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Abstract

We provide the proofs for the theorems in the main paper.

1 Proofs for Planted Clustering

In this section, Theorems 1-6 refer to the theorems in the main paper. Equations are numbered
continuously from the main paper. We let n; := rK and ny := n — rK be the numbers of non-
isolated and isolated nodes, respectively.

1.1 Proof of Theorem 1

The proof relies on information theoretical arguments and the Fano’s inequaliy [4]. We use
D (Ber(p)||Ber(q)) to denote the KL divergence between two Bernoulli distributions with mean
p and ¢g. We first state an upper bound on D (Ber(p)||Ber(q)), which is used later in the proof:
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where (a) follows from the inequality logz < x —1,Vx > 0. Let Py« 4y be the joint distribution of

Y* and A when Y™ is sampled from ) uniformly at random and A is generated according to the
planted clustering model. Because the supremum is lower bounded by the average, we have

inf sup P [Y 4 Y*} > inf Py, [Y/ 4 Y*} . (17)

Let H(X) be the entropy of a random variable X and I(X; Z) the mutual information between X

and Z. By Fano’s inequality, we have for any Y,
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This implies log|Y| > %nl log 7 under the assumption that 8 < K < n/2 and n > 32. On the

other hand, note that H(A) < (5) H(A12) because the A;;’s are identically distributed by symmetry.

Furthermore,the A4;;’s are independent conditioned on Y*, so H(A|Y™*) = () H(A12|Y7y). It follows
that I(Y*; A) = H(A) — H(A|Y™*) < (5)I(Yy; A12). We bound I(Y7y; A12) below. Observe that
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and thus P(A12 =1) = 8 :=ap+ (1 — a)q. It follows that

I(Yiy; A12) = oD (Ber(p)|[Ber(5)) + (1 — a) D (Ber(g)||Ber(5))
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where (a) follows from (16) and (b) follows because §(1 — 3) > ap(12— p) + (1 —a)q(l — q) due
to the concavity of z(1 — z). Hence we have I(Y*; A) < m(E-Dp-q)

. Combining with (18), we
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where the last inequality holds because njlog 7+ > 8 when K > n/2 and n > 32. The RHS above
is at least 1/2 when the first condition (1) in the theorem holds. Substituting into (17) proves
sufficiency of (1).

We now turn to the third condition (3). Since p > ¢, we have 5 < p by the definition of j3.
Moreover, > apand 1 —f=1—g—a(p—q) > (1 —a)(1 — q). It follows that
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where the first inequality follows from p/8 < 1/a, 1 — 3 > 1 — p and (16), the second inequality
follows from (1 — 3) > a(1 — a)p(1 — q), and the last inequality follows from p — g < p(1 —¢q). By

the definition of a, we have o > [TignK:ll)) > g when K > 8. It follows that I(Y}5; Ai2) < aplog 627",

and thus I(Y*; A) < $n1Kplog 627" By equation (19), if Kp < 1%, i.e., the condition (3) in the
theorem holds, then P(Y # Y™*) > 1/2.

It remains to prove the sufficiency of the second condition (3). Let M = n — K and Y =
{Y0,Y1,...,Y;} be a subset of Y with cardinality M + 1, which is specified later. Let P(YZ,A)
denote the joint distribution of Y* and A when Y™ is sampled from ) uniformly at random and
then A is generated according to the planted clustering model. By Fano’s inequality, we have

inf sup P [ff # Y*} > ir}%flf”(y*7A) [}A/ + Y*} > ir}%f {1 — (20)
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We construct ) as follows. Let Yj be the clustering matrix such that the clusters {C;}]_; are given
by C; = {(l-1)K +1,...,lIK}. Informally, each Y; with ¢ > 1 is obtained from Yy by swapping
two nodes in two different clusters. More specifically, for each i € [M], (i) if the (K + i)-th node
belongs to cluster Cj for some [, then Y; has the first right cluster as {1,2,..., K — 1, K + i} and
the I-th right cluster as D; \ {K + i} U {K}, and all the other clusters identical to Yp; (i¢) if the
(K +1)-th node is an isolated node in Yp, then Y; has the first right cluster as {1,2,..., K —1, K41}
and node K as an isolated node, and all the other clusters identical to Y.

