Supplementary Materials for "Statistical-Computational Phase Transitions in Planted Models: The High-Dimensional Setting"

Yudong Chen
The University of California, Berkeley yudong.chen@eecs.berkeley.edu

Jiaming Xu
University of Illinois at Urbana-Champaign
jxu18@illinois.edu

Abstract

We provide the proofs for the theorems in the main paper.

1 Proofs for Planted Clustering

In this section, Theorems 1-6 refer to the theorems in the main paper. Equations are numbered continuously from the main paper. We let $n_{1}:=r K$ and $n_{2}:=n-r K$ be the numbers of nonisolated and isolated nodes, respectively.

1.1 Proof of Theorem 1

The proof relies on information theoretical arguments and the Fano's inequaliy [4]. We use $D(\operatorname{Ber}(p) \| \operatorname{Ber}(q))$ to denote the KL divergence between two Bernoulli distributions with mean p and q. We first state an upper bound on $D(\operatorname{Ber}(p) \| \operatorname{Ber}(q))$, which is used later in the proof:

$$
\begin{equation*}
D(\operatorname{Ber}(p) \| \operatorname{Ber}(q))=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} \stackrel{(a)}{\leq} p \frac{p-q}{q}+(1-p) \frac{q-p}{1-q}=\frac{(p-q)^{2}}{q(1-q)}, \tag{16}
\end{equation*}
$$

where (a) follows from the inequality $\log x \leq x-1, \forall x \geq 0$. Let $\mathbb{P}_{\left(Y^{*}, A\right)}$ be the joint distribution of Y^{*} and A when Y^{*} is sampled from \mathcal{Y} uniformly at random and A is generated according to the planted clustering model. Because the supremum is lower bounded by the average, we have

$$
\begin{equation*}
\inf _{\hat{Y}} \sup _{Y^{*} \in \mathcal{Y}} \mathbb{P}\left[\hat{Y} \neq Y^{*}\right] \geq \inf _{\hat{Y}} \mathbb{P}_{\left(Y^{*}, A\right)}\left[\hat{Y} \neq Y^{*}\right] . \tag{17}
\end{equation*}
$$

Let $H(X)$ be the entropy of a random variable X and $I(X ; Z)$ the mutual information between X and Z. By Fano's inequality, we have for any \hat{Y},

$$
\begin{equation*}
\mathbb{P}_{\left(Y^{*}, A\right)}\left(\hat{Y} \neq Y^{*}\right) \geq 1-\frac{I\left(Y^{*} ; A\right)+1}{\log |\mathcal{Y}|} \tag{18}
\end{equation*}
$$

Simple counting gives that $|\mathcal{Y}|=\binom{n}{n_{1}} \frac{n_{1}!}{r!(K!)^{r}}$. Note that $\binom{n}{n_{1}} \geq\left(\frac{n}{n_{1}}\right)^{n_{1}}$ and $\sqrt{n}\left(\frac{n}{e}\right)^{n} \leq n!\leq e \sqrt{n}\left(\frac{n}{e}\right)^{n}$. It follows that

$$
|\mathcal{Y}| \geq\left(n / n_{1}\right)^{n_{1}} \frac{\sqrt{n_{1}}\left(n_{1} / e\right)^{n_{1}}}{e \sqrt{r}(r / e)^{r} e^{r} K^{r / 2}(K / e)^{n_{1}}} \geq\left(\frac{n}{K}\right)^{n_{1}} \frac{1}{e(r \sqrt{K})^{r}} .
$$

This implies $\log |\mathcal{Y}| \geq \frac{1}{2} n_{1} \log \frac{n}{K}$ under the assumption that $8 \leq K \leq n / 2$ and $n \geq 32$. On the other hand, note that $H(A) \leq\binom{ n}{2} H\left(A_{12}\right)$ because the $A_{i j}$'s are identically distributed by symmetry. Furthermore, the $A_{i j}$'s are independent conditioned on Y^{*}, so $H\left(A \mid Y^{*}\right)=\binom{n}{2} H\left(A_{12} \mid Y_{12}^{*}\right)$. It follows that $I\left(Y^{*} ; A\right)=H(A)-H\left(A \mid Y^{*}\right) \leq\binom{ n}{2} I\left(Y_{12}^{*} ; A_{12}\right)$. We bound $I\left(Y_{12}^{*} ; A_{12}\right)$ below. Observe that

$$
\mathbb{P}\left(Y_{12}^{*}=1\right)=\frac{\binom{n-2}{K-2}\binom{n-K}{K} \cdots\binom{n-r K+K}{K} \frac{1}{(r-1)!}}{|\mathcal{Y}|}=\alpha:=\frac{K}{n},
$$

and thus $\mathbb{P}\left(A_{12}=1\right)=\beta:=\alpha p+(1-\alpha) q$. It follows that

$$
\begin{aligned}
I\left(Y_{12}^{*} ; A_{12}\right) & =\alpha D(\operatorname{Ber}(p) \| \operatorname{Ber}(\beta))+(1-\alpha) D(\operatorname{Ber}(q) \| \operatorname{Ber}(\beta)) \\
& \stackrel{(a)}{\leq} \alpha \frac{(p-\beta)^{2}}{\beta(1-\beta)}+(1-\alpha) q \frac{(q-\beta)^{2}}{\beta(1-\beta)} \\
& =\frac{\alpha(1-\alpha)(p-q)^{2}}{\beta(1-\beta)} \stackrel{(b)}{\leq} \frac{\alpha(p-q)^{2}}{q(1-q)}
\end{aligned}
$$

where (a) follows from (16) and (b) follows because $\beta(1-\beta) \geq \alpha p(1-p)+(1-\alpha) q(1-q)$ due to the concavity of $x(1-x)$. Hence we have $I\left(Y^{*} ; A\right) \leq \frac{n_{1}(K-1)(p-q)^{2}}{2 q(1-q)}$. Combining with (18), we obtain

$$
\begin{equation*}
\mathbb{P}_{\left(Y^{*}, A\right)}\left(Y \neq Y^{*}\right) \geq 1-\frac{\frac{n_{1}(K-1)(p-q)^{2}}{q(1-q)}+2}{n_{1} \log \frac{n}{K}} \geq 3 / 4-\frac{(K-1)(p-q)^{2}}{q(1-q) \log \frac{n}{K}} \tag{19}
\end{equation*}
$$

where the last inequality holds because $n_{1} \log \frac{n}{K} \geq 8$ when $K \geq n / 2$ and $n \geq 32$. The RHS above is at least $1 / 2$ when the first condition (1) in the theorem holds. Substituting into (17) proves sufficiency of (1).

We now turn to the third condition (3). Since $p>q$, we have $\beta \leq p$ by the definition of β. Moreover, $\beta \geq \alpha p$ and $1-\beta=1-q-\alpha(p-q) \geq(1-\alpha)(1-q)$. It follows that

$$
\begin{aligned}
I\left(Y_{12}^{*} ; A_{12}\right) & =\alpha p \log \frac{p}{\beta}+\alpha(1-p) \log \frac{(1-p)}{1-\beta}+(1-\alpha) D(\operatorname{Ber}(q) \| \operatorname{Ber}(\beta)) \\
& \leq \alpha p \log \frac{1}{\alpha}+(1-\alpha) \frac{(q-\beta)^{2}}{\beta(1-\beta)}=\alpha p \log \frac{1}{\alpha}+\frac{\alpha^{2}(1-\alpha)(p-q)^{2}}{\beta(1-\beta)} \\
& \leq \alpha p \log \frac{1}{\alpha}+\frac{\alpha(p-q)^{2}}{p(1-q)} \leq \alpha p \log \frac{e}{\alpha} .
\end{aligned}
$$

where the first inequality follows from $p / \beta \leq 1 / \alpha, 1-\beta \geq 1-p$ and (16), the second inequality follows from $\beta(1-\beta) \geq \alpha(1-\alpha) p(1-q)$, and the last inequality follows from $p-q \leq p(1-q)$. By the definition of α, we have $\alpha \geq \frac{K(K-1)}{n(n-1)} \geq \frac{K}{e n}$ when $K \geq 8$. It follows that $I\left(Y_{12}^{*} ; A_{12}\right) \leq \alpha p \log \frac{e^{2} n}{K}$, and thus $I\left(Y^{*} ; A\right) \leq \frac{1}{2} n_{1} K p \log \frac{e^{2} n}{K}$. By equation (19), if $K p \leq \frac{1}{16}$, i.e., the condition (3) in the theorem holds, then $\mathbb{P}\left(Y \neq Y^{*}\right) \geq 1 / 2$.

