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Abstract

We provide the proofs for the theorems in the main paper.

1 Proofs for Planted Clustering

In this section, Theorems 1–6 refer to the theorems in the main paper. Equations are numbered
continuously from the main paper. We let n1 := rK and n2 := n − rK be the numbers of non-
isolated and isolated nodes, respectively.

1.1 Proof of Theorem 1

The proof relies on information theoretical arguments and the Fano’s inequaliy [4]. We use
D (Ber(p)‖Ber(q)) to denote the KL divergence between two Bernoulli distributions with mean
p and q. We first state an upper bound on D (Ber(p)‖Ber(q)), which is used later in the proof:

D (Ber(p)‖Ber(q)) = p log
p

q
+ (1− p) log

1− p
1− q

(a)

≤ p
p− q
q

+ (1− p)q − p
1− q

=
(p− q)2

q(1− q)
, (16)

where (a) follows from the inequality log x ≤ x− 1,∀x ≥ 0. Let P(Y ∗,A) be the joint distribution of
Y ∗ and A when Y ∗ is sampled from Y uniformly at random and A is generated according to the
planted clustering model. Because the supremum is lower bounded by the average, we have

inf
Ŷ

sup
Y ∗∈Y

P
[
Ŷ 6= Y ∗

]
≥ inf

Ŷ
P(Y ∗,A)

[
Ŷ 6= Y ∗

]
. (17)

Let H(X) be the entropy of a random variable X and I(X;Z) the mutual information between X
and Z. By Fano’s inequality, we have for any Ŷ ,

P(Y ∗,A)(Ŷ 6= Y ∗) ≥ 1− I(Y ∗;A) + 1

log |Y|
. (18)

Simple counting gives that |Y| =
(
n
n1

)
n1!

r!(K!)r . Note that
(
n
n1

)
≥ ( nn1

)n1 and
√
n(ne )n ≤ n! ≤ e

√
n(ne )n.

It follows that

|Y| ≥ (n/n1)n1

√
n1(n1/e)

n1

e
√
r(r/e)rerKr/2(K/e)n1

≥
( n
K

)n1 1

e(r
√
K)r

.
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This implies log |Y| ≥ 1
2n1 log n

K under the assumption that 8 ≤ K ≤ n/2 and n ≥ 32. On the
other hand, note that H(A) ≤

(
n
2

)
H(A12) because the Aij ’s are identically distributed by symmetry.

Furthermore,the Aij ’s are independent conditioned on Y ∗, so H(A|Y ∗) =
(
n
2

)
H(A12|Y ∗12). It follows

that I(Y ∗;A) = H(A)−H(A|Y ∗) ≤
(
n
2

)
I(Y ∗12;A12). We bound I(Y ∗12;A12) below. Observe that

P(Y ∗12 = 1) =

(
n−2
K−2

)(
n−K
K

)
· · ·
(
n−rK+K

K

)
1

(r−1)!

|Y|
= α :=

K

n
,

and thus P(A12 = 1) = β := αp+ (1− α)q. It follows that

I(Y ∗12;A12) = αD (Ber(p)‖Ber(β)) + (1− α)D (Ber(q)‖Ber(β))

(a)

≤ α
(p− β)2

β(1− β)
+ (1− α)q

(q − β)2

β(1− β)

=
α(1− α)(p− q)2

β(1− β)

(b)

≤ α(p− q)2

q(1− q)
,

where (a) follows from (16) and (b) follows because β(1 − β) ≥ αp(1 − p) + (1 − α)q(1 − q) due

to the concavity of x(1 − x). Hence we have I(Y ∗;A) ≤ n1(K−1)(p−q)2
2q(1−q) . Combining with (18), we

obtain

P(Y ∗,A)(Y 6= Y ∗) ≥ 1−
n1(K−1)(p−q)2

q(1−q) + 2

n1 log n
K

≥ 3/4− (K − 1)(p− q)2

q(1− q) log n
K

, (19)

where the last inequality holds because n1 log n
K ≥ 8 when K ≥ n/2 and n ≥ 32. The RHS above

is at least 1/2 when the first condition (1) in the theorem holds. Substituting into (17) proves
sufficiency of (1).

We now turn to the third condition (3). Since p > q, we have β ≤ p by the definition of β.
Moreover, β ≥ αp and 1− β = 1− q − α(p− q) ≥ (1− α)(1− q). It follows that

I(Y ∗12;A12) = αp log
p

β
+ α(1− p) log

(1− p)
1− β

+ (1− α)D (Ber(q)‖Ber(β))

≤ αp log
1

α
+ (1− α)

(q − β)2

β(1− β)
= αp log

1

α
+
α2(1− α)(p− q)2

β(1− β)

≤ αp log
1

α
+
α(p− q)2

p(1− q)
≤ αp log

e

α
.

