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Abstract
The planted models assume that a graph is gen-
erated from some unknown clusters by randomly
placing edges between nodes according to their
cluster memberships; the task is to recover the
clusters given the graph. Special cases include
planted clique, planted partition, planted dens-
est subgraph and planted coloring. Of particu-
lar interest is the high-dimensional setting where
the number of clusters is allowed to grow with
the number of nodes. We show that the space
of model parameters can be partitioned into
four disjoint regions: (1) the impossible regime,
where all algorithms fail; (2) the hard regime,
where the computationally intractable Maximum
Likelihood Estimator (MLE) succeeds, and no
polynomial-time method is known; (3) the easy
regime, where the polynomial-time convexified
MLE succeeds; (4) the simple regime, where
a simple counting/thresholding procedure suc-
ceeds. Moreover, each of these algorithms prov-
ably fails in the previous harder regimes. Our
theorems establish the first minimax recovery re-
sults for the high-dimensional setting, and pro-
vide the best known guarantees for polynomial-
time algorithms. These results demonstrate the
tradeoffs between statistical and computational
considerations.

1. Introduction
The planted models are standard models for generating
a random graph from the underlying clustering structure.
We consider a general setup called the planted clustering
model. The model assumes that rK out of a total n nodes
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are grouped into r clusters of equal size K, while the other
n−rK nodes (called isolated nodes) are not in any clusters;
each pair of nodes are connected by an edge independently
with probability p if they are in the same cluster, and with
probability q otherwise. The goal is to recover the underly-
ing unknown clusters given the graph.

We are particularly interested in the so-called high-
dimenional setting (Rohe et al., 2011) where the number
r of clusters may grow unbounded with the problem di-
mensions n. This setting is important in many empirical
networks (Leskovec et al., 2008), and more challenging to
analyze than the r = Θ(1) setting. The parameters p, q and
K can scale with n as well.

The formulation above covers many classical planted prob-
lems including planted clique/r-clique (Alon et al., 1998;
McSherry, 2001), planted coloring (Alon & Kahale, 1997),
planted densest subgraph (Arias-Castro & Verzelen, 2013),
planted partition and the stochastic blockmodel (Holland
et al., 1983; Condon & Karp, 2001). These models have
a broad range of applications: They are used as generative
models for approximating real world networks with natural
cluster/community structures (Fortunato, 2010), and serve
as benchmarks in the evaluation of clustering and commu-
nity detection algorithms (Newman & Girvan, 2004); they
also provide a standard venue for studying the average-case
behaviors of NP-hard graph theoretic problems including
max-clique, max-cut, graph partitioning and coloring (Bol-
lobás & Scott, 2004).

The planted clustering problems pose themselves as both
statistical and computational problems. Statistically, the
parameters n, r,K, p, q govern the “noisiness” of the prob-
lems: The problems become statistically harder with
smaller values of p− q, K and larger r, as the observations
are noisier and the cluster structures are more complicated
and weakly expressed in the data. A statistically powerful
algorithm is one that can recover the clusters for a large
range of model parameters.
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Computationally, we are concerned with the running-time
of different algorithms. An exhaustive search over all pos-
sible clusterings might make for a statistically powerful al-
gorithm but has high time-complexity. A simpler algorithm
with polynomial or even linear running time is computa-
tionally more desirable, but might succeed for a smaller
region of the parameter space and thus have less statistical
power.

Here we take a joint statistical-computational view to
planted clustering, and try to understand the tradeoffs be-
tween these two aspects: How do algorithms with differ-
ent computational time achieve different statistical perfor-
mance? For what regions of the parameter space is recov-
ery infeasible, either for any algorithm, or for an algorithm
with specific computational time?

Our results highlight the following: The parameter space
can be partitioned into four regions, where each region cor-
responds to successively easier instances of the problem
than the previous region statistically, and recovery can be
achieved by simpler algorithms with lower time complexi-
ties. Significantly, there are large gaps between the statis-
tical performance of computationally expensive algorithms
and computationally efficient algorithms. We elaborate be-
low.

1.1. The Four Regimes for Planted Clustering

For concreteness, we first consider the setting with r ≥ 2,
p > q and p/q = Θ(1). This covers the standard planted
partition and planted r-clique models. The statistical hard-
ness of the cluster recovery problem can be summarized
by the quantity (p−q)2

q(1−q) , essentially a measure of the Signal-
to-Noise Ratio. Our main theorems identify the following
four regimes of the problem defined by the values of this
quantity.