It remains to prove the sufficiency of the second condition (3). Let $\bar{M}=n-K$ and $\overline{\mathcal{Y}}=$ $\left\{Y_{0}, Y_{1}, \ldots, Y_{\bar{M}}\right\}$ be a subset of \mathcal{Y} with cardinality $\bar{M}+1$, which is specified later. Let $\mathbb{P}_{\left(Y^{*}, A\right)}^{-}$ denote the joint distribution of Y^{*} and A when Y^{*} is sampled from $\overline{\mathcal{Y}}$ uniformly at random and then A is generated according to the planted clustering model. By Fano's inequality, we have

$$
\begin{equation*}
\inf _{\hat{Y}} \sup _{Y^{*} \in \mathcal{Y}} \mathbb{P}\left[\hat{Y} \neq Y^{*}\right] \geq \inf _{\hat{Y}} \overline{\mathbb{P}}_{\left(Y^{*}, A\right)}\left[\hat{Y} \neq Y^{*}\right] \geq \inf _{\hat{Y}}\left\{1-\frac{I\left(Y^{*} ; A\right)+1}{\log |\hat{\mathcal{Y}}|}\right\} . \tag{20}
\end{equation*}
$$

We construct $\overline{\mathcal{Y}}$ as follows. Let Y_{0} be the clustering matrix such that the clusters $\left\{C_{l}\right\}_{l=1}^{r}$ are given by $C_{l}=\{(l-1) K+1, \ldots, l K\}$. Informally, each Y_{i} with $i \geq 1$ is obtained from Y_{0} by swapping two nodes in two different clusters. More specifically, for each $i \in[\bar{M}],(i)$ if the ($K+i$)-th node belongs to cluster C_{l} for some l, then Y_{i} has the first right cluster as $\{1,2, \ldots, K-1, K+i\}$ and the l-th right cluster as $D_{l} \backslash\{K+i\} \cup\{K\}$, and all the other clusters identical to $Y_{0} ;(i i)$ if the $(K+i)$-th node is an isolated node in Y_{0}, then Y_{i} has the first right cluster as $\{1,2, \ldots, K-1, K+i\}$ and node K as an isolated node, and all the other clusters identical to Y_{0}.

Let \mathbb{P}_{i} be the distribution of the graph A conditioned on $Y^{*}=Y_{i}$. Note that each \mathbb{P}_{i} is a product of $\frac{1}{2} n(n-1)$ Bernoulli distributions. We have the following chain of inequalities:

$$
\begin{aligned}
I\left(Y^{*} ; A\right) & \stackrel{(a)}{\leq} \frac{1}{(M+1)^{2}} \sum_{i, i^{\prime}=0}^{M} D\left(\mathbb{P}_{i} \| \mathbb{P}_{i^{\prime}}\right) \\
& \leq \max _{i, i^{\prime}=0, \ldots, M} D\left(\mathbb{P}_{i} \| \mathbb{P}_{i^{\prime}}\right) \\
& \stackrel{(b)}{\leq} 3 K D(\operatorname{Ber}(p) \| \operatorname{Ber}(q))+3 K D(\operatorname{Ber}(q) \| \operatorname{Ber}(p)) \\
& \stackrel{(c)}{\leq} 3 K(p-q)^{2} \frac{1}{\min \{p(1-p), q(1-q)\}}
\end{aligned}
$$

where (a) follows from the convexity of KL divergence, (b) follows by our construction of $\left\{Y_{i}\right\}$, and (c) follows from (16). If (2) holds, then $I(Y ; A) \leq \frac{1}{4} \log (n-K)=\frac{1}{4} \log |\overline{\mathcal{Y}}|$. Since $\log (n-K) \geq$ $\log (n / 2) \geq 4$ if $n \geq 128$, it follows from (20) that the minimax error probability is at least $1 / 2$.

1.2 Proof of Theorem 2

Let $\langle X, Y\rangle:=\operatorname{Tr}\left(X^{\top} Y\right)$ denote the inner product between two matrices. Assume that $p>q$ first. For any feasible solution $Y \in \mathcal{Y}$ of (4), we define $\Delta(Y):=\left\langle A, Y^{*}-Y\right\rangle$. To prove the theorem, it suffices to show that $\Delta(Y)>0$ for all feasible Y with $Y \neq Y^{*}$. For simplicity, in this proof we use a different convention that $Y_{i i}^{*}=0$ and $Y_{i i}=0$ for all $i \in V$. Note that

$$
\begin{equation*}
\Delta(Y)=\left\langle\mathbb{E}[A], Y^{*}-Y\right\rangle+\left\langle A-\mathbb{E}[A], Y^{*}-Y\right\rangle, \tag{21}
\end{equation*}
$$

where $\mathbb{E}[A]=q \mathbf{1 1}{ }^{\top}+(p-q) Y^{*}-q \mathbf{I}, \mathbf{1}$ is the all one vector in \mathbb{R}^{\propto} and \mathbf{I} is the $n \times n$ identity matrix. Let $d(Y):=\left\langle Y^{*}, Y^{*}-Y\right\rangle$; since $\sum_{i, j} Y_{i j}=\sum_{i, j} Y_{i j}^{*}$, we have

$$
\begin{equation*}
\left\langle\mathbb{E}[A], Y^{*}-Y\right\rangle=(p-q) d(Y) \tag{22}
\end{equation*}
$$

On the other hand, observe that

$$
\left\langle A-\mathbb{E}[A], Y^{*}-Y\right\rangle=2 \underbrace{\sum_{\substack{Y_{i j}^{*}=1 \\(i<j): Y_{i j}=0}}\left(A_{i j}-p\right)}_{T_{1}(Y)}-2 \underbrace{\sum_{\substack{Y_{1}^{*} \\(i<j): Y_{i j}^{* j}=1}}\left(A_{i j}-q\right)}_{T_{2}(Y)} .
$$

Here $T_{1}(Y)\left(T_{2}(Y)\right.$, resp. $)$ is the sum of $\frac{1}{2} d(Y)$ i.i.d. centered Bernoulli random variables with parameter p (q, resp.). Let $\delta_{1}=(p-q) /(2 p)$ and $\delta_{2}=(p-q) /(2 q)$. By the Bernstein inequality, we have for each fix $Y \in \mathcal{Y}$,

$$
\begin{aligned}
& \mathbb{P}\left\{T_{1}(Y) \leq-\frac{\delta_{1}}{2} d(Y) p\right\} \leq \exp \left(-\frac{\delta_{1}^{2}}{4(1-p)+4 \delta_{1} / 3} d(Y) p\right) \stackrel{(a)}{\leq} \exp \left(-\frac{(p-q)^{2}}{20 p(1-q)} d(Y)\right), \\
& \mathbb{P}\left\{T_{2}(Y) \geq \frac{\delta_{2}}{2} d(Y) q\right\} \leq \exp \left(-\frac{\delta_{2}^{2}}{4(1-q)+4 \delta_{2} / 3} d(Y) q\right) \stackrel{(b)}{\leq} \exp \left(-\frac{(p-q)^{2}}{20 p(1-q)} d(Y)\right),
\end{aligned}
$$

where (a) and (b) hold because $p>q$ and $p-q \leq p(1-q)$. It follows from the union bound that

$$
\mathbb{P}\left\{\frac{1}{2}\left\langle A-\mathbb{E}[A], Y^{*}-Y\right\rangle=T_{1}(Y)-T_{2}(Y) \leq-\frac{1}{2}(p-q) d(Y)\right\} \leq 2 \exp \left(-\frac{(p-q)^{2}}{20 p(1-q)} d(Y)\right)
$$