Let IP; be the distribution of the graph A conditioned on Y* = Y;. Note that each P; is a

product of %n(n — 1) Bernoulli distributions. We have the following chain of inequalities:
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where (a) follows from the convexity of KL divergence, (b) follows by our construction of {Y¥;}, and

(c) follows from (16). If (2) holds, then I(Y;A) < }log(n — K) = 1log|Y|. Since log(n — K) >

log(n/2) > 4 if n > 128, it follows from (20) that the minimax error probability is at least 1/2.

1.2 Proof of Theorem 2

Let (X,Y) := Tr(X "Y) denote the inner product between two matrices. Assume that p > ¢ first.
For any feasible solution Y € ) of (4), we define A(Y) := (A, Y* —Y). To prove the theorem, it
suffices to show that A(Y) > 0 for all feasible Y with Y 2 Y™*. For simplicity, in this proof we use
a different convention that ¥} = 0 and Y;; = 0 for all ¢ € V. Note that

A(Y) =(E[A,Y" -Y) +(A-E[A],Y" -Y), (21)
where E[A] = q117 + (p—q)Y™* — ¢, 1 is the all one vector in R* and I is the n x n identity matrix.
Let d(Y) := (Y*,Y* —Y); since ), ;Y = >, ; Y5, we have

(E[ALY" —Y) = (p— q)d(Y). (22)
On the other hand, observe that

(A-E[ALY*=Y)=2 Y (Aj-p)-2 > (Aj—q).
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Here T1(Y) (T»(Y), resp.) is the sum of 3d(Y) i.i.d. centered Bernoulli random variables with
parameter p (g, resp.). Let 01 = (p — q)/(2p) and d2 = (p — q)/(2q). By the Bernstein inequality,
we have for each fix Y € ),
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P {TI(Y) < —;d(Y)p} < exp (—4(1 _p)1+ 451/3d(Y)p> < exp (_20p(1—q)d(y)) ,
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P {Tm > ‘S;czmq} < exp (—4(1 - /3d<Y>q> < exp (-Mcm) |



where (a) and (b) hold because p > ¢ and p — ¢ < p(1 — ¢). It follows from the union bound that

P{HA-BLALY" - ¥) = )~ BY) £ 50— )} < 260 (522D i)

This implies

P{A(Y) < 0} < 2exp (Wd(Y)> (23)
- 20p(1 —q)
in view of (21) and (22). This bound holds for each fixed Y € ).

We proceed to bound the probability of the event {3Y € Y : Y # Y* A(Y) < 0}. Note that
2(K — 1) <d(Y) < rK? for any feasible Y # Y*, where the lower bound is achieved by swapping
a node in V7 with a node in V5, and the upper bound follows from El j YJ < rK?2. The key step
is to upper-bound the cardinality of the set {Y € ) : d(Y) = t} for each t. This is done in the
following combinatorial lemma.

Lemma 1.1. For eacht € [2(K — 1),rK?], we have

2
Y €Y :d(Y) =t} < %n%t/’(. (24)

We prove the lemma in Section 1.2.1. Combining the lemma with (23) and the union bound,
we obtain

P{IY €Y :Y £Y* AY) <0}
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where (a) follows from the assumption that (p — ¢)2K > C’p(1 — q)logn for a large constant C’.
This means Y* is the unique optimal solution with high probability. A similar argument applies to
the case with ¢ > p. This completes the proof of the theorem.

1.2.1 Proof of Lemma 1.1

Recall that C},...,C} are the true clusters associated with Y*. Fix a Y € Y with d(Y) = ¢. The
cluster matrix Y defines a new ordered partition (Ci,...,Cr+1) of V according to the following
procedure.

1. Let Cpyq1 :={i:Y;; =0,Vj}.



2. The nodes in V\Cy41 can be further partitioned into r new clusters of size K, where nodes i
and j are in the same cluster if and only if Y;; = 1; we define an ordering C1,. .., C; of these
r new clusters as follows.

(a) For each new cluster C, if there exists a k € [r] such that |CNC}| > K/2, then we label
this new cluster as C}; this label is unique because the cluster size is K.
(b) The remaining clusters are labeled arbitrarily.
This new partition has the following properties:
(A0) (Ch,...,Cr,Cryq) is a partition of V, and |Cy| = K for all k € [r].

