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Abstract
Denoising auto-encoders (DAEs) have been suc-
cessfully used to learn new representations for a
wide range of machine learning tasks. During
training, DAEs make many passes over the train-
ing dataset and reconstruct it from partial cor-
ruption generated from a pre-specified corrupting
distribution. This process learns robust represen-
tation, though at the expense of requiring many
training epochs, in which the data is explicitly
corrupted. In this paper we present the marginal-
ized Denoising Auto-encoder (mDAE), which
(approximately) marginalizes out the corruption
during training. Effectively, the mDAE takes
into account infinitely many corrupted copies of
the training data in every epoch, and therefore is
able to match or outperform the DAE with much
fewer training epochs. We analyze our proposed
algorithm and show that it can be understood as
a classic auto-encoder with a special form of reg-
ularization. In empirical evaluations we show
that it attains 1-2 order-of-magnitude speedup in
training time over other competing approaches.

1. Introduction
Learning with artificially corrupted data, which are train-
ing samples with manually injected noise, has long been a
well-known trick of the trade. For example, images of ob-
jects or handwritten digits should be label-invariant with re-
spect to small distortions (e.g, translation, rotation, or scal-
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ing) applied to the images. This prior knowledge has been
exploited to generate additional training samples for SVM
classifiers or neural networks to improve generalization to
unseen samples (Bishop, 1995; Burges & Schölkopf, 1997;
Herbrich & Graepel, 2004; Ciresan et al., 2012).

Learning with corruption also has benefits in scenarios
where no such prior knowledge is available. Denoising
auto-encoder (DAE), one of the few building blocks for
deep learning architectures, learns useful representations
of data by denoising, i.e., reconstructing input data from
artificial corruption (Vincent et al., 2008; Maillet et al.,
2009; Vincent et al., 2010; Mesnil et al., 2011; Glorot
et al., 2011). Moreover, dropout regularization — ran-
domly deleting hidden units during the training of deep
neural networks — has been shown to be highly effective
at preventing deep architectures from overfitting (Hinton
et al., 2012; Krizhevsky et al., 2012; Srivastava, 2013).

However, these advantages come at a price. Explicitly cor-
rupting the training data (or hidden units) effectively in-
creases the training set size, which results in much longer
training time and increased computational demands. For
example in the case of DAEs, each data sample must be
corrupted many times and passed through the learner. This
may present a serious challenge for high-dimensional in-
puts. In the case of dropout regularization, each random
deletion gives rise to a different deep learning architecture,
all sharing subsets of parameters, and the need to average
over many such subsets increases training time too.

In this paper, we propose a novel auto-encoder that takes
advantage of learning from many corrupted samples, yet
elegantly circumvents any additional computational cost.
Instead of explicitly corrupting samples, we propose to im-
plicitly marginalize out the reconstruction error over all
possible data corruptions from a pre-specified corrupting
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distribution. We refer to our algorithm as marginalized De-
noising Auto-encoder (mDAE).

While in spirit similar to several recent works, our ap-
proach stands in stark contrast to them. Although Chen
et al. (2012) also marginalizes out corruption in auto-
encoders, their work is restricted to linear auto-encoders,
whereas our proposed model directly marginalizes over
nonlinear encoding and decoding. In contrast to several
fast algorithms for log-linear models, our approach learns
hidden representations while the formers do not (van der
Maaten et al., 2013; Wang & Manning, 2013; Wager et al.,
2013). Nonetheless, our approach generalizes many of
those works when nonlinearity and latent representations
are stripped away.

We evaluate the efficacy of mDAE on several popular
benchmark problems in deep learning. Empirical stud-
ies show that mDAE attains up to 1-2 order-of-magnitude
speedup in training time over denoising auto-encoders and
their variants. Furthermore, in most cases, mDAE learns
better representation of the data, evidenced by significantly
improved classification accuracies than those competing
methods. This can attributed to the fact that mDAE are
effectively trained on infinitely many training samples.