• The Impossible Regime: (p−q)2
q(1−q)

.

. 1
K .1 In this

regime, there is no algorithm, regardless of its compu-
tational complexity, that can recover the clusters with
reasonable probability.

• The Hard Regime: 1
K

.

. (p−q)2
q(1−q)

.

. n
K2 . The com-

putationally expensive Maximum Likelihood Estima-
tor (MLE) recovers the clusters with high probabil-
ity in this regime (as well as in the next two easier
regimes; we omit such implications in the sequel). No
polynomial-time algorithm is known for this regime.

• The Easy Regime: n
K2

.

. (p−q)2
q(1−q)

.

.
√
n
K . There exists

a polynomial-time algorithm – a convex relaxation of
the MLE – which recovers the clusters with high prob-
ability here. Moreover, this algorithm provably fails in

1The notations
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. ignore constant and logn factors; &
and . ignore constant factors.

the hard regime above.
• The Simple Regime: (p−q)2

q(1−q)

.

&
√
n
K . A simple algo-

rithm based on counting degrees and common neigh-
bors recovers the clusters with high probability in this
regime, and provably fails outside this regime (i.e., in
the hard and easy regimes).

We illustrate these four regimes in Figure 1 assuming p =
2q = Θ(n−α) and K = Θ(nβ). Here cluster recovery
is harder with larger α and smaller β. In this setting, the
four regimes correspond to four disjoint and non-empty re-
gions of the parameter space. Therefore, a computationally
more complicated algorithm leads to a significant (order-
wise) enhancement in statistical power. For example, when
p = 2q = n−1/4, the cluster sizes K that can be handled
by the simple, polynomial-time and computationally ex-
pensive algorithms are Ω(n0.75), Ω(n0.625) and Ω(n0.25),
respectively.

0
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Figure 1. Illustration of the four regimes. It applies to the planted
clustering problem with p = 2q = Θ(n−α) and K = Θ(nβ), as
well as the submatrix localization problem with nL = nR = n,
µ2 = Θ(n−α) and KL = KR = Θ(nβ).

The results in the impossible and hard regimes together es-
tablish the minimax recovery boundary of the planted clus-
tering problem, and show that MLE is statistically optimal.
These two regimes are separated by an “information bar-
rier”: In the impossible regime the graph does not carry
enough information about the clusters, so recovery is sta-
tistically impossible.

We conjecture that no polynomial-time algorithm succeeds
in the hard regime. This will mean the convex relaxation
of MLE achieves the computational limit. While rigor-
ously proving the conjecture is difficult, there are many
evidences supporting it. The hard regime contains the stan-
dard Planted Clique problem with clique size K = o(

√
n),

which has no polynomial-time algorithms so far despite
decades of effort and is widely believed to be computation-
ally intractable (Juels & Peinado, 2000). Moreover, there is
a “spectral barrier”, determined by the spectral norm of an
appropriately defined noise matrix, that prevents the con-
vexified MLE and spectral algorithms, and possibly many
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other polynomial-time algorithms as well, from succeeding
in the hard regime.

The simple counting algorithm fails outside the simple
regime due to a variance barrier associated with the node
degrees and the numbers of common neighbors. Therefore,
the simple algorithm is order-wise weaker statistically than
the convexified MLE.

General results: Our main theorems apply to general val-
ues of p, q, K and r. The four regimes and the statistical-
computational tradeoffs can be observed for a broad spec-
trum of planted models. We discuss them in the main result
section.

1.2. Extensions to Submatrix Localization

Similar results hold for the related submatrix localization
problem, a.k.a. bi-clustering (Kolar et al., 2011). Here
we assume A ∈ RnL×nR is a random matrix with i.i.d.
Gaussian entries with unit variance, where there are r sub-
matrices of size KL × KR with disjoint row and column
supports, such that the entries inside the submatrices have
mean µ > 0, and the entries outside have mean zero. The
goal is to locate these submatrices given A. We allow r
to grow unbounded. This generalizes the single-submatrix
model previously studied (Balakrishnan et al.; Arias-Castro
et al., 2011).

The quantity µ2 measures the Signal-to-Noise Ratio
(SNR). Most interesting is the low SNR setting with µ2 =
O(log n). Suppose nL = nR = n and KL = KR = K;
the problem has the following four regimes, with the same
meaning as before:

• The Impossible Regime: µ2
.

. 1
K .

• The Hard Regime: 1
K

.

. µ2
.

. n
K2 .

• The Easy Regime: n
K2

.

. µ2
.