(A1) For every k € [r], either |C, N C}| > K/2, or |Ciy NCY| < K/2 for all k' € [r];
(A2) We have

T

S ICENCrp =GN Crpal+ Y ICENCRl|CENCro| | =t
k=1 K k" E€[r+1]
k/#k//

Here, Properties (AO) and (Al) are direct consequences of how we label the new clusters, and
Property (A2) follows from the following equalities

t=dY) Z\{(z}j) €V XV :iYi=1Yy =0}

_ZHZJ : 7’] GCkXCk,Z#‘],Y;j_O}’
—Z|{u (i,4) € Cf x Ci,i # (i, §) € Crp1 x Crpa}|

+Z > H(i4): (i,5) € Cf x Cii, (4, 5) € Cor x Crn}.-
k=1k"k"€[r+1]
k/?ék//

Since these properties are satisfied by any Y with d(Y') = ¢, we have
HY € Y :d(Y) =t} < {(Cy,...,Cr,Cry1) : it has properties (A0)—(A2)}. (25)

To prove the lemma, it suffices to upper bound the right hand side of (25).

Fix an ordered partition C := (C1,...,Cy, Cry1) with properties (A0)-(A2). We consider the
first true cluster, C7. Define m1 := 3 411y g1 [Cw N CF |, which is the number of nodes in Cf
that are misclassified by C. We consider two cases.

e If |C1 NCY| > K/10, then
Y olcinCwliCin G| = 2ICiNCy| Y |CF N Crr| > miK /5.
KK e[r4+1] k" e[r+1]
k";ﬁk” k:";él

e If |C1NCT| < K/10, then by condition (A1) we must have |Cpy NCT| < K/2 forall 1 <k’ <r



and m; > 9K/10. Hence,

>IN CR|ICT N Crr| +[CF N Crya | = |CF N Crp
Kk €[r+1]
k/#k//
> Z H{k/#}]l{k,,#}wk/ N CikHCk// N Cﬂ + ‘Cik N Cr+1‘2 - ‘Cf N Cr+1‘
Kk [r+1]
k/#k//
=mi— > [CvNCIP=ICINCrpl
2<k/<r

1 2
Zm% — §Km1 > 3m1K.

We conclude that we always have

* * * * 1
Y G N Cr|ICT N Crr| + |CF N Crya [P = |CF N Crpa| > = K.

KK €[r+1]
k! 7ék,//

The above inequality holds if we replace C by C} and m; by my, (defined similarly) for each k& € [r].
It follows that

T
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Thus by Property (A2), we have »_,r,;mx < 5t/K, ie., the total number of misclassified nodes
in V; is upper bounded by 5¢/K. This means that the total number of misclassified nodes in
Vs is also upper bounded by 5t/K because by our cluster size constraint, one misclassified node
in V5 must produce one misclassified node in V;. Therefore, the total number of misclassified
nodes in V; can at most take 5¢/K different values and the same is true for the total number of
misclassified nodes in V5. For a fixed number of misclassified nodes in V7 and V5, there are at most
n?t/ Kngt/ K different ways to choose these misclassified nodes. Each misclassified node in V; can be
assigned to one of r — 1 different clusters or leave isolated, and each misclassified node in V5 can
be assigned to one of r different clusters. Hence, the right hand side of (25) is upper bounded by
25¢2 n5t/Kngt/KT10t/K < 2%271201;/}(

7eRia! , which proves the lemma.

1.3 Proof of Theorem 3

The proof uses several matrix norms. The spectral norm || X|| of a matrix X is the largest singular
value of X. The nuclear norm ||.X||, is the sum of singular values. We also need the L; norm
[ X1 = >, 1Xi5] and the Lo norm || X[l = max;; |X;;[. Let (X,Y) = Tr(XTY) denote the
inner product between two matrices. For a vector z, ||z||2 is the usual Euclidean norm.

Define A(Y) = (Y* =Y, A). It suffices to show that A(Y) > 0 for all feasible solution Y of the
program (6)—(8) with Y # Y™*. Rewrite A(Y) as

AY)=(AY* - Y)+ (A-AY*-Y)=(AY*-Y)+ \NW,Y* -Y), (26)



where A = q117 + (p — q)Y* and W := (A — A)/\. Because ;Y = rK? = >, Y and
Yi; € [0, 1], the first term in the RHS of (26) satisfies

1 * * * b—q *
ALY =Y) = (- (Vv =) =TIy -y

We now control the second term in (26). Note that Var[A;;] < p(1—g). Define 02 := max{p(1—
q),q(1 — p)}. Note that |A — E[A]|| < 1. By assumption, 6> > C’logn/K for a constant C’. We
need the following bound, which is proved in Section 1.3.1 to follow.