This implies

$$
\begin{equation*}
\mathbb{P}\{\Delta(Y) \leq 0\} \leq 2 \exp \left(-\frac{(p-q)^{2}}{20 p(1-q)} d(Y)\right) \tag{23}
\end{equation*}
$$

in view of (21) and (22). This bound holds for each fixed $Y \in \mathcal{Y}$.
We proceed to bound the probability of the event $\left\{\exists Y \in \mathcal{Y}: Y \neq Y^{*}, \Delta(Y) \leq 0\right\}$. Note that $2(K-1) \leq d(Y) \leq r K^{2}$ for any feasible $Y \neq Y^{*}$, where the lower bound is achieved by swapping a node in V_{1} with a node in V_{2}, and the upper bound follows from $\sum_{i, j} Y_{i j}^{*} \leq r K^{2}$. The key step is to upper-bound the cardinality of the set $\{Y \in \mathcal{Y}: d(Y)=t\}$ for each t. This is done in the following combinatorial lemma.

Lemma 1.1. For each $t \in\left[2(K-1), r K^{2}\right]$, we have

$$
\begin{equation*}
|\{Y \in \mathcal{Y}: d(Y)=t\}| \leq \frac{25 t^{2}}{K^{2}} n^{20 t / K} \tag{24}
\end{equation*}
$$

We prove the lemma in Section 1.2.1. Combining the lemma with (23) and the union bound, we obtain

$$
\begin{aligned}
& \mathbb{P}\left\{\exists Y \in \mathcal{Y}: Y \neq Y^{*}, \Delta(Y) \leq 0\right\} \\
& \leq \sum_{t=2 K-2}^{r K^{2}} \mathbb{P}\{\exists Y \in \mathcal{Y}: d(Y)=t, \Delta(Y) \leq 0\} \\
& \leq 2 \sum_{t=2 K-2}^{r K^{2}}|\{\exists Y \in \mathcal{Y}: d(Y)=t\}| \exp \left(-\frac{(p-q)^{2} t}{20 p(1-q)}\right) \\
& \leq 2 \sum_{t=2 K-2}^{r K^{2}} \frac{25 t^{2}}{K^{2}} n^{20 t / K} \exp \left(-\frac{(p-q)^{2} t}{20 p(1-q)}\right) \\
&(a) \\
& \leq 50 \sum_{t=2 K-2}^{r K^{2}} n^{2} n^{-5 t / K} \\
& \leq 50 r K^{2} n^{-3} \leq 50 n^{-1},
\end{aligned}
$$

where (a) follows from the assumption that $(p-q)^{2} K \geq C^{\prime} p(1-q) \log n$ for a large constant C^{\prime}. This means Y^{*} is the unique optimal solution with high probability. A similar argument applies to the case with $q>p$. This completes the proof of the theorem.

1.2.1 Proof of Lemma 1.1

Recall that $C_{1}^{*}, \ldots, C_{r}^{*}$ are the true clusters associated with Y^{*}. Fix a $Y \in \mathcal{Y}$ with $d(Y)=t$. The cluster matrix Y defines a new ordered partition $\left(C_{1}, \ldots, C_{r+1}\right)$ of V according to the following procedure.

1. Let $C_{r+1}:=\left\{i: Y_{i j}=0, \forall j\right\}$.
2. The nodes in $V \backslash C_{r+1}$ can be further partitioned into r new clusters of size K, where nodes i and j are in the same cluster if and only if $Y_{i j}=1$; we define an ordering C_{1}, \ldots, C_{r} of these r new clusters as follows.
(a) For each new cluster C, if there exists a $k \in[r]$ such that $\left|C \cap C_{k}^{*}\right|>K / 2$, then we label this new cluster as C_{k}; this label is unique because the cluster size is K.
(b) The remaining clusters are labeled arbitrarily.

This new partition has the following properties:
(A0) $\left(C_{1}, \ldots, C_{r}, C_{r+1}\right)$ is a partition of V, and $\left|C_{k}\right|=K$ for all $k \in[r]$.
(A1) For every $k \in[r]$, either $\left|C_{k} \cap C_{k}^{*}\right|>K / 2$, or $\left|C_{k^{\prime}} \cap C_{k}^{*}\right| \leq K / 2$ for all $k^{\prime} \in[r]$;
(A2) We have

$$
\sum_{k=1}^{r}\left(\left|C_{k}^{*} \cap C_{r+1}\right|^{2}-\left|C_{k}^{*} \cap C_{r+1}\right|+\sum_{\substack{k^{\prime}, k^{\prime \prime} \in[r+1] \\ k^{\prime} \neq k^{\prime \prime}}}\left|C_{k}^{*} \cap C_{k^{\prime}}\right|\left|C_{k}^{*} \cap C_{k^{\prime \prime}}\right|\right)=t .
$$

Here, Properties (A0) and (A1) are direct consequences of how we label the new clusters, and Property (A2) follows from the following equalities

$$
\begin{aligned}
t=d(Y)= & \left|\left\{(i, j) \in V \times V: Y_{i j}^{*}=1, Y_{i j}=0\right\}\right| \\
= & \sum_{k=1}^{r}\left|\left\{(i, j):(i, j) \in C_{k}^{*} \times C_{k}^{*}, i \neq j, Y_{i j}=0\right\}\right| \\
= & \sum_{k=1}^{r}\left|\left\{(i, j):(i, j) \in C_{k}^{*} \times C_{k}^{*}, i \neq j,(i, j) \in C_{r+1} \times C_{r+1}\right\}\right| \\
& +\sum_{k=1}^{r} \sum_{\substack{k^{\prime}, k^{\prime \prime} \in[r+1] \\
k^{\prime} \neq k^{\prime \prime}}}\left|\left\{(i, j):(i, j) \in C_{k}^{*} \times C_{k}^{*},(i, j) \in C_{k^{\prime}} \times C_{k^{\prime \prime}}\right\}\right| .
\end{aligned}
$$

Since these properties are satisfied by any Y with $d(Y)=t$, we have

$$
\begin{equation*}
|\{Y \in \mathcal{Y}: d(Y)=t\}| \leq \mid\left\{\left(C_{1}, \ldots, C_{r}, C_{r+1}\right): \text { it has properties (A0)-(A2) }\right\} \mid . \tag{25}
\end{equation*}
$$

To prove the lemma, it suffices to upper bound the right hand side of (25).
Fix an ordered partition $\mathcal{C}:=\left(C_{1}, \ldots, C_{r}, C_{r+1}\right)$ with properties (A0)-(A2). We consider the first true cluster, C_{1}^{*}. Define $m_{1}:=\sum_{k^{\prime} \in[r+1], k^{\prime} \neq 1}\left|C_{k^{\prime}} \cap C_{1}^{*}\right|$, which is the number of nodes in C_{1}^{*} that are misclassified by \mathcal{C}. We consider two cases.