.
√
n
K .

• The Simple Regime:
√
n
K

.

. µ2
.

. 1.

We illustrate these regimes in Figure 1 assuming µ2 =
Θ(n−α) and K = Θ(nβ). Complete results will be pro-
vided in a forthcoming full paper.

1.3. Discussions

The results above highlight the interaction between the sta-
tistical and computational considerations in planted cluster-
ing and submatrix localization. Our study parallels a recent
line of work that takes a joint statistical and computational
view on learning problems (e.g., Berthet & Rigollet (2013);
Chandrasekaran & Jordan (2013)). While we investigate
two specific problems, we expect that the phenomena and
principles in this paper are relevant more generally. Below
we provide additional discussions on our innovation com-
pared to previous work.

The high dimensional setting: Several recent works in-
vestigate the statistical-computational tradeoffs in subma-
trix detection/localization (Kolar et al., 2011; Ma & Wu,
2013), planted densest subgraph detection (Arias-Castro &
Verzelen, 2013) and sparse PCA (Berthet & Rigollet, 2013;
Krauthgamer et al., 2013). Even earlier is the extensive
study of the Planted Clique problem. The majority of these
previous works focus on the setting with a single clique,
cluster, submatrix or principal component (i.e., r = 1).
In this paper, we study the more general high-dimensional
setting with a growing of clusters/submatrices, which is
more difficult and poses significant challenge to the anal-
ysis. Moeover, there are qualitative differences between
these two settings, where are discussed in the next para-
graph.

The power of convex relaxations: In previous work on the
r = 1 setting of submatrix localization (Kolar et al., 2011)
and sparse PCA (Krauthgamer et al., 2013), it is shown that
very simple algorithms based on thresholding/averaging
have the order-wise similar statistical performance as more
sophisticated convex optimization approaches. In contrast,
for planted clustering and submatrix localization with mul-
tiple clusters/submatrices, we show that convex relaxation
approaches are order-wise statistically more powerful than
simple counting/thresholding. Our analysis reveals that
the power of convex relaxations lies in separating differ-
ent clusters/submatrices, but not in identifying a single
cluster/submatrix. This demonstrates a finer spectrum of
computational-statistical tradeoffs.

Detection vs. estimation: Several recent works on planted
densest subgraph (Arias-Castro & Verzelen, 2013), subma-
trix detection (Ma & Wu, 2013) and sparse PCA (Berthet
& Rigollet, 2013) have focused on the detection or hypoth-
esis testing version of the problems, i.e., deciding whether
or not there is a structured cluster/submatrix/principal com-
ponent. In this paper, we study the estimation problem, i.e.,
to estimate the locations of the clusters/submatrices. If we
compare Figure 1 in this paper with Figure 1 in (Ma &
Wu, 2013), we see that submatrix localization is strictly
harder than its detection counterpart. We have a simi-
lar observation for planted densest subgraph by comparing
with (Arias-Castro & Verzelen, 2013). Conditional compu-
tational hardness results have been obtained for the detec-
tion of submatrix and sparse principal component (Ma &
Wu, 2013; Berthet & Rigollet, 2013), and it is interesting
to see if similar results can be obtained for the estimation
problems here.

1.4. Main Technical Contributions

We consider the general planted clustering model, which
allows for a growing number of clusters and covers many
existing models including planted clique, planted partition
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and planted coloring.

• We obtain minimax lower bounds for planted clus-
tering, and then prove that the computationally ex-
pensive Maximum-Likelihood Estimator achieves the
lower bounds. This establishes the minimax recovery
boundary for various planted models, and is the first
such result for the setting with an arbitrarily growing
number of clusters.

• We consider a polynomial-time algorithm based on
a convex relaxation of the MLE, and obtain nearly
matching sufficient and necessary conditions for the
success of the algorithm. It shows that the algo-
rithm does no achieve the statistical limit. Our per-
formance guarantee improves upon all existing ones
for polynomial-time algorithms.

• We analyze a simple algorithm based on counting
node degrees and common neighbors, for which we
obtain nearly matching sufficient and necessary con-
ditions for success. Our necessary condition is the
first such result for general planted clustering, and it
reveals that the counting algorithm is less powerful in
separating different clusters compared to the more so-
phisticated convexified MLE.

2. Related Work
There is a vast literature on graph clustering and their ex-
tensions. Here we focus on planted clustering and its spe-
cial cases, and primarily on theoretical work that studies
exact cluster recovery. Detailed comparisons are provided
after each of our main theorems.