where the first inequality follows from p/β ≤ 1/α, 1 − β ≥ 1 − p and (16), the second inequality
follows from β(1− β) ≥ α(1−α)p(1− q), and the last inequality follows from p− q ≤ p(1− q). By

the definition of α, we have α ≥ K(K−1)
n(n−1) ≥

K
en when K ≥ 8. It follows that I(Y ∗12;A12) ≤ αp log e2n

K ,

and thus I(Y ∗;A) ≤ 1
2n1Kp log e2n

K . By equation (19), if Kp ≤ 1
16 , i.e., the condition (3) in the

theorem holds, then P(Y 6= Y ∗) ≥ 1/2.
It remains to prove the sufficiency of the second condition (3). Let M̄ = n − K and Ȳ =

{Y0, Y1, . . . , YM̄} be a subset of Y with cardinality M̄ + 1, which is specified later. Let ¯P(Y ∗,A)

denote the joint distribution of Y ∗ and A when Y ∗ is sampled from Ȳ uniformly at random and
then A is generated according to the planted clustering model. By Fano’s inequality, we have

inf
Ŷ

sup
Y ∗∈Y

P
[
Ŷ 6= Y ∗

]
≥ inf

Ŷ
P̄(Y ∗,A)

[
Ŷ 6= Y ∗

]
≥ inf

Ŷ

{
1− I(Y ∗;A) + 1

log |Ŷ|

}
. (20)
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We construct Ȳ as follows. Let Y0 be the clustering matrix such that the clusters {Cl}rl=1 are given
by Cl = {(l − 1)K + 1, . . . , lK}. Informally, each Yi with i ≥ 1 is obtained from Y0 by swapping
two nodes in two different clusters. More specifically, for each i ∈ [M̄ ], (i) if the (K + i)-th node
belongs to cluster Cl for some l, then Yi has the first right cluster as {1, 2, . . . ,K − 1,K + i} and
the l-th right cluster as Dl \ {K + i} ∪ {K}, and all the other clusters identical to Y0; (ii) if the
(K+i)-th node is an isolated node in Y0, then Yi has the first right cluster as {1, 2, . . . ,K−1,K+i}
and node K as an isolated node, and all the other clusters identical to Y0.

Let Pi be the distribution of the graph A conditioned on Y ∗ = Yi. Note that each Pi is a
product of 1

2n(n− 1) Bernoulli distributions. We have the following chain of inequalities:

I(Y ∗;A)
(a)

≤ 1

(M + 1)2

M∑
i,i′=0

D (Pi‖Pi′)

≤ max
i,i′=0,...,M

D (Pi‖Pi′)

(b)

≤ 3KD (Ber(p)‖Ber(q)) + 3KD (Ber(q)‖Ber(p))

(c)

≤ 3K(p− q)2 1

min{p(1− p), q(1− q)}
where (a) follows from the convexity of KL divergence, (b) follows by our construction of {Yi}, and
(c) follows from (16). If (2) holds, then I(Y ;A) ≤ 1

4 log(n −K) = 1
4 log

∣∣Ȳ∣∣ . Since log(n −K) ≥
log(n/2) ≥ 4 if n ≥ 128, it follows from (20) that the minimax error probability is at least 1/2.

1.2 Proof of Theorem 2

Let 〈X,Y 〉 := Tr(X>Y ) denote the inner product between two matrices. Assume that p > q first.
For any feasible solution Y ∈ Y of (4), we define ∆(Y ) := 〈A, Y ∗ − Y 〉. To prove the theorem, it
suffices to show that ∆(Y ) > 0 for all feasible Y with Y 6= Y ∗. For simplicity, in this proof we use
a different convention that Y ∗ii = 0 and Yii = 0 for all i ∈ V . Note that

∆(Y ) = 〈E[A], Y ∗ − Y 〉+ 〈A− E[A], Y ∗ − Y 〉, (21)

where E[A] = q11>+(p−q)Y ∗−qI, 1 is the all one vector in Rn and I is the n×n identity matrix.
Let d(Y ) := 〈Y ∗, Y ∗ − Y 〉; since

∑
i,j Yij =

∑
i,j Y

∗
ij , we have

〈E[A], Y ∗ − Y 〉 = (p− q)d(Y ). (22)

On the other hand, observe that

〈A− E[A], Y ∗ − Y 〉 = 2
∑

(i<j):
Y ∗ij=1

Yij=0

(Aij − p)

︸ ︷︷ ︸
T1(Y )

−2
∑

(i<j):
Y ∗ij=0

Yij=1

(Aij − q)

︸ ︷︷ ︸
T2(Y )

.

Here T1(Y ) (T2(Y ), resp.) is the sum of 1
2d(Y ) i.i.d. centered Bernoulli random variables with

parameter p (q, resp.). Let δ1 = (p − q)/(2p) and δ2 = (p − q)/(2q). By the Bernstein inequality,
we have for each fix Y ∈ Y,

P
{
T1(Y ) ≤ −δ1

2
d(Y )p

}
≤ exp

(
− δ2

1

4(1− p) + 4δ1/3
d(Y )p

)
(a)

≤ exp

(
− (p− q)2

20p(1− q)
d(Y )

)
,

P
{
T2(Y ) ≥ δ2

2
d(Y )q

}
≤ exp

(
− δ2

2

4(1− q) + 4δ2/3
d(Y )q

)
(b)

≤ exp

(
− (p− q)2

20p(1− q)
d(Y )

)
,
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where (a) and (b) hold because p > q and p− q ≤ p(1− q). It follows from the union bound that

P
{

1

2
〈A− E[A], Y ∗ − Y 〉 = T1(Y )− T2(Y ) ≤ −1

2
(p− q)d(Y )

}
≤ 2 exp

(
− (p− q)2

20p(1− q)
d(Y )

)
.