- If $\left|C_{1} \cap C_{1}^{*}\right|>K / 10$, then

$$
\sum_{\substack{k^{\prime}, k^{\prime \prime} \in[r+1] \\ k^{\prime} \neq k^{\prime \prime}}}\left|C_{1}^{*} \cap C_{k^{\prime}}\right|\left|C_{1}^{*} \cap C_{k^{\prime \prime}}\right| \geq 2\left|C_{1}^{*} \cap C_{1}\right| \sum_{\substack{k^{\prime \prime} \in[r+1] \\ k^{\prime \prime} \neq 1}}\left|C_{1}^{*} \cap C_{k^{\prime \prime}}\right|>m_{1} K / 5 .
$$

- If $\left|C_{1} \cap C_{1}^{*}\right| \leq K / 10$, then by condition (A1) we must have $\left|C_{k^{\prime}} \cap C_{1}^{*}\right| \leq K / 2$ for all $1 \leq k^{\prime} \leq r$
and $m_{1}>9 K / 10$. Hence,

$$
\begin{aligned}
& \sum_{\substack{k^{\prime}, k^{\prime \prime} \in[r+1] \\
k^{\prime} \neq k^{\prime \prime}}}\left|C_{1}^{*} \cap C_{k^{\prime}}\right|\left|C_{1}^{*} \cap C_{k^{\prime \prime}}\right|+\left|C_{1}^{*} \cap C_{r+1}\right|^{2}-\left|C_{1}^{*} \cap C_{r+1}\right| \\
\geq & \sum_{\substack{k^{\prime}, k^{\prime \prime} \in[r+1] \\
k^{\prime} \neq k^{\prime \prime}}} \mathbb{I}_{\left\{k^{\prime} \neq 1\right\}} \mathbb{I}_{\left\{k^{\prime \prime} \neq 1\right\}}\left|C_{k^{\prime}} \cap C_{1}^{*}\right|\left|C_{k^{\prime \prime}} \cap C_{1}^{*}\right|+\left|C_{1}^{*} \cap C_{r+1}\right|^{2}-\left|C_{1}^{*} \cap C_{r+1}\right| \\
= & m_{1}^{2}-\sum_{2 \leq k^{\prime} \leq r}\left|C_{k^{\prime}} \cap C_{1}^{*}\right|^{2}-\left|C_{1}^{*} \cap C_{r+1}\right| \\
\geq & m_{1}^{2}-\frac{1}{2} K m_{1} \geq \frac{2}{5} m_{1} K .
\end{aligned}
$$

We conclude that we always have

$$
\sum_{\substack{k^{\prime}, k^{\prime \prime} \in[r+1] \\ k^{\prime} \neq k^{\prime \prime}}}\left|C_{1}^{*} \cap C_{k^{\prime}}\right|\left|C_{1}^{*} \cap C_{k^{\prime \prime}}\right|+\left|C_{1}^{*} \cap C_{r+1}\right|^{2}-\left|C_{1}^{*} \cap C_{r+1}\right| \geq \frac{1}{5} m_{1} K
$$

The above inequality holds if we replace C_{1}^{*} by C_{k}^{*} and m_{1} by m_{k} (defined similarly) for each $k \in[r]$. It follows that

$$
\sum_{k=1}^{r}\left(\left|C_{k}^{*} \cap C_{r+1}\right|^{2}-\left|C_{k}^{*} \cap C_{r+1}\right|+\sum_{\substack{k^{\prime}, k^{\prime \prime} \in[r+1] \\ k^{\prime} \neq k^{\prime \prime}}}\left|C_{k}^{*} \cap C_{k^{\prime}}\right|\left|C_{k}^{*} \cap C_{k^{\prime \prime}}\right|\right) \geq \frac{K}{5} \sum_{k=1}^{r} m_{k} .
$$

Thus by Property (A2), we have $\sum_{k \in[r]} m_{k} \leq 5 t / K$, i.e., the total number of misclassified nodes in V_{1} is upper bounded by $5 t / K$. This means that the total number of misclassified nodes in V_{2} is also upper bounded by $5 t / K$ because by our cluster size constraint, one misclassified node in V_{2} must produce one misclassified node in V_{1}. Therefore, the total number of misclassified nodes in V_{1} can at most take $5 t / K$ different values and the same is true for the total number of misclassified nodes in V_{2}. For a fixed number of misclassified nodes in V_{1} and V_{2}, there are at most $n_{1}^{5 t / K} n_{2}^{5 t / K}$ different ways to choose these misclassified nodes. Each misclassified node in V_{1} can be assigned to one of $r-1$ different clusters or leave isolated, and each misclassified node in V_{2} can be assigned to one of r different clusters. Hence, the right hand side of (25) is upper bounded by $\frac{25 t^{2}}{K^{2}} n_{1}^{5 t / K} n_{2}^{5 t / K} r^{10 t / K} \leq \frac{25 t^{2}}{K^{2}} n^{20 t / K}$, which proves the lemma.

1.3 Proof of Theorem 3

The proof uses several matrix norms. The spectral norm $\|X\|$ of a matrix X is the largest singular value of X. The nuclear norm $\|X\|_{*}$ is the sum of singular values. We also need the L_{1} norm $\|X\|_{1}=\sum_{i, j}\left|X_{i j}\right|$ and the L_{∞} norm $\|X\|_{\infty}=\max _{i, j}\left|X_{i j}\right|$. Let $\langle X, Y\rangle=\operatorname{Tr}\left(X^{\top} Y\right)$ denote the inner product between two matrices. For a vector $x,\|x\|_{2}$ is the usual Euclidean norm.

Define $\Delta(Y)=\left\langle Y^{*}-Y, A\right\rangle$. It suffices to show that $\Delta(Y)>0$ for all feasible solution Y of the program (6)-(8) with $Y \neq Y^{*}$. Rewrite $\Delta(Y)$ as

$$
\begin{equation*}
\Delta(Y)=\left\langle\bar{A}, Y^{*}-Y\right\rangle+\left\langle A-\bar{A}, Y^{*}-Y\right\rangle=\left\langle\bar{A}, Y^{*}-Y\right\rangle+\lambda\left\langle W, Y^{*}-Y\right\rangle, \tag{26}
\end{equation*}
$$

where $\bar{A}=q \mathbf{1 1}^{\top}+(p-q) Y^{*}$ and $W:=(A-\bar{A}) / \lambda$. Because $\sum_{i, j} Y_{i j}=r K^{2}=\sum_{i, j} Y_{i j}^{*}$ and $Y_{i j} \in[0,1]$, the first term in the RHS of (26) satisfies

$$
\left\langle\bar{A}, Y^{*}-Y\right\rangle=(p-q)\left\langle Y^{*}, Y^{*}-Y\right\rangle=\frac{p-q}{2}\left\|Y^{*}-Y\right\|_{1}
$$

We now control the second term in (26). Note that $\operatorname{Var}\left[A_{i j}\right] \leq p(1-q)$. Define $\sigma^{2}:=\max \{p(1-$ $q), q(1-p)\}$. Note that $\|\bar{A}-\mathbb{E}[A]\| \leq 1$. By assumption, $\sigma^{2} \geq C^{\prime} \log n / K$ for a constant C^{\prime}. We need the following bound, which is proved in Section 1.3.1 to follow.
Lemma 1.2. Under the notation above, if $\sigma^{2} \geq C^{\prime} \log n / K$ for a constant C^{\prime}, then there exists a constant C such that with high probability $\|A-\mathbb{E}[A]\| \leq C \sqrt{\sigma^{2} K \log n+q(1-q) n}$.