Lemma 1.2. Under the notation above, if 02 > C'logn/K for a constant C', then there exists a
constant C such that with high probability |A — E[A]|| < C\/o2K logn + q(1 — q)n

It follows that with high probability
|A = Al < [|A = E[A]|| + |4 - E[A]|| < CV/o2Klogn +¢(1 — g)n

for a universal constant C. Define A := C'y/o K logn + q(1 — ¢)n and the normalized noise matrix
. Thus w.h.p. |[W] < 1.

Let uj, be the normalized characteristic vector of cluster Cf, i.e., ux(i) = 1/VK if node i is
in cluster C} and uy(i) = 0 otherwise. Let U = [ui,...,u,]. Then Y* = KUU" is the singular
value decomposition of Y*. Define the projections Pp(M) =UU'M +MUU" —UU"MUU" and
Pri(M) =M — Pr(M). Because ||Pr(W)|| < ||W] <1 w.h.p.,, UUT 4+ Py (W) is a subgradient
of || X||« at X = Y™. Since ||Y*||« = ni, it follows that for any feasible Y,

02 (Y]l — Yl 2 (UU T +Ppo(W),Y —Y™).
Substituting into (26), we obtain that for any feasible Y,

A(Y) > ZﬂHY* Y| A APrW) —UUT, YY)
P—9 _ oo™ PrAW Y* Yy
2\ I oo = IPT(AW)[Joo ) 1Y =Yl
pP—q A .
- (2 - %~ PO ) ¥ = Y 27)

where the last equality holds because ||[U UTHOO =1/K.
We proceed by bounding the term ||Pr(AW)|o in (27). From the definition of Pr, we have

1PrOW) oo < IUTTAW)||oo + [[AW)UU Moo + [UTT AW)UU oo < 3|UTT (AW)|co-
Assume node ¢ belongs to cluster k. Then
(UUT W)y = (urug AW))ij = (1/E) Y yec: AWz,

which is the average of K independent random variables. By Bernstein’s inequality (Theorem A.1)
we have with probability at least 1 — n =4,

‘Zifecg < V602K logn + 2logn < Cio+/ K logn,

for some constant C, where the last inequality follows from the assumption (9). It follows from

the union bound over all (,5) that that |Pr(AW)|le < 3|[UUT(AW)||oo < 3C104/logn/K with
probability at least 1 — n~2. Substituting back to (27), we conclude that with probability at least

1
p—q A «
A(Y) > T—?—Bcla\/logn/K [Y*=Y[1>0

1—n"",
for all feasible Y # Y™, where the last inequality follows from the assumption (9).




1.3.1 Proof of Lemma 1.2

Let R := support(Y™) and Pg(-) : R™*"™ — R™ "™ be the operator which sets the entries outside
of R to be zero. Let By = Pr(A — E[A]) and By = A — E[A] — By. Then B is a block-diagonal
matrix with 7~ blocks of size K x K and has entries with variance bounded by o2. Applying the
matrix Bernstein inequality [5], we get that with high probability, ||B1| < c¢14/02K logn for a
constant ¢;. On the other hand, By has entries with variance bounded by max{q(1 —q), calogn/n}
for a constant c. By Lemma 1.3 below, we obtain that ||Bz| < ¢z max{\/q(1 — q)n,/logn} for a
constant c3. It follows that

A —E[A]]| < [|B1]l + | B2]| < c1v/02K log n + c3 max{+/q(1 — q)n, \/log n}
< C+v/o?Klogn + q(1 — q)n,

which completes the proof of the lemma.

Lemma 1.3. Let M denote the n x n symmetric matriz such that M;; (1 < i < j < n) are
independent random variables with P(M;; = 1 — pij) = pij and P(M;; = —pi;) = 1 — pij, and
M;; = 0. Suppose that Var[M;;] < o* with 0> > C'logn/n for a constant C', then with high
probability | M|| < Co+/n for a constant C.

Proof. 1f 02 > #, then Theorem 8.4 in [1] implies that | M| < 30y/n w.h.p. If C’lo% <o?<

log” n

, then Lemma 2 in [2] implies that ||M| < Co+/n w.h.p. for some universal constant C. [

1.4 Proof of Theorem 4

We first claim that K(p—q) < ca/Kp + gn implies K(p — q) < ¢24/2gn under the assumption that
K <n/2 and gn > c¢;logn. In fact, if Kp < gn, then the claim trivially holds. If Kp > gn, then
qg < Kp/n < p/2. It follows that

Kp/2 < K(p—q) <co/Kp+gn < co\/2Kp.