This implies

P {∆(Y ) ≤ 0} ≤ 2 exp

(
− (p− q)2

20p(1− q)
d(Y )

)
(23)

in view of (21) and (22). This bound holds for each fixed Y ∈ Y.
We proceed to bound the probability of the event {∃Y ∈ Y : Y 6= Y ∗,∆(Y ) ≤ 0}. Note that

2(K − 1) ≤ d(Y ) ≤ rK2 for any feasible Y 6= Y ∗, where the lower bound is achieved by swapping
a node in V1 with a node in V2, and the upper bound follows from

∑
i,j Y

∗
ij ≤ rK2. The key step

is to upper-bound the cardinality of the set {Y ∈ Y : d(Y ) = t} for each t. This is done in the
following combinatorial lemma.

Lemma 1.1. For each t ∈ [2(K − 1), rK2], we have

|{Y ∈ Y : d(Y ) = t}| ≤ 25t2

K2
n20t/K . (24)

We prove the lemma in Section 1.2.1. Combining the lemma with (23) and the union bound,
we obtain

P {∃Y ∈ Y : Y 6= Y ∗,∆(Y ) ≤ 0}

≤
rK2∑

t=2K−2

P {∃Y ∈ Y : d(Y ) = t,∆(Y ) ≤ 0}

≤2

rK2∑
t=2K−2

|{∃Y ∈ Y : d(Y ) = t}| exp

(
− (p− q)2t

20p(1− q)

)

≤2

rK2∑
t=2K−2

25t2

K2
n20t/K exp

(
− (p− q)2t

20p(1− q)

)
(a)

≤50

rK2∑
t=2K−2

n2n−5t/K

≤50rK2n−3 ≤ 50n−1,

where (a) follows from the assumption that (p − q)2K ≥ C ′p(1 − q) log n for a large constant C ′.
This means Y ∗ is the unique optimal solution with high probability. A similar argument applies to
the case with q > p. This completes the proof of the theorem.

1.2.1 Proof of Lemma 1.1

Recall that C∗1 , . . . , C
∗
r are the true clusters associated with Y ∗. Fix a Y ∈ Y with d(Y ) = t. The

cluster matrix Y defines a new ordered partition (C1, . . . , Cr+1) of V according to the following
procedure.

1. Let Cr+1 := {i : Yij = 0, ∀j}.
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2. The nodes in V \Cr+1 can be further partitioned into r new clusters of size K, where nodes i
and j are in the same cluster if and only if Yij = 1; we define an ordering C1, . . . , Cr of these
r new clusters as follows.

(a) For each new cluster C, if there exists a k ∈ [r] such that |C ∩C∗k | > K/2, then we label
this new cluster as Ck; this label is unique because the cluster size is K.

(b) The remaining clusters are labeled arbitrarily.

This new partition has the following properties:
(A0) (C1, . . . , Cr, Cr+1) is a partition of V , and |Ck| = K for all k ∈ [r].
(A1) For every k ∈ [r], either |Ck ∩ C∗k | > K/2, or |Ck′ ∩ C∗k | ≤ K/2 for all k′ ∈ [r];
(A2) We have

r∑
k=1

|C∗k ∩ Cr+1|2 − |C∗k ∩ Cr+1|+
∑

k′,k′′∈[r+1]
k′ 6=k′′

|C∗k ∩ Ck′ ||C∗k ∩ Ck′′ |

 = t.

Here, Properties (A0) and (A1) are direct consequences of how we label the new clusters, and
Property (A2) follows from the following equalities

t = d(Y ) =|{(i, j) ∈ V × V : Y ∗ij = 1, Yij = 0}|

=

r∑
k=1

|{(i, j) : (i, j) ∈ C∗k × C∗k , i 6= j, Yij = 0}|

=

r∑
k=1

|{(i, j) : (i, j) ∈ C∗k × C∗k , i 6= j, (i, j) ∈ Cr+1 × Cr+1}|

+

r∑
k=1

∑
k′,k′′∈[r+1]
k′ 6=k′′

|{(i, j) : (i, j) ∈ C∗k × C∗k , (i, j) ∈ Ck′ × Ck′′}|.

Since these properties are satisfied by any Y with d(Y ) = t, we have

|{Y ∈ Y : d(Y ) = t}| ≤ |{(C1, . . . , Cr, Cr+1) : it has properties (A0)–(A2)}|. (25)

To prove the lemma, it suffices to upper bound the right hand side of (25).
Fix an ordered partition C := (C1, . . . , Cr, Cr+1) with properties (A0)–(A2). We consider the

first true cluster, C∗1 . Define m1 :=
∑

k′∈[r+1],k′ 6=1 |Ck′ ∩ C∗1 |, which is the number of nodes in C∗1
that are misclassified by C. We consider two cases.