It follows that with high probability

$$
\|A-\bar{A}\| \leq\|A-\mathbb{E}[A]\|+\|\bar{A}-\mathbb{E}[A]\| \leq C \sqrt{\sigma^{2} K \log n+q(1-q) n}
$$

for a universal constant C. Define $\lambda:=C \sqrt{\sigma K \log n+q(1-q) n}$ and the normalized noise matrix . Thus w.h.p. $\|W\| \leq 1$.

Let u_{k} be the normalized characteristic vector of cluster C_{k}^{*}, i.e., $u_{k}(i)=1 / \sqrt{K}$ if node i is in cluster C_{k}^{*} and $u_{k}(i)=0$ otherwise. Let $U=\left[u_{1}, \ldots, u_{r}\right]$. Then $Y^{*}=K U U^{\top}$ is the singular value decomposition of Y^{*}. Define the projections $\mathcal{P}_{T}(M)=U U^{\top} M+M U U^{\top}-U U^{\top} M U U^{\top}$ and $\mathcal{P}_{T^{\perp}}(M)=M-\mathcal{P}_{T}(M)$. Because $\left\|\mathcal{P}_{T^{\perp}}(W)\right\| \leq\|W\| \leq 1$ w.h.p., $U U^{\top}+\mathcal{P}_{T^{\perp}}(W)$ is a subgradient of $\|X\|_{*}$ at $X=Y^{*}$. Since $\left\|Y^{*}\right\|_{*}=n_{1}$, it follows that for any feasible Y,

$$
0 \geq\|Y\|_{*}-\left\|Y^{*}\right\|_{*} \geq\left\langle U U^{\top}+\mathcal{P}_{T^{\perp}}(W), Y-Y^{*}\right\rangle
$$

Substituting into (26), we obtain that for any feasible Y,

$$
\begin{align*}
\Delta(Y) & \geq \frac{p-q}{2}\left\|Y^{*}-Y\right\|_{1}+\lambda\left\langle\mathcal{P}_{T}(W)-U U^{\top}, Y^{*}-Y\right\rangle \\
& \geq\left(\frac{p-q}{2}-\lambda\left\|U U^{\top}\right\|_{\infty}-\left\|\mathcal{P}_{T}(\lambda W)\right\|_{\infty}\right)\left\|Y^{*}-Y\right\|_{1} \\
& =\left(\frac{p-q}{2}-\frac{\lambda}{K}-\left\|\mathcal{P}_{T}(\lambda W)\right\|_{\infty}\right)\left\|Y^{*}-Y\right\|_{1}, \tag{27}
\end{align*}
$$

where the last equality holds because $\left\|U U^{\top}\right\|_{\infty}=1 / K$.
We proceed by bounding the term $\left\|\mathcal{P}_{T}(\lambda W)\right\|_{\infty}$ in (27). From the definition of \mathcal{P}_{T}, we have

$$
\left\|\mathcal{P}_{T}(\lambda W)\right\|_{\infty} \leq\left\|U U^{\top}(\lambda W)\right\|_{\infty}+\left\|(\lambda W) U U^{\top}\right\|_{\infty}+\left\|U U^{\top}(\lambda W) U U^{\top}\right\|_{\infty} \leq 3\left\|U U^{\top}(\lambda W)\right\|_{\infty}
$$

Assume node i belongs to cluster k. Then

$$
\left(U U^{\top}(\lambda W)\right)_{i j}=\left(u_{k} u_{k}^{\top}(\lambda W)\right)_{i j}=(1 / K) \sum_{i^{\prime} \in C_{k}^{*}}(\lambda W)_{i^{\prime} j},
$$

which is the average of K independent random variables. By Bernstein's inequality (Theorem A.1) we have with probability at least $1-n^{-4}$,

$$
\left|\sum_{i^{\prime} \in C_{k}^{*}}\right| \leq \sqrt{6 \sigma^{2} K \log n}+2 \log n \leq C_{1} \sigma \sqrt{K \log n}
$$

for some constant C_{1}, where the last inequality follows from the assumption (9). It follows from the union bound over all (i, j) that that $\left\|\mathcal{P}_{T}(\lambda W)\right\|_{\infty} \leq 3\left\|U U^{\top}(\lambda W)\right\|_{\infty} \leq 3 C_{1} \sigma \sqrt{\log n / K}$ with probability at least $1-n^{-2}$. Substituting back to (27), we conclude that with probability at least $1-n^{-1}$,

$$
\Delta(Y) \geq\left(\frac{p-q}{2}-\frac{\lambda}{K}-3 C_{1} \sigma \sqrt{\log n / K}\right)\left\|Y^{*}-Y\right\|_{1}>0
$$

for all feasible $Y \neq Y^{*}$, where the last inequality follows from the assumption (9).

1.3.1 Proof of Lemma 1.2

Let $R:=\operatorname{support}\left(Y^{*}\right)$ and $\mathcal{P}_{R}(\cdot): \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ be the operator which sets the entries outside of R to be zero. Let $B_{1}=\mathcal{P}_{R}(A-\mathbb{E}[A])$ and $B_{2}=A-\mathbb{E}[A]-B_{1}$. Then B_{1} is a block-diagonal matrix with r blocks of size $K \times K$ and has entries with variance bounded by σ^{2}. Applying the matrix Bernstein inequality [5], we get that with high probability, $\left\|B_{1}\right\| \leq c_{1} \sqrt{\sigma^{2} K \log n}$ for a constant c_{1}. On the other hand, B_{2} has entries with variance bounded by $\max \left\{q(1-q), c_{2} \log n / n\right\}$ for a constant c_{2}. By Lemma 1.3 below, we obtain that $\left\|B_{2}\right\| \leq c_{3} \max \{\sqrt{q(1-q) n}, \sqrt{\log n}\}$ for a constant c_{3}. It follows that

$$
\begin{aligned}
\|A-\mathbb{E}[A]\| \leq\left\|B_{1}\right\|+\left\|B_{2}\right\| & \leq c_{1} \sqrt{\sigma^{2} K \log n}+c_{3} \max \{\sqrt{q(1-q) n}, \sqrt{\log n}\} \\
& \leq C \sqrt{\sigma^{2} K \log n+q(1-q) n},
\end{aligned}
$$

which completes the proof of the lemma.
Lemma 1.3. Let M denote the $n \times n$ symmetric matrix such that $M_{i j}(1 \leq i<j \leq n)$ are independent random variables with $\mathbb{P}\left(M_{i j}=1-p_{i j}\right)=p_{i j}$ and $\mathbb{P}\left(M_{i j}=-p_{i j}\right)=1-p_{i j}$, and $M_{i i}=0$. Suppose that $\operatorname{Var}\left[M_{i j}\right] \leq \sigma^{2}$ with $\sigma^{2} \geq C^{\prime} \log n / n$ for a constant C^{\prime}, then with high probability $\|M\| \leq C \sigma \sqrt{n}$ for a constant C.

Proof. If $\sigma^{2} \geq \frac{\log ^{7} n}{n}$, then Theorem 8.4 in [1] implies that $\|M\| \leq 3 \sigma \sqrt{n}$ w.h.p. If $C^{\prime} \frac{\log n}{n} \leq \sigma^{2} \leq$ $\frac{\log ^{7} n}{n}$, then Lemma 2 in [2] implies that $\|M\| \leq C \sigma \sqrt{n}$ w.h.p. for some universal constant C.