Planted Clique/Densest Subgraph: Planted Clique is the
most widely studied planted model. It is known that a
clique with size K = Ω(

√
n log n) can be easily identified

by counting degrees (Kučera, 1995); if K = Ω(
√
n), vari-

ous polynomial-time algorithms work (Dekel et al., 2010);
ifK = Ω(log n), an exhaustive search in super-polynomial
time succeeds (Alon et al., 1998); if K = o(log n), re-
covery is statistically impossible. It is an open problem
to find polynomial-time algorithms for the K = o(

√
n)

regime, which is widely believed to be intractable (Juels &
Peinado, 2000). The four regimes here can be considered
the r = 1 special case of our results for general planted
clustering. Extension to general values of p and q, namely
planted densest subgraph, has also been considered (Arias-
Castro & Verzelen, 2013).

Planted r-Cliques, Partition and Coloring: Subsequent
works consider r ≥ 1 planted cliques, and the planted par-
tition setting (Condon & Karp, 2001) with general values
of r, p and q. Existing work focus on the statistical perfor-
mance of polynomial-time algorithms. The state-of-art re-
sults are given in (McSherry, 2001; Ames & Vavasis, 2014;

Chen et al., 2012) for planted r-clique and in (Chen et al.,
2012; Anandkumar et al., 2013) for planted partition. The
p < q setting is called the heterophily case, with planted
coloring (p = 0) as an important special case (Alon & Ka-
hale, 1997).

Converse Results for Planted Problems: Complementary
to the achievability results above, another line of work stud-
ies converse results, i.e., when recovery is impossible, ei-
ther by any algorithm, or by any algorithm in a specific
class. The K = Θ(n) case is considered by Chaudhuri
et al. (2012) and Chen et al. (2012), who establish that
p− q &

√
p/n is necessary for any algorithm. For spectral

clustering algorithms and convex optimization approaches,
more stringent conditions are needed (Nadakuditi & New-
man, 2012; Vinayak et al., 2014). We generalize and im-
prove upon these existing converse results.

Sparse PCA: A similar gap between the statistical
power of computationally expensive algorithms and known
polynomial-time algorithms is observed for the sparse PCA
problem. The computational hardness for detecting a sin-
gle sparse principal component is proved in the seminal
work (Berthet & Rigollet, 2013) conditioned on the hard-
ness of planted clique detection.

3. Main Results
We now define the planted clustering problem, which has
five parameters n, r,K, p and q.
Definition 1 (Planted Clustering). Suppose n nodes are di-
vided into two subsets V1 and V2 with |V1| = rK and
|V2| = n − rK. The nodes in V1 are partitioned into r
clusters C∗1 , . . . , C

∗
r (called true clusters), where |C∗m| =

K, ∀m. The nodes in V2 do not belong to any clusters and
are called isolated nodes. A random graph is generated as
follows: for each pair of nodes and independently of all
others, we connect them by an edge with probability p if
they are in the same cluster, and with probability q other-
wise.

The goal is to exactly recover the true clusters {C∗m} given
the graph. We emphasize that K, r, p and q are allowed
to scale with n. We assume the values of (p, q, r,K) are
known to the algorithms.

To facilitate subsequent discussion, we introduce a matrix
representation of the problem. We represent the true clus-
ters {C∗m}rm=1 by a cluster matrix Y ∗ ∈ {0, 1}n×n, where
Y ∗ii = 1 if and only if i ∈ V1, and Y ∗ij = 1 if and only if
nodes i and j are in the same cluster. Note that the rank of
Y ∗ equals r. The adjacency matrix of the graph is denoted
as A, with the convention that Aii = 0 for all i. Under
the planted clustering model, we have P(Aij = 1) = p if
Y ∗ij = 1 and P(Aij = 1) = q if Y ∗ij = 0 for all i 6= j. The
problem reduces to recovering Y ∗ given A.
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The above formulation covers many classical models.

• Planted r-Disjoint-Clique: Here p = 1 and 0 < q <
1, so there are r cliques of size K “planted” into an
Erdős-Rényi random graph G(n, q). The special case
with r = 1 is known as planted clique.

• Planted Densest Subgraph: Here 0 < q < p < 1
and r = 1, so there is a dense subgraph of size K
planted into a G(n, q) graph.

• Planted Partition/stochastic blockmodel: Here n =
rK and 1 > p > q > 0. The special case with r = 2
is called planted bisection.

• Planted r-Coloring: Here n = rK and 0 = p < q <
1, so each cluster corresponds to a group of discon-
nected nodes assigned with the same color.