• If |C1 ∩ C∗1 | > K/10, then∑
k′,k′′∈[r+1]
k′ 6=k′′

|C∗1 ∩ Ck′ ||C∗1 ∩ Ck′′ | ≥ 2|C∗1 ∩ C1|
∑

k′′∈[r+1]
k′′ 6=1

|C∗1 ∩ Ck′′ | > m1K/5.

• If |C1∩C∗1 | ≤ K/10, then by condition (A1) we must have |Ck′ ∩C∗1 | ≤ K/2 for all 1 ≤ k′ ≤ r
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and m1 > 9K/10. Hence,∑
k′,k′′∈[r+1]
k′ 6=k′′

|C∗1 ∩ Ck′ ||C∗1 ∩ Ck′′ |+ |C∗1 ∩ Cr+1|2 − |C∗1 ∩ Cr+1|

≥
∑

k′,k′′∈[r+1]
k′ 6=k′′

I{k′ 6=1}I{k′′ 6=1}|Ck′ ∩ C∗1 ||Ck′′ ∩ C∗1 |+ |C∗1 ∩ Cr+1|2 − |C∗1 ∩ Cr+1|

=m2
1 −

∑
2≤k′≤r

|Ck′ ∩ C∗1 |2 − |C∗1 ∩ Cr+1|

≥m2
1 −

1

2
Km1 ≥

2

5
m1K.

We conclude that we always have∑
k′,k′′∈[r+1]
k′ 6=k′′

|C∗1 ∩ Ck′ ||C∗1 ∩ Ck′′ |+ |C∗1 ∩ Cr+1|2 − |C∗1 ∩ Cr+1| ≥
1

5
m1K.

The above inequality holds if we replace C∗1 by C∗k and m1 by mk (defined similarly) for each k ∈ [r].
It follows that

r∑
k=1

|C∗k ∩ Cr+1|2 − |C∗k ∩ Cr+1|+
∑

k′,k′′∈[r+1]
k′ 6=k′′

|C∗k ∩ Ck′ ||C∗k ∩ Ck′′ |

 ≥ K

5

r∑
k=1

mk.

Thus by Property (A2), we have
∑

k∈[r]mk ≤ 5t/K, i.e., the total number of misclassified nodes
in V1 is upper bounded by 5t/K. This means that the total number of misclassified nodes in
V2 is also upper bounded by 5t/K because by our cluster size constraint, one misclassified node
in V2 must produce one misclassified node in V1. Therefore, the total number of misclassified
nodes in V1 can at most take 5t/K different values and the same is true for the total number of
misclassified nodes in V2. For a fixed number of misclassified nodes in V1 and V2, there are at most

n
5t/K
1 n

5t/K
2 different ways to choose these misclassified nodes. Each misclassified node in V1 can be

assigned to one of r − 1 different clusters or leave isolated, and each misclassified node in V2 can
be assigned to one of r different clusters. Hence, the right hand side of (25) is upper bounded by
25t2

K2 n
5t/K
1 n

5t/K
2 r10t/K ≤ 25t2

K2 n
20t/K , which proves the lemma.

1.3 Proof of Theorem 3

The proof uses several matrix norms. The spectral norm ‖X‖ of a matrix X is the largest singular
value of X. The nuclear norm ‖X‖∗ is the sum of singular values. We also need the L1 norm
‖X‖1 =

∑
i,j |Xij | and the L∞ norm ‖X‖∞ = maxi,j |Xij |. Let 〈X,Y 〉 = Tr(X>Y ) denote the

inner product between two matrices. For a vector x, ‖x‖2 is the usual Euclidean norm.
Define ∆(Y ) = 〈Y ∗ − Y,A〉. It suffices to show that ∆(Y ) > 0 for all feasible solution Y of the

program (6)–(8) with Y 6= Y ∗. Rewrite ∆(Y ) as

∆(Y ) = 〈Ā, Y ∗ − Y 〉+ 〈A− Ā, Y ∗ − Y 〉 = 〈Ā, Y ∗ − Y 〉+ λ〈W,Y ∗ − Y 〉, (26)
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where Ā = q11> + (p − q)Y ∗ and W := (A − Ā)/λ. Because
∑

i,j Yij = rK2 =
∑

i,j Y
∗
ij and

Yij ∈ [0, 1], the first term in the RHS of (26) satisfies

〈Ā, Y ∗ − Y 〉 = (p− q)〈Y ∗, Y ∗ − Y 〉 =
p− q

2
‖Y ∗ − Y ‖1.

We now control the second term in (26). Note that Var[Aij ] ≤ p(1−q). Define σ2 := max{p(1−
q), q(1 − p)}. Note that ‖Ā − E[A]‖ ≤ 1. By assumption, σ2 ≥ C ′ log n/K for a constant C ′. We
need the following bound, which is proved in Section 1.3.1 to follow.

Lemma 1.2. Under the notation above, if σ2 ≥ C ′ log n/K for a constant C ′, then there exists a
constant C such that with high probability ‖A− E[A]‖ ≤ C

√
σ2K log n+ q(1− q)n .