The rest of the paper is organized as follows. We start by
describing our approach in section 2. We discuss related
work in section 3 and contrast with our approach. We re-
port experimental results in section 4, followed by conclu-
sion in section 5.

2. Marginalized Denoising Auto-encoder
In what follows, we describe our approach. The key idea is
to marginalize out the noise of the corrupted inputs in the
denoising auto-encoders. We start by describing the con-
ventional denoising auto-encoders and introducing neces-
sary notations. Afterwards, we present the detailed deriva-
tions of our approach. Our approach is general and flexible
to handle various types of noise and loss functions for de-
noising. A few concrete examples with popular choices of
noise and loss functions are included for illustration. We
then analyze the properties of the proposed approach while
drawing connections to existing works.

2.1. Denoising Auto-encoder (DAE)

The Denoising Auto-Encoder (DAE) is typically imple-
mented as a one-hidden-layer neural network which is
trained to reconstruct a data point x ∈ RD from its (par-
tially) corrupted version x̃ (Vincent et al., 2008). The cor-
rupted input x̃ is typically drawn from a conditional distri-
bution p(x̃|x) — common corruption choices are additive
Gaussian noise or multiplicative mask-out noise (where
values are set to 0 with some probability q and kept un-

changed with probability of 1− q).

The corrupted input x̃ is first mapped to a latent represen-
tation through the encoder (i.e., the nonlinear transforma-
tion between the input layer and the hidden layer). Let
z=hθ(x̃) ∈ RDh denote the Dh-dimensional latent repre-
sentation, collected at the outputs of the hidden layer.

The code z is then decoded into the network output y =
gθ(z) ∈ RD by the nonlinear mapping from the hidden
layer to the output layer. Note that we follow the custom to
have both mappings share the same parameter θ.

For denoising, we desire y = g ◦ h(x̃) = fθ(x̃) to be
as close as possible to the clean data x. To this end, we
use a loss function `(x,y) to measure the reconstruction
error. Given a dataset D = {x1, · · · ,xn}, we optimize
the parameter θ by corrupting each xi m-times, yielding
x̃1
i , . . . , x̃

m
i , and minimize the averaged reconstruction loss

1

n

n∑
i=1

1

m

m∑
j=1

`
(
xi, fθ(x̃

j
i ))
)
. (1)

Typical choices for the loss ` are the squared loss for real-
valued inputs, or the cross-entropy loss for binary inputs.

2.2. Infinite and Implicit Denoising via Marginalization

The disadvantage of explicitly corrupting x and using its
multiple copies x̃1, . . . , x̃m is that the optimization algo-
rithm has to cope with an m-fold larger training dataset.
When m is large, this increase directly translates into in-
creased computational cost and training time.

Can we avoid explicitly increasing the dataset size yet still
reap the benefits of training with corrupted inputs? Our
key idea seems counterintuitive at the first glance: we will
use as many copies of corrupted as possible, even infinite!

The trick is to recognize that the empirical average in
eq. (1) becomes the expected averaged loss under the cor-
ruption distribution p(x̃|x), asm→∞. In other words, we
will attempt to minimize the following objective function

1

n

n∑
i=1

Ep(x̃i|xi)[`(xi, fθ(x̃i))]. (2)

While conceptually appealing, the expectation is not ana-
lytically tractable in the most general case due to the non-
linearity of the mappings and the loss function. We over-
come this challenge with two approximations. These ap-
proximations depend only on the first-order and second-
order statistics of the corruption distribution p(x̃|x) and
can be computed efficiently.

Second-order expansion and approximation. We ap-
proximate the loss function `(·) by its Taylor expansion
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with respect to x̃ up to the second-order. Concretely, we
choose to expand at the mean of the corruption µx =
Ep(x̃|x)[x̃]:

`(x, fθ(x̃)) ≈ `(x, fθ(µx))

+ (x̃− µx)
>∇x̃` (3)

+
1

2
(x̃− µx)

>∇2
x̃` (x̃− µx)

where ∇x̃` and ∇2
x̃` are the first-order derivative (i.e. gra-

dient) and second-order derivate (i.e., Hessian) of `(·) with
respect to x̃ respectively.