In the next four subsections, we present our main theorems
for the four regimes of the planted clustering problem. For
clarity of the presentation, we shall focus on the p > q
setting in the sequel, as the theorems and proofs for the
p < q setting are very much similar. We use c1, c2 etc
to denote universal constants independent of (n, r,K, p, q).
With high probability (w.h.p.) means with probability at
least 1− c1n−c2 .

3.1. Impossible Regime: Minimax Lower Bounds

We first characterize the statistical limit of any algorithm
regardless of its computational complexity. Let Y be the
set of admissible cluster matrices, given by

Y = {Y |there exist clusters {Cm}rm=1 with |Cm| = K,
and Y is the corresponding cluster matrix}.

We use Ŷ ≡ Ŷ (A) to denote an estimator which outputs
an element of Y as an estimate of the true Y ∗. We have the
following lower bound on the minimax error probability of
recovering Y ∗.

Theorem 1. Suppose that 8 ≤ K ≤ n/2, n ≥ 128 and
p > q. If any one of the following conditions holds:

4K(p− q)2 ≤ q(1− q) log (n/K) , (1)

12K(p− q)2 ≤ min{p(1−p), q(1− q)} log(n−K), (2)

16Kp ≤ 1, (3)

then inf Ŷ supY ∗∈Y P
[
Ŷ 6= Y ∗

]
≥ 1

2 .

The theorem shows that it is fundamentally impossible
to recover the clusters with reasonable probability in the
regime where (1), (2) or (3) holds, which is thus called the
impossible regime. If p/q = Θ(1), then the condition (2)
is the least restrictive when p is bounded away from 1 and
the condition (1) is the least restrictive otherwise. They im-
ply the following impossible regimes for various standard
models:

• Planted r-clique: K(1− q) . log(n/K).
• Planted r-coloring: Kq . log r.
• Planted partition/densest subgraph with p bounded

away from 1: K(p− q)2 . q log n.

If q = o(p), then Condition (3) is the least restrictive.

Theorem 1 is proved using an information-theoretic argu-
ment. The ratio of the RHS and LHS of (1) corresponds to
the ratio of the entropy of Y ∗ randomly chosen from Y and
the mutual information between A and Y ∗. Therefore, the
impossible regime is due to an information/statistical bar-
rier: the graph A does not carry enough information about
the clusters Y ∗.

Comparison to previous work: For r = 1 and q is
bounded away from 1, our results recover the well-known
K = Θ(log n) threshold for planted clique; we show that
the same is true for r → ∞. For planted partition with
p > q and p/q = Θ(1), previous work (Chaudhuri et al.,
2012; Chen et al., 2012) considers the r = O(1) and
K = Θ(n) case; our results are tighter and apply to the
general setting.

3.2. Hard Regime: Optimal Algorithms

We show that the statistical limit in Theorem 1 is achieved
by the Maximum Likelihood Estimator given in Algo-
rithm 1.

Algorithm 1 Maximum Likelihood Estimator (p > q)

Ŷ = arg max
Y ∈Y

∑
i,j

AijYij (4)

Enumerating over the set Y is computationally expensive
in general since |Y| = Ω(erK). The following theorem
provides success condition for the MLE.

Theorem 2. Suppose K ≥ 8 and p > q. With high proba-
bility, the optimal solution Ŷ to (4) is unique and equals to
Y ∗ provided that for some constant c1 > 0

K(p− q)2 ≥ c3p(1− q) log n. (5)

We refer to the regime for which the condition (5) holds
but (9) fails as the hard regime. When p/q = Θ(1), Con-
dition (5) reduces to (p−q)2

q(1−q) & logn
K . This implies the fol-

lowing success conditions for the MLE:

• Planted r-clique: K(1− q) & log n.
• Planted r-coloring: Kq & log n.
• Planted partition/densest subgraph: K(p − q)2 &
q(1− q) log n.
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If q = o(p), Condition (5) reduces to Kp & log n. By
comparing with Theorem 1, we see that the MLE achieves
the statistical limit up to at most a log factor and is thus
statistically optimal. In particular, if p/q = Θ(1) and p, q
are bounded away from 1, the conditions (2) and (5) match
each other up to a constant, thus establishing the minimax
recovery boundary (p−q)2

q(1−q) �
logn
K for planted clustering.