It follows that with high probability

‖A− Ā‖ ≤ ‖A− E[A]‖+ ‖Ā− E[A]‖ ≤ C
√
σ2K log n+ q(1− q)n

for a universal constant C. Define λ := C
√
σK log n+ q(1− q)n and the normalized noise matrix

. Thus w.h.p. ‖W‖ ≤ 1.
Let uk be the normalized characteristic vector of cluster C∗k , i.e., uk(i) = 1/

√
K if node i is

in cluster C∗k and uk(i) = 0 otherwise. Let U = [u1, . . . , ur]. Then Y ∗ = KUU> is the singular
value decomposition of Y ∗. Define the projections PT (M) = UU>M +MUU>−UU>MUU> and
PT⊥(M) = M −PT (M). Because ‖PT⊥(W )‖ ≤ ‖W‖ ≤ 1 w.h.p., UU> +PT⊥(W ) is a subgradient
of ||X||∗ at X = Y ∗. Since ‖Y ∗‖∗ = n1, it follows that for any feasible Y ,

0 ≥ ‖Y ‖∗ − ‖Y ∗‖∗ ≥ 〈UU> + PT⊥(W ), Y − Y ∗〉.

Substituting into (26), we obtain that for any feasible Y ,

∆(Y ) ≥ p− q
2
‖Y ∗ − Y ‖1 + λ〈PT (W )− UU>, Y ∗ − Y 〉

≥
(
p− q

2
− λ‖UU>‖∞ − ‖PT (λW )‖∞

)
‖Y ∗ − Y ‖1

=

(
p− q

2
− λ

K
− ‖PT (λW )‖∞

)
‖Y ∗ − Y ‖1, (27)

where the last equality holds because ‖UU>‖∞ = 1/K.
We proceed by bounding the term ‖PT (λW )‖∞ in (27). From the definition of PT , we have

‖PT (λW )‖∞ ≤ ‖UU>(λW )‖∞ + ‖(λW )UU>‖∞ + ‖UU>(λW )UU>‖∞ ≤ 3‖UU>(λW )‖∞.

Assume node i belongs to cluster k. Then

(UU>(λW ))ij = (uku
>
k (λW ))ij = (1/K)

∑
i′∈C∗k

(λW )i′j ,

which is the average of K independent random variables. By Bernstein’s inequality (Theorem A.1)
we have with probability at least 1− n−4,∣∣∣∑i′∈C∗k

∣∣∣ ≤√6σ2K log n+ 2 log n ≤ C1σ
√
K log n,

for some constant C1, where the last inequality follows from the assumption (9). It follows from
the union bound over all (i, j) that that ‖PT (λW )‖∞ ≤ 3‖UU>(λW )‖∞ ≤ 3C1σ

√
log n/K with

probability at least 1− n−2. Substituting back to (27), we conclude that with probability at least
1− n−1,

∆(Y ) ≥
(
p− q

2
− λ

K
− 3C1σ

√
log n/K

)
‖Y ∗ − Y ‖1 > 0

for all feasible Y 6= Y ∗, where the last inequality follows from the assumption (9).
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1.3.1 Proof of Lemma 1.2

Let R := support(Y ∗) and PR(·) : Rn×n → Rn×n be the operator which sets the entries outside
of R to be zero. Let B1 = PR(A − E[A]) and B2 = A − E[A] − B1. Then B1 is a block-diagonal
matrix with r blocks of size K × K and has entries with variance bounded by σ2. Applying the
matrix Bernstein inequality [5], we get that with high probability, ‖B1‖ ≤ c1

√
σ2K log n for a

constant c1. On the other hand, B2 has entries with variance bounded by max{q(1− q), c2 log n/n}
for a constant c2. By Lemma 1.3 below, we obtain that ‖B2‖ ≤ c3 max{

√
q(1− q)n,

√
log n} for a

constant c3. It follows that

‖A− E[A]‖ ≤ ‖B1‖+ ‖B2‖ ≤ c1

√
σ2K log n+ c3 max{

√
q(1− q)n,

√
log n}

≤ C
√
σ2K log n+ q(1− q)n,

which completes the proof of the lemma.

Lemma 1.3. Let M denote the n × n symmetric matrix such that Mij (1 ≤ i < j ≤ n) are
independent random variables with P(Mij = 1 − pij) = pij and P(Mij = −pij) = 1 − pij, and
Mii = 0. Suppose that Var[Mij ] ≤ σ2 with σ2 ≥ C ′ log n/n for a constant C ′, then with high
probability ‖M‖ ≤ Cσ

√
n for a constant C.

Proof. If σ2 ≥ log7 n
n , then Theorem 8.4 in [1] implies that ‖M‖ ≤ 3σ

√
n w.h.p. If C ′ logn

n ≤ σ2 ≤
log7 n
n , then Lemma 2 in [2] implies that ‖M‖ ≤ Cσ

√
n w.h.p. for some universal constant C.

1.4 Proof of Theorem 4

We first claim that K(p− q) ≤ c2
√
Kp+ qn implies K(p− q) ≤ c2

√
2qn under the assumption that

K ≤ n/2 and qn ≥ c1 log n. In fact, if Kp ≤ qn, then the claim trivially holds. If Kp > qn, then
q < Kp/n ≤ p/2. It follows that

Kp/2 < K(p− q) ≤ c2

√
Kp+ qn ≤ c2

√
2Kp.

