p1>n1 √

p1>n2

. . .
√
p1>nm√

1−p
m

1>N




√
p1n1 √

p1n2

. . .
√
p1nm

√
1−p
m

1N



= τ


pn1

√
p(1−p)

m
n1

pn2

√
p(1−p)

m
n2

. . .
...

pnm

√
p(1−p)

m
nm√

p(1−p)
m

n1

√
p(1−p)

m
n2 · · ·

√
p(1−p)

m
nm

1−p
m

N

 (73)

= τqn


p

√
p(1−p)

m

. . .
...

p
√

p(1−p)
m√

p(1−p)
m

· · ·
√

p(1−p)
m

1− p


︸ ︷︷ ︸

Y I,0

+ τ


p∆1

√
p(1−p)

m
∆1

. . .
...

p∆m

√
p(1−p)

m
∆m√

p(1−p)
m

∆1 · · ·
√

p(1−p)
m

∆m
1−p
m

∆N


︸ ︷︷ ︸

Y I,∆

(74)

where ∆i = ni − nq (1 ≤ i ≤ m), and ∆N = N − qnm which satisfies |∆N | ≤ mmax1≤i≤m |∆i|. By Schur

complement condition [7], if
[

C B

B> D

]
� 0, then C � 0 and D−B>C−1B � 0. Applying this condition

to Y I,0 suggests that if Y I,0 � 0, then

(1− p)− p (1− p)
m

1

p
1>m · 1m > 0,

which is contradictory since (1− p) − p(1−p)
m

1
p1>m · 1m = 0. Thus, Y I,0 is rank deficient. Apparently, Y I,0

has at least m eigenvalues equal to τqpn, which then suggests that λm+1

(
Y I,0

)
= 0 and

λi
(
Y I,0

)
= τpqn, 1 ≤ i ≤ m. (75)
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Besides, the residual component Y I,∆ can be bounded as follows

∥∥Y I,∆

∥∥ ≤ τ
∥∥∥∥∥∥∥∥


p∆1

. . .
p∆m

1−p
m

∆N


∥∥∥∥∥∥∥∥+ τ

∥∥∥∥∥∥∥∥∥∥


0

√
p(1−p)

m
∆1

. . .
...

0
√

p(1−p)
m

∆m√
p(1−p)

m
∆1 · · ·

√
p(1−p)

m
∆m 0


∥∥∥∥∥∥∥∥∥∥

F

≤ τ max

{
p max

1≤i≤m
|∆i| ,

1− p
m
|∆N |

}
+ τ
√

2p (1− p) max
1≤i≤m

|∆i|

≤ 2τ max
1≤i≤m

|∆i| ≤ 2c6τ
√
nq log (mn),

where the last inequality follows from (72). This taken collectively with (74) and (75) yields that: when
p > 2c6 log2(mn)√

nq or, equivalently, when 2c6
√
nq log (mn) < 1

log1.5(mn)
npq, one has

λi (Y mean
I ) ≥

(
1− 1

log
3
2 (mn)

)
τpqn, 1 ≤ i ≤ m,

λi (Y mean
I ) ≤ 2c6τ

√
nq log (mn) ≤ 1

log
3
2 (mn)

τpqn, i > m.
(76)

Finally, observe that EY var
ij = 0, E

∥∥∥ 1
2
√
τ
Y var
ij

∥∥∥2

≤ 1, and 1
2
√
τ

∥∥Y var
ij

∥∥ ≤ 1√
τ
. When τ > 1

n , Lemma 2
yields that

‖Y var‖ ≤ 2c0
√
τn log (mn) (77)

with probability at least 1 − (mn)−5. The claim then follows by substituting (76) and (77) into (69) and
(70).
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