1.4 Proof of Theorem 4

We first claim that $K(p-q) \leq c_{2} \sqrt{K p+q n}$ implies $K(p-q) \leq c_{2} \sqrt{2 q n}$ under the assumption that $K \leq n / 2$ and $q n \geq c_{1} \log n$. In fact, if $K p \leq q n$, then the claim trivially holds. If $K p>q n$, then $q<K p / n \leq p / 2$. It follows that

$$
K p / 2<K(p-q) \leq c_{2} \sqrt{K p+q n} \leq c_{2} \sqrt{2 K p}
$$

Thus, $K p<8 c_{2}^{2}$ which contradicts the assumption that $K p>q n \geq c_{1} \log n$. Therefore, $K p>q n$ cannot hold. Hence, it suffices to show that if $K(p-q) \leq c_{2} \sqrt{2 q n}$, then Y^{*} is not an optimal solution of the convex program (6)-(8). We do this by showing that the optimality of Y^{*} implies $K(p-q)>c_{2} \sqrt{2 q n}$.

Let \mathbb{I} be the $n \times n$ all-one matrix. Let $\mathcal{R}:=\operatorname{support}\left(Y^{*}\right)$ and $\mathcal{A}:=\operatorname{support}(A)$. Recall that $Y^{*}=K U U^{\top}$ is the singular value decomposition of Y^{*}, and the orthogonal projection onto the space T is given by $\mathcal{P}_{T}(M)=U U^{\top} M+M U U^{\top}-U U^{\top} M U U^{\top}$.

Consider the Lagrangian

$$
L(Y ; \lambda, \mu, F, G):=-\langle A, Y\rangle+\lambda\left(\|Y\|_{*}-\left\|Y^{*}\right\|_{*}\right)+\eta\left(\langle\mathbb{I}, Y\rangle-r K^{2}\right)-\langle F, Y\rangle+\langle G, Y-\mathbb{I}\rangle,
$$

where $\lambda \geq 0, \eta \in \mathbb{R}, F_{i j} \geq 0$ and $G_{i j} \leq 0, \forall i, j$ are the Lagrangian multipliers. Note that $Y=\frac{r K^{2}}{n^{2}} \mathbb{I}$ is strictly feasible so strong duality holds by Slater's Theorem. By standard convex analysis, if $Y=Y^{*}$ is an optimal solution, then there must exists some F, G and λ for which the following

KKT conditions hold:

$$
\left.\begin{array}{rl}
\left.0 \in \frac{\partial L(Y ; \lambda, \mu, F, G)}{\partial Y}\right|_{Y=Y^{*}}, \\
F_{i j} \geq 0, \forall(i, j), \\
G_{i j} \geq 0, \forall(i, j), \\
\lambda \geq 0,
\end{array}\right\} \text { Stationary condition } \quad \text { Dual feasibility }
$$

Recall that $M \in \mathbb{R}^{n \times n}$ is a subgradient of $\|X\|_{*}$ at $X=Y^{*}$ if and only if $\mathcal{P}_{T}(M)=U U^{\top}$ and $\left\|\mathcal{P}_{T^{\perp}}(M)\right\| \leq 1$. Let $H=F-G$; the KKT conditions imply that there exist some λ, η, W and H obeying

$$
\begin{align*}
A-\lambda\left(U U^{\top}+W\right)-\eta \mathbb{I}+H & =0, \tag{28}\\
\lambda & \geq 0 \tag{29}\\
P_{T} W & =0 \tag{30}\\
\|W\| & \leq 1, \tag{31}\\
H_{i j} & \leq 0, \forall(i, j) \in \mathcal{R}, \tag{32}\\
H_{i j} & \geq 0, \forall(i, j) \in \mathcal{R}^{c} . \tag{33}
\end{align*}
$$

Now observe that $U U^{\top} W U U^{\top}=0$ by (30). We left and right multiply (28) by $U U^{\top}$ to obtain

$$
\bar{A}-\lambda U U^{\top}-\eta \mathbb{I}+\bar{H}=0,
$$

where for any matrix $X \in \mathbb{R}^{n \times n}, \bar{X}:=U U^{\top} X U U^{\top}$ is the matrix obtained by taking the average in each $K \times K$ block of X. Consider the last display equation on entries in \mathcal{R} and \mathcal{R}^{c} respectively. Applying the Bernstein inequality (Theorem A.1) for each entry of $\bar{A}_{i j}$, we get that with high probability,

$$
\begin{align*}
p-\frac{\lambda}{K}-\eta+\bar{H}_{i j} & \geq-\frac{c_{3} \sqrt{p(1-p) \log n}}{K}-\frac{c_{4} \log n}{2 K^{2}} \stackrel{(a)}{\geq}-\frac{\epsilon_{0}}{8}, \quad \forall(i, j) \in \mathcal{R} \tag{34}\\
q-\eta+\bar{H}_{i j} & \leq \frac{c_{3} \sqrt{q(1-q) \log n}}{K}+\frac{c_{4} \log n}{2 K^{2}} \stackrel{(b)}{\leq} \frac{\epsilon_{0}}{8}, \quad \forall(i, j) \in \mathcal{R}^{c} \tag{35}
\end{align*}
$$

for some constants $c_{3}, c_{4}>0$, where (a) and (b) follow from the assumption $K \geq c_{1} \sqrt{\log n}$ with c_{1} sufficiently large. Using (32) and (33), we get
$q-\frac{\epsilon_{0}}{8} \leq q-\frac{c_{3} \sqrt{q(1-q) \log n}}{K}-\frac{c_{4} \log n}{2 K^{2}} \leq \eta \leq p+\frac{c_{3} \sqrt{p(1-p) \log n}}{K}+\frac{c_{4} \log n}{2 K^{2}}-\frac{\lambda}{K} \leq p+\frac{\epsilon_{0}}{8}-\frac{\lambda}{K}$.

It follows that

$$
\begin{align*}
\lambda & \leq K(p-q)+c_{3}(\sqrt{p(1-p) \log n}+\sqrt{q(1-q) \log n})+\frac{c_{4} \log n}{K} \\
& \leq 4 \max \left\{K(p-q), c_{3} \sqrt{p(1-p) \log n}, c_{3} \sqrt{q(1-q) \log n}, \frac{c_{4} \sqrt{\log n}}{c_{1}}\right\} . \tag{37}
\end{align*}
$$

On the other hand, (31), (30) and (28) imply

$$
\begin{aligned}
\lambda^{2} & =\left\|\lambda\left(U U^{\top}+W\right)\right\|^{2} \geq \frac{1}{n}\left\|\lambda\left(U U^{\top}+W\right)\right\|_{F}^{2} \\
& =\frac{1}{n}\|A-\eta \mathbb{I}+H\|_{F}^{2} \geq \frac{1}{n}\left\|A_{\mathcal{R}^{c}}-\eta \mathbb{I}_{\mathcal{R}^{c}}+H_{\mathcal{R}^{c}}\right\|_{F}^{2} \geq \frac{1}{n} \sum_{(i, j) \in \mathcal{R}^{c}}(1-\eta)^{2} A_{i j},
\end{aligned}
$$

where $X_{\mathcal{R}^{c}}$ denotes that matrix obtained from X by setting the entries outside \mathcal{R}^{c} to zero. Using $\eta \leq 1-\frac{7}{8} \epsilon_{0}$, which is a consequence of (36), (29) and the assumption $p \leq 1-\epsilon_{0}$, we obtain

$$
\begin{equation*}
\lambda^{2} \geq \frac{49}{64 n} \epsilon_{0}^{2} \sum_{(i, j) \in \mathcal{R}^{c}} A_{i j}, \tag{38}
\end{equation*}
$$

Note that $\sum_{(i, j) \in \mathcal{R}^{c}} A_{i j}$ equals two times the sum of $\binom{n}{2}-r\binom{K}{2}$ i.i.d. Bernoulli random variables with parameter q. By the Chernoff bound of Binomial distributions and the assumption that $q n \geq c_{1} \log n$, we know with high probability $\sum_{(i<j) \in \mathcal{R}^{c}} A_{i j} \geq C q n^{2}$ for some constant C. It follows from (38) that $\lambda^{2} \geq C^{\prime} q n$ for some constant $C^{\prime}>0$. Combining with (37) and the assumption that $q n \geq c_{1} \log n$, we conclude that $K(p-q) \geq C^{\prime \prime} \sqrt{q n}$ for some constant $C^{\prime \prime}>0$. This completes the proof of the theorem.