Thus, Kp < 8c2
2 which contradicts the assumption that Kp > qn ≥ c1 log n. Therefore, Kp > qn

cannot hold. Hence, it suffices to show that if K(p − q) ≤ c2
√

2qn, then Y ∗ is not an optimal
solution of the convex program (6)–(8). We do this by showing that the optimality of Y ∗ implies
K(p− q) > c2

√
2qn.

Let I be the n × n all-one matrix. Let R := support(Y ∗) and A := support(A). Recall that
Y ∗ = KUU> is the singular value decomposition of Y ∗, and the orthogonal projection onto the
space T is given by PT (M) = UU>M +MUU> − UU>MUU>.

Consider the Lagrangian

L(Y ;λ, µ, F,G) := −〈A, Y 〉+ λ (‖Y ‖∗ − ‖Y
∗‖∗) + η

(
〈I, Y 〉 − rK2

)
− 〈F, Y 〉+ 〈G, Y − I〉 ,

where λ ≥ 0, η ∈ R, Fij ≥ 0 and Gij ≤ 0, ∀i, j are the Lagrangian multipliers. Note that Y = rK2

n2 I
is strictly feasible so strong duality holds by Slater’s Theorem. By standard convex analysis, if
Y = Y ∗ is an optimal solution, then there must exists some F,G and λ for which the following
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KKT conditions hold:

0 ∈ ∂L(Y ;λ, µ, F,G)

∂Y

∣∣∣∣
Y=Y ∗

,

}
Stationary condition

Fij ≥ 0,∀(i, j),
Gij ≥ 0,∀(i, j),
λ ≥ 0,

Dual feasibility

Fij = 0,∀(i, j) ∈ R,
Gij = 0,∀(i, j) ∈ Rc.

}
Complementary slackness

Recall that M ∈ Rn×n is a subgradient of ‖X‖∗ at X = Y ∗ if and only if PT (M) = UU> and
‖PT⊥(M)‖ ≤ 1. Let H = F −G; the KKT conditions imply that there exist some λ, η, W and H
obeying

A− λ
(
UU> +W

)
− ηI +H = 0, (28)

λ ≥ 0, (29)

PTW = 0, (30)

‖W‖ ≤ 1, (31)

Hij ≤ 0,∀(i, j) ∈ R, (32)

Hij ≥ 0,∀(i, j) ∈ Rc. (33)

Now observe that UU>WUU> = 0 by (30). We left and right multiply (28) by UU> to obtain

Ā− λUU> − ηI + H̄ = 0,

where for any matrix X ∈ Rn×n, X̄ := UU>XUU> is the matrix obtained by taking the average
in each K ×K block of X. Consider the last display equation on entries in R and Rc respectively.
Applying the Bernstein inequality (Theorem A.1) for each entry of Āij , we get that with high
probability,

p− λ

K
− η + H̄ij ≥ −

c3

√
p(1− p) log n

K
− c4 log n

2K2

(a)

≥ −ε0
8
, ∀(i, j) ∈ R (34)

q − η + H̄ij ≤
c3

√
q(1− q) log n

K
+
c4 log n

2K2

(b)

≤ ε0
8
, ∀(i, j) ∈ Rc (35)

for some constants c3, c4 > 0, where (a) and (b) follow from the assumption K ≥ c1
√

log n with c1

sufficiently large. Using (32) and (33), we get

q − ε0
8
≤ q −

c3

√
q(1−q) log n

K
− c4 log n

2K2
≤ η ≤ p+

c3

√
p(1−p) log n

K
+
c4 log n

2K2
− λ

K
≤ p+

ε0
8
− λ

K
.

(36)

It follows that

λ ≤ K(p− q) + c3(
√
p(1− p) log n+

√
q(1− q) log n) +

c4 log n

K

≤ 4 max

{
K(p− q), c3

√
p(1− p) log n, c3

√
q(1− q) log n,

c4
√

log n

c1

}
. (37)
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On the other hand, (31), (30) and (28) imply

λ2 =
∥∥∥λ(UU> +W )

∥∥∥2
≥ 1

n

∥∥∥λ(UU> +W )
∥∥∥2

F

=
1

n
‖A− ηI +H‖2F ≥

1

n
‖ARc − ηIRc +HRc‖2F ≥

1

n

∑
(i,j)∈Rc

(1− η)2Aij ,

where XRc denotes that matrix obtained from X by setting the entries outside Rc to zero. Using
η ≤ 1− 7

8ε0, which is a consequence of (36), (29) and the assumption p ≤ 1− ε0, we obtain

λ2 ≥ 49

64n
ε20

∑
(i,j)∈Rc

Aij , . (38)

Note that
∑

(i,j)∈Rc Aij equals two times the sum of
(
n
2

)
− r
(
K
2

)
i.i.d. Bernoulli random variables

with parameter q. By the Chernoff bound of Binomial distributions and the assumption that
qn ≥ c1 log n, we know with high probability

∑
(i<j)∈Rc Aij ≥ Cqn2 for some constant C. It follows

from (38) that λ2 ≥ C ′qn for some constant C ′ > 0. Combining with (37) and the assumption that
qn ≥ c1 log n, we conclude that K(p− q) ≥ C ′′√qn for some constant C ′′ > 0. This completes the
proof of the theorem.