Thus, Kp < 80% which contradicts the assumption that Kp > gn > ¢y logn. Therefore, Kp > qn
cannot hold. Hence, it suffices to show that if K(p — ¢q) < c24/2gn, then Y* is not an optimal
solution of the convex program (6)—(8). We do this by showing that the optimality of Y* implies
K(p—q) > c2v/2qn.

Let I be the n x n all-one matrix. Let R := support(Y™*) and A := support(A). Recall that
Y* = KUU' is the singular value decomposition of Y*, and the orthogonal projection onto the
space T is given by Pr(M) =UU"M + MUU"T —UUTMUU'.

Consider the Lagrangian

LY A F.G) = — (AY) A (Y], ~ [Y7],) + 0 (LY) - rK?) — (FY) +(G,Y - 1),

where A > 0, n € R, F}; > 0 and G;; <0, Vi, j are the Lagrangian multipliers. Note that ¥ = rK?

’I'L2
is strictly feasible so strong duality holds by Slater’s Theorem. By standard convex analysis, if

Y = Y™ is an optimal solution, then there must exists some F,G and A for which the following




KKT conditions hold:

OL(Y; A\, i, F, G)

0e oy

) }Stationary condition
Y=Y+

Fij > 0.9(i,5),
Gi; > 0V(i,7), Dual feasibility
A >0,
Fij =0V(i,j) € R,

Complementary slackness
Gy = 0,Y(i, §) € RE. } P Y

Recall that M € R™ ™ is a subgradient of || X||. at X = Y* if and only if Pr(M) = UU" and
|Pro(M)|| < 1. Let H=F — G; the KKT conditions imply that there exist some A\, n, W and H
obeying

A—A(UUT+W)—17]I+H:0, (28)
x>0, (29)

P =0, (30)

Wl <1, (31)

H;; <0,Y(i,5) € R, (32)

Hij > 0,Y(i, 5) € R (33)

Now observe that UU TWUUT = 0 by (30). We left and right multiply (28) by UU " to obtain
A-XUU" —nl+ H =0,

where for any matrix X € R™", X := UU " XUU " is the matrix obtained by taking the average
in each K x K block of X. Consider the last display equation on entries in R and R respectively.
Applying the Bernstein inequality (Theorem A.1) for each entry of A4;;, we get that with high
probability,

A : cs\/p(L—p)logn  cylogn @ & .
K HZ>_ o 2 Q0 v ) R 34
PTR TS K oK2 = 8 (4,7) € (34)
3 c3v/q(1 —q)logn  cylogn () ¢ o
— H;; < < =, ’ c
GRS K t S S V@JER (35)

for some constants cz,cq > 0, where (a) and (b) follow from the assumption K > c¢1v/logn with ¢;
sufficiently large. Using (32) and (33), we get

q_z)gq_c;g\/q(quW_czllo{gzn cp<pr® p(le)logn+C421lO{g2n_]>;Sp_i_eg_l);.
(36)
It follows that
A< K(p—q)+c3(v/p(1—p)logn ++/q(1 — q)logn) + 041[(?”
§4maX{K(p—q),03\/p(1 —p) logn,c:;\/Q(l—Q)lognv&“/clloﬁ}- (37)



On the other hand, (31), (30) and (28) imply

2 T 2 T 2
A :H)\(UU +W)H > H)\(UU +W)HF

1
n
1 2 1 2 1 2
= g ||A_77]I+HHF > E ||ARc —nHRc—l—HRcHF > E Z (1 _77) Aij7

(i,5)ER

where XRC denotes that matrix obtained from X by setting the entries outside R¢ to zero. Using
n<l- eg, which is a consequence of (36), (29) and the assumption p < 1 — ¢y, we obtain

0 Ay (38)

(4,7)ERC

Note that Z(i, j)ere Aij equals two times the sum of (5) — 7“([2( ) ii.d. Bernoulli random variables
with parameter q. By the Chernoff bound of Binomial distributions and the assumption that
gn > c1 logn, we know with high probability Z(i <j)ERe A;; > Cqn? for some constant C. It follows
from (38) that A2 > C’qn for some constant C’ > 0. Combining with (37) and the assumption that
qn > c¢1logn, we conclude that K (p — ¢) > C",/qn for some constant C"” > 0. This completes the
proof of the theorem.