Comparison to previous work: Theorem 2 provides the
first achievability result that is information-theoretic opti-
mal when the number of clusters grows. It shows that for
a fixed cluster size K, even if r grows, possibly at a nearly
linear rate r = O(n/ log n), MLE still succeeds under the
same condition (5). When r = p = 1, q = 1/2, our result
recovers the K � log n boundary for planted clique (Alon
et al., 1998).

3.3. Easy Regime: Polynomial-Time Methods

We present a polynomial-time algorithm that succeeds in
the easy regime described in the introduction. Our algo-
rithm is based on taking the convex relaxation of the MLE
in Algorithm 1. Note that the objective function in the
MLE (4) is linear, so complications come from the non-
convex combinatorial constraint Y ∈ Y . To obtain a com-
putationally tractable algorithm, we replace this constraint
with a convex trace norm constraint and a set of linear con-
straints. The resulting convexified MLE is given in Algo-
rithm 2. Here the trace norm ‖Y ‖∗ (also known as the nu-
clear norm) is the sum of the singular values of Y . Note that
the true Y ∗ is a feasible solution as ‖Y ∗‖∗ = trace(Y ∗) =
rK.

Algorithm 2 Convexified Max Likelihood Estimator

Ŷ = arg max
Y

∑
i,jAijYij (6)

s.t. ‖Y ‖∗ ≤ rK, (7)∑
i,jYij = rK2, 0 ≤ Yij ≤ 1,∀i, j. (8)

The optimization problem in Algorithm 2 can be cast as
a semidefinite program (SDP) and solved in polynomial
time. Fast specialized algorithms have also been devel-
oped (Jalali & Srebro, 2012; Chen et al., 2012).

The following theorem provides a sufficient condition for
the success of the convexified MLE.
Theorem 3 (Easy). Suppose p > q. With high probability,
the optimal solution to the problem (6)–(8) is unique and
equals to Y ∗ provided

(p− q)2K2 ≥ c3 (p(1− q)K log n+ q(1− q)n) . (9)

Remark 1. Theorem 3 immediately implies guarantees for
other tighter convex relaxations. Define the sets B :=

{Y |Eq.(8) holds} and

S1 := {Y | ‖Y ‖∗ ≤ n1}, S2 := S1 ∩ {Y | ‖Y ‖max ≤ 1},
S3 := {Y | Y � 0; Trace(Y ) = n1},

where ‖Y ‖max := minK=LR> ‖L‖∞,2‖R‖∞,2 is the max
norm of Y and ‖ · ‖∞,2 is the maximum of the `2 norms of
the rows. The constraint (7) is equivalent to Y ∈ S1 ∩ B.
Observe that (Jalali & Srebro, 2012)

(S1 ∩ B) ⊇ (S2 ∩ B) ⊇ (S3 ∩ B) ⊇ Y.

Therefore, if we replace the constraint (7) with Y ∈ S2 or
Y ∈ S3, we obtain tighter convex relaxations of the MLE.
Theorem 3 immediately implies that these relaxations also
recover Y ∗ w.h.p. under (9).

When r = 1, the easy regime is where the condition (9)
holds and (12) fails. When r > 1, the easy regime is where
(9) holds and (13) fails. When p/q = Θ(1), the condi-
tion (9) reduces to (p−q)2

q(1−q) & K logn+n
K2 . This implies the

following success conditions for the convexified MLE un-
der standard models:

• Planted r-clique: K(1− q) & log n+ n
K .

• Planted r-coloring: Kq & log n+ n
K .

• Planted partition and densest subgraph with p
bounded away from 1: K(p− q)2 & q(log n+ n

K ).

In all these cases, the smallest possible cluster size is
K = Θ(

√
n) and the largest possible number of clusters

is r = Θ(
√
n), both achieved when p, q, |p − q| = Θ(1).

This generalizes the tractability threshold K = Ω(
√
n)

of Planted Clique to the growing r setting. In the high
SNR case with q = o(p), the condition (9) reduces to
Kp & max{log n,

√
qn}. In this case it is possible to

go beyond the K = Ω(
√
n) limit as the smallest possible

cluster size is K = Θ(max{log n,
√
qn}), achieved when

p = Θ(1).

Converse for trace norm relaxation We have a converse
to the achievability results in Theorem 3. The following
theorem characterizes when the trace norm relaxation (6)–
(8) fails.

Theorem 4 (Easy, Converse). Suppose p > q. For any
constant 1 > ε0 > 0, there exist positive constants c1, c2
for which the following holds. Suppose c1 log n ≤ K ≤
n/2, q ≥ c1 log(n)/n and p ≤ 1− ε0. If

K2(p− q)2 ≤ c2(Kp+ qn),

then w.h.p. Y ∗ is not optimal to the program (6)–(8).