1.5 Proof of Theorem 5

The degree di of node i is distributed as Bin(K − 1, p) plus an independent Bin(n−K, q) if i ∈ V1.
Otherwise di is distributed as Bin(n−1, q) if i ∈ V2. It follows that E[di] = (n−1)q+(K−1)(p−q)
if i ∈ V1 and E[di] = (n − 1)q if i ∈ V2. If we define σ2 = Kp(1 − q) + nq(1 − q), then we further
have Var[di] ≤ σ2. Set t := (K − 1)|p− q|/2 ≤ σ2; the Bernstein inequality (Theorem A.1) gives

P{|di − E[di]| ≥ t} ≤ 2 exp

(
− t2

2σ2 + 2t/3

)
≤ 2 exp

(
−(K − 1)2(p− q)2

12σ2

)
≤ 2n−2,

where the last inequality follows from assumption (12). By the union bound, with probability at

least 1 − 2n−1, di >
(p−q)K

2 + qn for all nodes i ∈ V1 and di <
(p−q)K

2 + qn for all nodes i ∈ V2.
Therefore, all nodes in V2 are correctly declared to be isolated with high probability.

The number of common neighbors Sij between the nodes i and j is distributed as Bin(K−2, p2)
plus an independent Bin(n − K, q2) if i and j are in the same cluster, and it is distributed as
Bin(2(K − 1), pq) plus an independent Bin(n − 2K, q2) if i and j are in different clusters. Hence,
E[Sij ] equals (K − 2)p2 + (n−K)q2 if i and j are in the same cluster and 2(K − 1)pq+ (n− 2K)q2

otherwise. The difference in mean equals K(p−q)2−2p(p−q). Let σ2 = 2Kp2(1−q2)+nq2(1−q2).
Then Var[Sij ] ≤ σ2. Set t′ := K(p − q)2/3 ≤ σ2. Assumption (13) implies that t′ > 2p(p − q).
Applying the Bernstein inequality (Theorem A.1), we obtain

P{|Sij − E[Sij ]| ≥ t′} ≤ 2 exp

(
− t2

2σ2 + 2t/3

)
≤ 2 exp

(
−K

2(p− q)4

27σ2

)
≤ 2n−3,

where the last inequality follows from the assumption (13). By union bound, with probability at

least 1 − 2n−1, Sij >
(p−q)2K

3 + 2Kpq + q2n for all nodes i, j from the same cluster and Sij <
(p−q)2K

3 + 2Kpq + q2n for all nodes i, j from two different clusters. Therefore the simple algorithm
returns the true clusters w.h.p.
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1.6 Proof of Theorem 6

For simplicity we assume K and n2 are even numbers. We partition V1 into two equal-sized subsets
V1+ and V1− such that half of the nodes of each cluster are in V1+. Similarly, V2 is partitioned
into two equal-sized subsets V2+ and V2−. To prove the theorem, we need the following anti-
concentration inequality.

Theorem 1.4 (Theorem 7.3.1 in [3]). Let X1, . . . , Xn be independent random variables such that
0 ≤ Xi ≤ 1 for all i. Suppose X =

∑n
i=1Xi and σ2 :=

∑n
i=1 Var[Xi] ≥ 200. Then for all

0 ≤ t ≤ σ2/100 and some universal constant c > 0, we have

P [X ≥ E[X] + t] ≥ ce−t2/(3σ2).

Identifying isolated nodes For each node i in V1+∪V2+, let di+ be the number of its neighbors
in V1+ ∪ V2+ and di− be the number of its neighbors in V1− ∪ V2−, so di = di+ + di−. We consider
two cases.

Case 1: Suppose (Kp+ (n−K)q) log n1 ≥ nq log n2. In this case we have (K − 1)2(p− q)2 ≤
2c2(Kp+nq) log n1 by (14). For each i ∈ V1+, di− is distributed as Bin(K/2, p) plus an independent
Bin((n − K)/2, q). Let t := (K − 1)(p − q) + 2, γ1 := E[di−] − t = nq/2 + K(p − q)/2 − t and
σ2
d := Var[di−] = 1

2Kp(1 − p) + 1
2(n −K)q(1 − q). Since K ≤ n/2, p, q are bounded away from 1

and Kp+ nq ≥ Kp2 + nq2 ≥ c1 log n, we have σ2
d ≥ c′ log n ≥ 200. Combining wit (14), we further

have σ4
d ≥ c′′K2(p− q)2/ log n1 · c′ log n ≥ 1002t2. We can thus apply Theorem 1.4 and get

P [di− ≤ γ1] ≥ c exp

(
− t2

3σ2
d

)
= exp

(
− ((K − 1)(p− q) + 2)2

3(Kp(1− p) + (n−K)q(1− q))

)
≥ cn−c′1 ,

for some constant c′ > 0 that can be made small by choosing c2 above sufficiently small. Let
i∗ := arg mini∈V1+ di−. Since the random variables {di− : i ∈ V1+} are mutually independent, we
have

P [di∗− ≥ γ1] =
∏
i∈V1+

P [di− ≥ γ1] ≤ (1− cn−c′1 )n1/2 ≤ exp
(
−cn1−c′

1 /2
)
≤ 1/4.