1.5 Proof of Theorem 5

The degree d_{i} of node i is distributed as $\operatorname{Bin}(K-1, p)$ plus an independent $\operatorname{Bin}(n-K, q)$ if $i \in V_{1}$. Otherwise d_{i} is distributed as $\operatorname{Bin}(n-1, q)$ if $i \in V_{2}$. It follows that $\mathbb{E}\left[d_{i}\right]=(n-1) q+(K-1)(p-q)$ if $i \in V_{1}$ and $\mathbb{E}\left[d_{i}\right]=(n-1) q$ if $i \in V_{2}$. If we define $\sigma^{2}=K p(1-q)+n q(1-q)$, then we further have $\operatorname{Var}\left[d_{i}\right] \leq \sigma^{2}$. Set $t:=(K-1)|p-q| / 2 \leq \sigma^{2}$; the Bernstein inequality (Theorem A.1) gives

$$
\mathbb{P}\left\{\left|d_{i}-\mathbb{E}\left[d_{i}\right]\right| \geq t\right\} \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}+2 t / 3}\right) \leq 2 \exp \left(-\frac{(K-1)^{2}(p-q)^{2}}{12 \sigma^{2}}\right) \leq 2 n^{-2}
$$

where the last inequality follows from assumption (12). By the union bound, with probability at least $1-2 n^{-1}, d_{i}>\frac{(p-q) K}{2}+q n$ for all nodes $i \in V_{1}$ and $d_{i}<\frac{(p-q) K}{2}+q n$ for all nodes $i \in V_{2}$. Therefore, all nodes in V_{2} are correctly declared to be isolated with high probability.

The number of common neighbors $S_{i j}$ between the nodes i and j is distributed as $\operatorname{Bin}\left(K-2, p^{2}\right)$ plus an independent $\operatorname{Bin}\left(n-K, q^{2}\right)$ if i and j are in the same cluster, and it is distributed as $\operatorname{Bin}(2(K-1), p q)$ plus an independent $\operatorname{Bin}\left(n-2 K, q^{2}\right)$ if i and j are in different clusters. Hence, $\mathbb{E}\left[S_{i j}\right]$ equals $(K-2) p^{2}+(n-K) q^{2}$ if i and j are in the same cluster and $2(K-1) p q+(n-2 K) q^{2}$ otherwise. The difference in mean equals $K(p-q)^{2}-2 p(p-q)$. Let $\sigma^{2}=2 K p^{2}\left(1-q^{2}\right)+n q^{2}\left(1-q^{2}\right)$. Then $\operatorname{Var}\left[S_{i j}\right] \leq \sigma^{2}$. Set $t^{\prime}:=K(p-q)^{2} / 3 \leq \sigma^{2}$. Assumption (13) implies that $t^{\prime}>2 p(p-q)$. Applying the Bernstein inequality (Theorem A.1), we obtain

$$
\mathbb{P}\left\{\left|S_{i j}-\mathbb{E}\left[S_{i j}\right]\right| \geq t^{\prime}\right\} \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}+2 t / 3}\right) \leq 2 \exp \left(-\frac{K^{2}(p-q)^{4}}{27 \sigma^{2}}\right) \leq 2 n^{-3},
$$

where the last inequality follows from the assumption (13). By union bound, with probability at least $1-2 n^{-1}, S_{i j}>\frac{(p-q)^{2} K}{3}+2 K p q+q^{2} n$ for all nodes i, j from the same cluster and $S_{i j}<$ $\frac{(p-q)^{2} K}{3}+2 K p q+q^{2} n$ for all nodes i, j from two different clusters. Therefore the simple algorithm returns the true clusters w.h.p.

1.6 Proof of Theorem 6

For simplicity we assume K and n_{2} are even numbers. We partition V_{1} into two equal-sized subsets V_{1+} and V_{1-} such that half of the nodes of each cluster are in V_{1+}. Similarly, V_{2} is partitioned into two equal-sized subsets V_{2+} and V_{2-}. To prove the theorem, we need the following anticoncentration inequality.

Theorem 1.4 (Theorem 7.3.1 in [3]). Let X_{1}, \ldots, X_{n} be independent random variables such that $0 \leq X_{i} \leq 1$ for all i. Suppose $X=\sum_{i=1}^{n} X_{i}$ and $\sigma^{2}:=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right] \geq 200$. Then for all $0 \leq t \leq \sigma^{2} / 100$ and some universal constant $c>0$, we have

$$
\mathbb{P}[X \geq \mathbb{E}[X]+t] \geq c e^{-t^{2} /\left(3 \sigma^{2}\right)}
$$

Identifying isolated nodes For each node i in $V_{1+} \cup V_{2+}$, let d_{i+} be the number of its neighbors in $V_{1+} \cup V_{2+}$ and d_{i-} be the number of its neighbors in $V_{1-} \cup V_{2-}$, so $d_{i}=d_{i+}+d_{i-}$. We consider two cases.

Case 1: Suppose $(K p+(n-K) q) \log n_{1} \geq n q \log n_{2}$. In this case we have $(K-1)^{2}(p-q)^{2} \leq$ $2 c_{2}(K p+n q) \log n_{1}$ by (14). For each $i \in V_{1+}, d_{i-}$ is distributed as $\operatorname{Bin}(K / 2, p)$ plus an independent $\operatorname{Bin}((n-K) / 2, q)$. Let $t:=(K-1)(p-q)+2, \gamma_{1}:=\mathbb{E}\left[d_{i-}\right]-t=n q / 2+K(p-q) / 2-t$ and $\sigma_{d}^{2}:=\operatorname{Var}\left[d_{i-}\right]=\frac{1}{2} K p(1-p)+\frac{1}{2}(n-K) q(1-q)$. Since $K \leq n / 2, p, q$ are bounded away from 1 and $K p+n q \geq K p^{2}+n q^{2} \geq c_{1} \log n$, we have $\sigma_{d}^{2} \geq c^{\prime} \log n \geq 200$. Combining wit (14), we further have $\sigma_{d}^{4} \geq c^{\prime \prime} K^{2}(p-q)^{2} / \log n_{1} \cdot c^{\prime} \log n \geq 100^{2} t^{2}$. We can thus apply Theorem 1.4 and get

$$
\mathbb{P}\left[d_{i-} \leq \gamma_{1}\right] \geq c \exp \left(-\frac{t^{2}}{3 \sigma_{d}^{2}}\right)=\exp \left(-\frac{((K-1)(p-q)+2)^{2}}{3(K p(1-p)+(n-K) q(1-q))}\right) \geq c n_{1}^{-c^{\prime}}
$$

for some constant $c^{\prime}>0$ that can be made small by choosing c_{2} above sufficiently small. Let $i^{*}:=\arg \min _{i \in V_{1+}} d_{i-}$. Since the random variables $\left\{d_{i-}: i \in V_{1+}\right\}$ are mutually independent, we have

$$
\mathbb{P}\left[d_{i^{*}-} \geq \gamma_{1}\right]=\prod_{i \in V_{1+}} \mathbb{P}\left[d_{i-} \geq \gamma_{1}\right] \leq\left(1-c n_{1}^{-c^{\prime}}\right)^{n_{1} / 2} \leq \exp \left(-c n_{1}^{1-c^{\prime}} / 2\right) \leq 1 / 4
$$