The expansion at the mean µx is crucial as the next step
shows, where we take the expectation with respect to the
corrupted x̃,

E[`(x, fθ(x̃))] ≈ `(x, fθ(µx))

+
1

2
tr
(
E[(x̃− µx)(x̃− µx)

>]∇2
x̃`
)
.

Here, the linear term in eq. (3) vanishes as E[x̃] =µx. We
substitute in the matrix Σx=E[(x̃−µx)(x̃−µx)

>] for the
variance of the corrupting distribution, and obtain

E[`(x, fθ(x̃))] ≈ `(x, fθ(µx)) +
1

2
tr
(
Σx∇2

x̃`
)
. (4)

Note that the formulation in eq. (4) only requires the first
and the second-order statistics of the corrupted data. While
this approximation could in principle be used to formulate
our new learning algorithm, we make a few more compu-
tationally convenient simplifications.

Scaling up. We typically assume the corruption is ap-
plied to each dimension of x independently. This imme-
diately simplifies Σx to a diagonal matrix. Further, it also
implies that we only need to compute the diagonal terms
of the Hessian ∇2

x̃`. This constitutes significant savings
in practice, especially for high-dimensional data. The full
Hessian matrix scales quadratic with respect to the data di-
mensionality, while its diagonal scales only linearly.

The dth dimension of the Hessian’s diagonal is given by

∂2`

∂x̃2d
=

(
∂z

∂x̃d

)>
∂2`

∂z2
∂z

∂x̃d
+

(
∂`

∂z

)>
∂2z

∂x̃2d
, (5)

through a straight-forward application of the chain-rule and
the derivatives are backpropagted through the latent rep-
resentation z. We follow the suggestion by LeCun et al.
(1998) and drop the last term in (5). The remaining first
term is in a quadratic form. Note that the matrix ∇2

z` =
∂2`/∂z2 is the Hessian of ` with respect to z, and is of-
ten positive definite. For instance, for a classification task
where the output layer is a softmax-multinomial, the Hes-
sian is that of multinomial logistic regression and there-
fore positive definite. We exploit the positive definiteness

Table 1. Corrupting distributions with mean and variance
Type µx σ2

xd

Additive Gaussian x σ2
d

Unbiased Mask-out/drop-out x x2dq/(1− q)

by further reducing the matrix to its non-negative diagonal
terms, which gives rise to our final approximation

∂2`

∂x̃2d
≈

Dh∑
h=1

∂2`

∂z2h

(
∂zh
∂x̃d

)2

(6)

Note that this approximation also brings up significant
computational saving as most modern deep learning archi-
tectures have a large number of hidden units — the Hessian
∇2

z` would also have been expensive to compute and store
without this approximation.

Learning objective. Combining our results so far, we
minimize the following objective function (using one train-
ing example for notation simplicity)

`(x, fθ(µx)) +
1

2

D∑
d=1

σ2
xd

Dh∑
h=1

∂2`

∂z2h

(
∂zh
∂x̃d

)2

︸ ︷︷ ︸
Rθ(µx)

(7)

where σ2
xd is the corruption variance of the dth input di-

mension, i.e., the dth element of Σx’s diagonal.

It is straightforward to identify that the first term in (7)
represents the loss due to the feedforward “mean” (of the
corrupted data). We postpone to later sections a detailed
discussion and analysis of the intuition behind the second
term. In short, the term Rθ(µx) functions as a form of
regularization, reminiscent of those used in the contractive
auto-encoder (Rifai et al., 2011b) and the reconstruction
contractive auto-encoder (Alain & Bengio, 2013) – details
in section 3.