Theorems 3 and 4 together establish that under the assump-
tions of both theorems and ignoring logarithmic factors,
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the sufficient and necessary condition for the success of the
convexified MLE is

pK

K2(p− q)2
+

qn

K2(p− q)2
.

. 1. (10)

Comparing this with the condition (5) for the MLE, we see
that the convexified MLE is statistically sub-optimal due to
the extra second term in (10). This term thus represents the
statistical price of computational tractability. It has an in-
teresting interpretation. Let Ã := A − q11> + qI be the
centered adjacency matrix. The matrix E := (Y − 11>) ◦
(Ã − EÃ), i.e., the deviation Ã − EÃ projected onto the
cross-cluster node pairs, can be viewed as the “cross-cluster
noise matrix”2. Note that the squared largest singular val-
ues of the matrix EÃ = (p − q)Y ∗ is K2(p − q)2, and
the squared largest singular value of E is Θ(qn) w.h.p. by
standard results. Therefore, the extra second term in (10)
is the “Spectral Noise-to-Signal Ratio”. In fact, our proofs
for Theorems 3 and 4 build on this intuition.

We note that when K = Θ(n), the conditions (5) and (9)
coincide up to constant factors, and the performance of
MLE and its relaxation matches. In this case the hard
regime disappears.

Comparison to previous work: We refer to (Chen et al.,
2012) for a survey of the statistical performance of the
state-of-art polynomial-time algorithms for various planted
models. Theorem 3 order-wise matches and in many cases
improves upon these existing results. For planted partition,
the previous best result is (p− q)2 & p(K log4 n+n)/K2

in (Chen et al., 2012). Our results remove a log3 n factor,
and is also sharper for small q. For planted r-clique, exist-
ing results require 1−q to be Ω((rn+rK log n)/K2) (Mc-
Sherry, 2001), Ω(

√
n/K) (Ames & Vavasis, 2014) or

Ω((n + K log4)/K2) (Chen et al., 2012). We improve
them to Ω((n + K log n)/K2). Our converse result in
Theorem 4 improves on the recent work by Vinayak et al.
(2014). There they focus on the special case p > 1/2 > q,
and show that a convex relaxation that is equivalent to our
formulation (6)–(8) without the equality constraint in (8)
fails when K2(p − 1/2)2 . qn. Our result is stronger, as
it applies to a tighter convex relaxation and a larger region
of the parameter space.

LIMITS OF POLYNOMIAL-TIME ALGORITHMS

We conjecture that no polynomial-time algorithm has
order-wised better statistical performance than the convex-
ified MLE and succeeds beyond Condition (9).

Conjecture 1. For any constant ε > 0, there is no algo-
rithm with running time polynomial in n that, for all n and
with probability at least 1/2, outputs the true Y ∗ of the

2◦ denotes the element-wise product.

planted clustering problem with

(p− q)2K2 ≤ n−ε (Kp(1− p) + q(1− q)n) . (11)

If the conjecture is true, then the boundary of the easy
regime will characterize the computational limit of planted
clustering. This will mean there exists a significant
gap between the statistical performance of intractable and
polynomial-time algorithms.

A rigorous proof of Conjecture 1 seems difficult with
current techniques. There are however several evidences
which support the conjecture:

• The special case with p = 1 and q = 1
2 corresponds

to the hard K = o(
√
n) regime for Planted Clique,

which is widely believed to be computationally hard,
and used as an assumption for proving other hardness
results (Juels & Peinado, 2000). Conjecture 1 can be
considered as a generalization of the Planted Clique
conjecture to the setting with multiple clusters and
general values of p and q.

• As mentioned earlier, if (11) holds, then the spectrum
of the observed graph is dominated by noise and thus
fails to reveal the underlying cluster structure. The
condition (11) therefore represents a “spectral bar-
rier” for cluster recovery. A large class of algorithms
that rely on the graph spectrum is proved to fail us-
ing this spectral barrier argument (Nadakuditi & New-
man, 2012). The convexified MLE fails for a similar
reason.

• In the sparse graph case with p, q = O(1/n), Decelle
et al. (2011) use non-rigorous but deep arguments
from statistical physics to argue that all polynomial-
time algorithms fail under (11).

3.4. Simple Regime: A Counting Algorithm

We consider a simple procedure in Algorithm 3 based on
counting node degrees and common neighbors.