On the other hand, for each i ∈ V1+, di+ is distributed as Bin(K/2 − 1, p) plus an independent
Bin((n−K)/2, q). Since the median of Bin(n, p) is at most np+ 1, we know that with probability
at least 1/2, di+ ≤ γ2 := nq/2 + K(p − q)/2 − p + 2. Now observe that the two sets of random
variables {di+, i ∈ V1+} and {di−, i ∈ V1+} are independent of each other, so di+ is independent of
i∗ for each i ∈ V1+. It follows that

P [di∗+ ≤ γ2] =
∑
i∈V1+

P [di+ ≤ γ2|i∗ = i]P [i∗ = i] =
∑
i∈V1+

P [di+ ≤ γ2]P [i∗ = i] ≥ 1

2
.

Combining the last two display equations by the union bound, we obtain that with probability at
least 1/4,

di∗ = di∗− + di∗+ ≤ γ1 + γ2 = (n− 1)q,

and thus node i∗ will be incorrectly declared as an isolated node.
Case 2: Suppose (Kp + nq) log n1 ≤ nq log n2. In this case we have (K − 1)2(p − q)2 ≤

2c2nq log n2 by assumption. Define i∗ = arg maxi∈V2+ di−. Using the same argument as in Case 1,
we can show that with probability at least 1/4, di∗ ≥ (n − 1)q + (K − 1)(p − q) and thus node i∗

will incorrectly declared as an non-isolated node.
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Recovering clusters For two nodes i, j ∈ V1, let Sij+ be the number of their common neighbors
in V1+∪V2+ and Sij− be the number of their common neighbors in V1−∪V2−, so Sij+ = Sij+ +Sij−.

For each pair of nodes i, j in V1+ that are from the same cluster, Sij− is distributed as
Bin(K/2, p2) plus an independent Bin((n−K)/2, q2). Let t′ := K(p− q)2 + 4, γ3 := E[Sij−]− t′ =
nq2/2+K(p2−q2)/2−t′, and σ2

S := Var[Sij−] = 1
2Kp

2(1−p2)+ 1
2(n−K)q2(1−q2). Since K ≤ n/2,

p, q are bounded away from 1 and Kp2 + nq2 ≥ c1 log n, we have that σ2
S ≥ 200 and σ2

S ≥ 100t′.
Theorem 1.4 implies that there exists a constant c > 0 such that

P [Sij− ≤ γ3] ≥ c exp

(
− t′2

3σ2
S

)
= c exp

(
− (K(p− q)2 + 4)2

3(Kp2(1− p2) + (n−K)q2(1− q2))

)
≥ cn−c′1 ,

where the constant c′ > 0 can be made sufficiently small by choosing c2 sufficiently small in
the statement of the lemma. Without loss of generality, we may re-label the nodes such that
V1+ = {1, 2, . . . , n1/2} and for each k = 1, . . . , n1/4, the nodes 2k−1 and 2k are in the same cluster.
Note that the random variables {S(2k−1)2k− : k = 1, 2, . . . , n1/4} are mutually independent. Let
i∗ = −1 + 2 arg mink=1,2,...,n1/4 S(2k−1)2k− and j∗ = i∗ + 1; it follows that

P [Si∗j∗− ≥ γ3] ≤ (1− cn−c′1 )n1/4 ≤ exp(−cn1−c′
1 /4) ≤ 1/4.

On the other hand, since Sij+ is distributed as Bin(K/2 − 2, p2) plus an independent Bin((n −
K)/2, q2), we use the median argument to obtain that with probability at least 1/2, Sij+ ≤ γ4 :=
nq2/2 + K(p2 − q2)/2 − 2p2 + 2. Because {Sij+, i, j ∈ V1+} only depends on the edges between
V1+ and V1+ ∪ V2+, and (i∗, j∗) only depends on the edges between V1+ and V1− ∪ V2−, we know
{Sij+, i, j ∈ V1+} and (i∗, j∗) are independent of each other. It follows that Si∗j∗+ ≤ γ4 with
probability at least 1/2. It follows that with probability at least 1/4,

Si∗j∗ = Si∗j∗− + Si∗j∗+ ≤ γ3 + γ4 = 2(K − 1)pq + (n− 2K)q2

and thus the nodes i∗, j∗ will be incorrectly assigned to two different clusters.

Appendices

A Standard Bernstein Inequality

Theorem A.1. Let X1, . . . , Xn be independent random variables such that |Xi| ≤M almost surely.
Let σ2 =

∑n
i=1 Var(Xi), then for any t ≥ 0

P

[
n∑
i=1

Xi ≥ t

]
≤ exp

(
−t2

2σ2 + 2
3Mt

)
.

A consequent of the above inequality is P
[∑n

i=1Xi ≥
√

2σ2u+ 2Mu
3

]
≤ e−u for any u > 0.
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