1.5 Proof of Theorem 5

The degree d; of node i is distributed as Bin(K — 1, p) plus an independent Bin(n — K, q) if ¢ € V.
Otherwise d; is distributed as Bin(n—1, q) if i € Va. It follows that E[d;] = (n—1)¢+ (K —1)(p—q)
if i € V1 and E[d;] = (n — 1)q if i € V4. If we define 02 = Kp(1 — q) + ng(1 — q), then we further
have Var[d;] < 02. Set t := (K — 1)|p — q|/2 < 0?; the Bernstein inequality (Theorem A.1) gives

2 (K —1)*(p — q)? .
L 1 >l < - | < - <
Pl Bl > 1) < 20w (55,75 ) < 2o (- B0 ) <20

where the last inequality follows from assumption (12). By the union bound, with probability at
least 1 —2n~1, d; > (=9 K q) + gn for all nodes ¢ € V] and d; < (CalLS Q) + gn for all nodes i € V5.
Therefore, all nodes in V2 are correctly declared to be isolated with hlgh probability.

The number of common neighbors S;; between the nodes i and j is distributed as Bin(K —2, p?)
plus an independent Bin(n — K, ¢?) if 4 and j are in the same cluster, and it is distributed as
Bin(2(K — 1), pq) plus an independent Bin(n — 2K, ¢?) if i and j are in different clusters. Hence,
E[S;;] equals (K —2)p? + (n — K)q? if i and j are in the same cluster and 2(K — 1)pg + (n — 2K)g?
otherwise. The difference in mean equals K (p—q)? —2p(p—q). Let 02 = 2Kp*(1—¢*)+ng*(1—¢?).
Then Var[S;;] < %, Set t' := K(p — ¢)?/3 < 0. Assumption (13) implies that ¢ > 2p(p — q).
Applying the Bernstein inequality (Theorem A.1), we obtain

2 K*(p—q)*

! -3

P{|Si; — E[Si]| = '} < 2exp <_202+2t/3> < 2exp <—2702 <2n77,

where the last inequality follows from the assumption (13). By union bound, with probability at

least 1 —2n71, S;; > =9 K q) + 2Kpq + ¢*n for all nodes 4,5 from the same cluster and S;; <

% + 2K pq + ¢*n for all nodes 7, j from two different clusters. Therefore the simple algorithm

returns the true clusters w.h.p.
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1.6 Proof of Theorem 6

For simplicity we assume K and ny are even numbers. We partition V; into two equal-sized subsets
Vi4+ and Vi_ such that half of the nodes of each cluster are in Vi,. Similarly, V5 is partitioned
into two equal-sized subsets Vo and V,_. To prove the theorem, we need the following anti-
concentration inequality.

Theorem 1.4 (Theorem 7.3.1 in [3]). Let X;,...,X,, be independent random variables such that
0 < X; <1 for all i. Suppose X = Y0 X; and 0% := Y.°, Var[X;] > 200. Then for all
0<t< 02/100 and some universal constant ¢ > 0, we have

P[X > E[X] +t] > ce /6.

Identifying isolated nodes For each node ¢ in Vi1 UVay, let d; be the number of its neighbors
in V14 U Vs and d;— be the number of its neighbors in Vi U V5_, so d; = d;1 + d;—. We consider
two cases.

Case 1: Suppose (Kp + (n — K)q)logn; > nqlogns. In this case we have (K — 1)%(p — ¢)? <
2¢o(Kp+nq)logng by (14). For each i € V4, d;— is distributed as Bin(K/2, p) plus an independent
Bin((n — K)/2,q). Let t := (K —1)(p—q) +2, 1 :== E[di-] =t = ng/2+ K(p —q)/2 —t and
0% := Var[d;_] = 1Kp(1 — p) + 3(n — K)q(1 — q). Since K < n/2, p,q are bounded away from 1
and Kp+ nq > Kp* 4+ ng® > c1logn, we have 03 > ¢’logn > 200. Combining wit (14), we further
have o > "K?(p — q)?/logny - ¢'logn > 100%t*. We can thus apply Theorem 1.4 and get