Algorithm 3 A Simple Counting Algorithm
1. (Identify isolated nodes) For each node i, declare it as

isolated iff its degree di <
(p−q)K

2 + qn.
2. (Identify clusters when r > 1) Assign each pair of

non-isolated nodes i, j to the same cluster iff their
number of common neighbors Sij :=

∑
k 6=i,j AikAjk

satisfies Sij >
(p−q)2K

3 + 2Kpq + q2(n− 2K). Ter-
minate if inconsistency found.

The two steps in Algorithm 3 are considered in (Kučera,
1995; Dyer & Frieze, 1989) for the special cases of finding
a single planted clique or planted bisection. LetE be the set
of edges. The first step runs in timeO(|E|), and the second
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step runs inO(n|E|) since each node only needs to look up
its local neighborhood up to distance two to compute Sij .

The following theorem provides sufficient conditions for
the simple counting algorithm to succeed.
Theorem 5 (Simple). Suppose p > q. W.h.p. Algorithm 3
correctly identifies the isolated nodes if

K2(p− q)2 ≥ c3[Kp(1− q) + nq(1− q)] log n, (12)

and finds the clusters if further

K2(p−q)4 ≥ c4[Kp2(1−q2) + nq2(1−q2)] log n. (13)

When there is a single clusters r = 1, the simple regime
is where the condition (12) holds; if r > 1, the simple
regime is where both conditions (12) and (13) holds. When
p/q = Θ(1), these conditions simplify to

r = 1 :
(p− q)2

q(1− q)
&
n log n

K2
; r > 1 :

(p− q)2

q(1− q)
&

√
n log n

K
.

This implies the following success conditions for the count-
ing algorithm under various standard models:

• Planted clique and densest subgraph: K2(p − q)2 &
q(1− q)n log n.

• Planted r-clique (r > 1): K(1− q) &
√
n log n.

• Planted r-coloring (r > 1): Kq &
√
n log n.

• Planted partition with p bounded away from 1: K(p−
q)2 & q

√
n log n.

Comparing these conditions with (9) for the convexified
MLE, we see that the counting algorithm requires an ad-
ditional log n factor on the R.H.S when r = 1, and an ad-
ditional K log n/

√
n factor when r > 1.

The last discussion shows that in the r = 1 case where
the task is to separate isolated and non-isolated nodes, the
counting algorithm has similar (up to a log factor) statistical
performance as the more sophisticated convexified MLE,
which is the best known polynomial-time algorithm. How-
ever, when r > 1, the convexified MLE is much more pow-
erful. In particular, its power lies in separating different
clusters, as can be seen by comparing the conditions (9)
and (13).

Converse for the counting algorithm We have a partial
converse to Theorem 5. The following theorem shows that
the conditions (12) and (13) are also nearly necessary for
the counting algorithm to succeed.
Theorem 6 (Simple, Converse). Suppose p > q. For any
constant c0 < 1, there exist constants c1, c2 for which the
following holds. SupposeK ≤ n/2, p ≤ 1−c0 andKp2+
nq2 ≥ c1 log n. Algorithm 3 fails to identify all the isolated
nodes with probability at least 1/4 if

K2(p−q)2 < c2[(Kp+nq) log(rK) + nq log(n−rK)] ,
(14)

and fails to correctly recover all the clusters with probabil-
ity at least 1/4 if

K2(p− q)4 < c2(Kp2 + nq2) log(rK). (15)

Remark 2. Theorem 6 requires a technical condition
Kp2 + nq2 ≥ c1 log n, which is not too restrictive. If
Kp2 + nq2 = o(log n), then two nodes from the same
cluster will have no common neighbor with probability
(1− p2)K(1− q2)n−K ≥ exp[−c(p2K + q2(n−K))] =
exp[−o(log n)], so Algorithm 3 cannot succeed w.h.p.

Apart from the technical condition discussed above and the
assumption p < 1 − c0, Theorems 5 and 6 show that the
conditions (12) and (13) are sufficient and necessary for the
counting algorithm. In particular, the counting algorithm
is indeed strictly weaker in separating different clusters as
compared to the convexified MLE. Our proof reveals that
the R.H.S. of (12) and (13) are associated with the vari-
ance of the node degrees and common neighbors, respec-
tively. If (12) does not hold, the difference between the ex-
pected degrees of isolated and non-isolated nodes will be
outweighed by their deviations; a similar argument holds
for the number of common neighbors. Therefore, there is
an variance barrier that prevents the counting algorithm
from succeeding outside the simple regime.
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