On the other hand, for each $i \in V_{1+}, d_{i+}$ is distributed as $\operatorname{Bin}(K / 2-1, p)$ plus an independent $\operatorname{Bin}((n-K) / 2, q)$. Since the median of $\operatorname{Bin}(n, p)$ is at most $n p+1$, we know that with probability at least $1 / 2, d_{i+} \leq \gamma_{2}:=n q / 2+K(p-q) / 2-p+2$. Now observe that the two sets of random variables $\left\{d_{i+}, i \in V_{1+}\right\}$ and $\left\{d_{i-}, i \in V_{1+}\right\}$ are independent of each other, so d_{i+} is independent of i^{*} for each $i \in V_{1+}$. It follows that

$$
\mathbb{P}\left[d_{i^{*}+} \leq \gamma_{2}\right]=\sum_{i \in V_{1+}} \mathbb{P}\left[d_{i+} \leq \gamma_{2} \mid i^{*}=i\right] \mathbb{P}\left[i^{*}=i\right]=\sum_{i \in V_{1+}} \mathbb{P}\left[d_{i+} \leq \gamma_{2}\right] \mathbb{P}\left[i^{*}=i\right] \geq \frac{1}{2}
$$

Combining the last two display equations by the union bound, we obtain that with probability at least $1 / 4$,

$$
d_{i^{*}}=d_{i^{*}-}+d_{i^{*}+} \leq \gamma_{1}+\gamma_{2}=(n-1) q,
$$

and thus node i^{*} will be incorrectly declared as an isolated node.
Case 2: Suppose $(K p+n q) \log n_{1} \leq n q \log n_{2}$. In this case we have $(K-1)^{2}(p-q)^{2} \leq$ $2 c_{2} n q \log n_{2}$ by assumption. Define $i^{*}=\arg \max _{i \in V_{2+}} d_{i-}$. Using the same argument as in Case 1 , we can show that with probability at least $1 / 4, d_{i^{*}} \geq(n-1) q+(K-1)(p-q)$ and thus node i^{*} will incorrectly declared as an non-isolated node.

Recovering clusters For two nodes $i, j \in V_{1}$, let $S_{i j+}$ be the number of their common neighbors in $V_{1+} \cup V_{2+}$ and $S_{i j-}$ be the number of their common neighbors in $V_{1-} \cup V_{2-}$, so $S_{i j+}=S_{i j+}+S_{i j-}$.

For each pair of nodes i, j in V_{1+} that are from the same cluster, $S_{i j-}$ is distributed as $\operatorname{Bin}\left(K / 2, p^{2}\right)$ plus an independent $\operatorname{Bin}\left((n-K) / 2, q^{2}\right)$. Let $t^{\prime}:=K(p-q)^{2}+4, \gamma_{3}:=\mathbb{E}\left[S_{i j-}\right]-t^{\prime}=$ $n q^{2} / 2+K\left(p^{2}-q^{2}\right) / 2-t^{\prime}$, and $\sigma_{S}^{2}:=\operatorname{Var}\left[S_{i j-}\right]=\frac{1}{2} K p^{2}\left(1-p^{2}\right)+\frac{1}{2}(n-K) q^{2}\left(1-q^{2}\right)$. Since $K \leq n / 2$, p, q are bounded away from 1 and $K p^{2}+n q^{2} \geq c_{1} \log n$, we have that $\sigma_{S}^{2} \geq 200$ and $\sigma_{S}^{2} \geq 100 t^{\prime}$. Theorem 1.4 implies that there exists a constant $c>0$ such that

$$
\mathbb{P}\left[S_{i j-} \leq \gamma_{3}\right] \geq c \exp \left(-\frac{t^{\prime 2}}{3 \sigma_{S}^{2}}\right)=c \exp \left(-\frac{\left(K(p-q)^{2}+4\right)^{2}}{3\left(K p^{2}\left(1-p^{2}\right)+(n-K) q^{2}\left(1-q^{2}\right)\right)}\right) \geq c n_{1}^{-c^{\prime}},
$$

where the constant $c^{\prime}>0$ can be made sufficiently small by choosing c_{2} sufficiently small in the statement of the lemma. Without loss of generality, we may re-label the nodes such that $V_{1+}=\left\{1,2, \ldots, n_{1} / 2\right\}$ and for each $k=1, \ldots, n_{1} / 4$, the nodes $2 k-1$ and $2 k$ are in the same cluster. Note that the random variables $\left\{S_{(2 k-1) 2 k-}: k=1,2, \ldots, n_{1} / 4\right\}$ are mutually independent. Let $i^{*}=-1+2 \arg \min _{k=1,2, \ldots, n_{1} / 4} S_{(2 k-1) 2 k-}$ and $j^{*}=i^{*}+1$; it follows that

$$
\mathbb{P}\left[S_{i^{*} j^{*}-} \geq \gamma_{3}\right] \leq\left(1-c n_{1}^{-c^{\prime}}\right)^{n_{1} / 4} \leq \exp \left(-c n_{1}^{1-c^{\prime}} / 4\right) \leq 1 / 4 .
$$

On the other hand, since $S_{i j+}$ is distributed as $\operatorname{Bin}\left(K / 2-2, p^{2}\right)$ plus an independent $\operatorname{Bin}((n-$ $K) / 2, q^{2}$), we use the median argument to obtain that with probability at least $1 / 2, S_{i j+} \leq \gamma_{4}:=$ $n q^{2} / 2+K\left(p^{2}-q^{2}\right) / 2-2 p^{2}+2$. Because $\left\{S_{i j+}, i, j \in V_{1+}\right\}$ only depends on the edges between V_{1+} and $V_{1+} \cup V_{2+}$, and $\left(i^{*}, j^{*}\right)$ only depends on the edges between V_{1+} and $V_{1-} \cup V_{2-}$, we know $\left\{S_{i j+}, i, j \in V_{1+}\right\}$ and $\left(i^{*}, j^{*}\right)$ are independent of each other. It follows that $S_{i^{*} j^{*}+} \leq \gamma_{4}$ with probability at least $1 / 2$. It follows that with probability at least $1 / 4$,

$$
S_{i^{*} j^{*}}=S_{i^{*} j^{*}-}+S_{i^{*} j^{*}+} \leq \gamma_{3}+\gamma_{4}=2(K-1) p q+(n-2 K) q^{2}
$$

and thus the nodes i^{*}, j^{*} will be incorrectly assigned to two different clusters.

Appendices

A Standard Bernstein Inequality

Theorem A.1. Let X_{1}, \ldots, X_{n} be independent random variables such that $\left|X_{i}\right| \leq M$ almost surely. Let $\sigma^{2}=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$, then for any $t \geq 0$

$$
\mathbb{P}\left[\sum_{i=1}^{n} X_{i} \geq t\right] \leq \exp \left(\frac{-t^{2}}{2 \sigma^{2}+\frac{2}{3} M t}\right) .
$$

A consequent of the above inequality is $\mathbb{P}\left[\sum_{i=1}^{n} X_{i} \geq \sqrt{2 \sigma^{2} u}+\frac{2 M u}{3}\right] \leq e^{-u}$ for any $u>0$.

References

[1] S. Chattergee. Matrix estimation by universal singular value thresholding. arxiv:1212.1247, 2012.
[2] L. Massoulié and D.-C. Tomozei. Distributed user profiling via spectral methods. arxiv:1109.3318, 2011.
[3] J. Matoušek and J. Vondrák. The probabilistic method, lecture notes. http://kam.mff.cuni. cz/~matousek/prob-ln-2pp.ps.gz, 2008.
[4] K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 39(4), 2011.
[5] J. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389-434, 2012.