. PN [ (E-Dp-q)+2) -
]P’[dzﬁw]Zcexp( 30_3)— P( 3(Kp(1—p)+(n—K)q(1—q))>Z <,

for some constant ¢’ > 0 that can be made small by choosing cs above sufficiently small. Let

i* := argmin;ey;, d;—. Since the random variables {d;_ : i € V14 } are mutually independent, we

have

Pldi— > m] = H Pldi- > 7] < (1 —eny®)™/? <exp (—cn%_CI/Q) < 1/4.
€Viy

On the other hand, for each i € Vi, d;; is distributed as Bin(K/2 — 1,p) plus an independent
Bin((n — K)/2,q). Since the median of Bin(n,p) is at most np + 1, we know that with probability
at least 1/2, diy+ < 72 :=nq/2+ K(p — q)/2 — p+ 2. Now observe that the two sets of random
variables {d;1,i € Vi4} and {d;_,i € Vi1 } are independent of each other, so d;; is independent of
1* for each ¢ € V1. It follows that

N

Pldis <72 = 3. Pldis <noli® =Pl =i] = 3 Pldis <72 B[ =4] >

i€V 1€Vi4

Combining the last two display equations by the union bound, we obtain that with probability at
least 1/4,
dir = dpr— +di=4 <71+ 72 =(n—1)q,

and thus node ¢* will be incorrectly declared as an isolated node.

Case 2: Suppose (Kp + ng)logn; < nglogns. In this case we have (K — 1)%(p — ¢q)? <
2canglog ng by assumption. Define i* = argmax;cy,, d;—. Using the same argument as in Case 1,
we can show that with probability at least 1/4, dj+ > (n — 1)g+ (K — 1)(p — ¢) and thus node *
will incorrectly declared as an non-isolated node.
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Recovering clusters For two nodes 4, j € Vi, let S;;4 be the number of their common neighbors
in V14 UVa, and S;;— be the number of their common neighbors in Vi_UVa_, s0 S;j1 = Sij+ +Sij-.

For each pair of nodes 7,j in Vi4 that are from the same cluster, S;;— is distributed as
Bin(K/2,p?) plus an independent Bin((n — K)/2,4?). Let t' :== K(p —q)? +4, v3 := E[S;;_] —t' =
ng?/2+ K (p*—q¢*)/2—t', and 0% := Var[S;;_] = 3Kp*(1—p*)+3(n—K)q*(1—¢?). Since K < n/2,
p, q are bounded away from 1 and Kp? + ng®> > ¢ logn, we have that O'?g > 200 and O'?g > 100¢'.
Theorem 1.4 implies that there exists a constant ¢ > 0 such that

2\ _ (K(p—q)* +4)° o
FlSy- = m] > cop (‘:wg) Seer (—3<sz(1 — )+ (n— K)?(1 - q2>>> =

where the constant ¢ > 0 can be made sufficiently small by choosing ¢y sufficiently small in
the statement of the lemma. Without loss of generality, we may re-label the nodes such that
Vie ={1,2,...,n1/2} and for each k = 1,...,n1/4, the nodes 2k —1 and 2k are in the same cluster.
Note that the random variables {S(or_1)or— : k¥ = 1,2,...,n1/4} are mutually independent. Let
i = —1+42argming_13 5, /4 S@2k—1)2k— and j* =" + 1; it follows that

P[Si-je— >3] < (1 —eny®)™/* < exp(—enl™ /4) < 1/4.

On the other hand, since S;;; is distributed as Bin(K/2 — 2,p?) plus an independent Bin((n —
K)/2,4%), we use the median argument to obtain that with probability at least 1/2, Sjj+ < 74 1=
ng*/2 + K(p? — ¢*)/2 — 2p* + 2. Because {Sij+,i,j € Vi+} only depends on the edges between
Viy and Va4 U Vo, and (i*,5*) only depends on the edges between Vi and Vi_ U Vo, we know
{Sij+,1,j € Viy} and (i*,5*) are independent of each other. It follows that Sj;+y < 74 with
probability at least 1/2. It follows that with probability at least 1/4,

Spejr = Spnjr + Sprjey <3+ 7 = 2(K — 1)pg + (n — 2K)q?

and thus the nodes i*, j* will be incorrectly assigned to two different clusters.

Appendices

A Standard Bernstein Inequality

Theorem A.1. Let X1,...,X, be independent random variables such that | X;| < M almost surely.
Let 02 =31, Var(X;), then for any t >0

PIS X, >t| < S —
[Z —]—eXp<2a2+§Mt)

i=1

A consequent of the above inequality is P [Z?:l X; > V202%u + QMT“} <e ™ for any u > 0.
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