2.3. Examples

We exemplify our approach with a few concrete examples
of the corrupting distributions and loss functions.

Corrupting distributions. Table 1 summarizes two
types of noise models and their corresponding statistics.

In the case of additive Gaussian noise, we have p(x̃|x) =
N (x,Σ) where the covariance matrix is independent of x.
Additive Gaussian noise is arguably the most common data
corruption used to model data impurities in practical appli-
cations (Bergmans, 1974).

For mask-out/drop-out corruption, we overwrite each of the
dimensions of x randomly with 0 at a probability of q. To
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Table 2. Reconstruction loss functions and the relevant derivatives.
Name `(x,y) ∂2`

∂z2h

∂zh
∂x̃d

Cross-entropy loss −x> log(y)− (1− x)> log(1− y)
∑
d yd(1− yd)w2

hd zh(1− zh)whd
Squared loss ‖x− y‖2 2

∑
d w

2
hd zh(1− zh)whd

make the corruption unbiased, we set uncorrupted dimen-
sions to 1/(1− q) times its original value. That is,

P (x̃d = 0) = q, and P (x̃d = 1/(1− q)xd) = 1− q. (8)

While the noise is unbiased, the variance is now a function
of x, as shown in Table 1. This type of corruption has been
shown to be highly effective for bag-of-words document
vectors (Glorot et al., 2011; Chen et al., 2012), simulating
the loss of some features due to e.g. other word choices by
the document’s authors, and recently has become known
as “drop-out” in the context of neural network regulariza-
tion (Hinton et al., 2012).

Loss. Table 2 highlights two loss functions and the cor-
responding derivatives in eq. (7). The cross-entropy loss is
best suited for binary inputs and the squared loss a typical
choice for regression.

We assume that in both cases the hidden representation is
computed as

z = σ(Wx̃ + b), (9)

where σ() is the sigmoid function, W ∈ RDh×D is the
connection weight matrix between the input and the hidden
layers and b the bias term. For the binary inputs scenario,
the outputs are computed as y=σ(W>z+b′) and we use
the cross-entropy loss to measure the reconstruction. For
regression, the outputs are y=W>z + b′ and we use the
squared loss. Table 2 summarizes the relevant derivatives
with different reconstruction loss function. We leave the
detailed derivation to the Supplementary Material.

2.4. Analysis of the Regularizer

We gain further insight by examining the regularizer
Rθ(µx) in eq. (7) under specific combinations of corrup-
tion distributions and reconstruction loss functions. For
example, under the mask-out noise and the cross-entropy
loss, we have

Rθ(µx) ∝
∑
h

z2h(1− zh)2
∑
d,d′

x2dyd′(1− yd′)w2
hdw

2
hd′ .

This form reveals several interesting aspects of the regular-
izer.

Our first observation is that the regularizer favors a binary
hidden representation and penalizes if the hidden output zh
is ambiguous — the most extreme case being zh=1/2.

Secondly, the regularizer is adaptive to both the inputs and
the outputs. For active values xd and yd′ it penalizes all

paths whd, whd′ that use xd for the reconstruction of xd′ .
This observation is analogous to the adaptive regularization
effect previously observed on the logistic regression (Wa-
ger et al., 2013).

Thirdly, in contrast to typical measuring model parameters
with L2 norms, our regularizer captures higher-order in-
teractions. When d = d′, we see a penalty term of w4

hd,
which grows faster than w2

hd. Furthermore, there is a mu-
tual competition and suppression for weights belonging
to the same hidden unit. The regularizer prefers all whd
for the same h to different inputs (or outputs units) to be as
orthogonal as possible:

w2
hdw

2
hd′ ≈ 0

As our experiments will show later, this preference leads to
a group of sparser weights (cf. fig. 2). When interpreting
those weights as filters, we obtain sharply contrasted fil-
ters. It is worth pointing out that this type of orthogonality
regularization has been used in other settings of learning
models with disjoint sets of features (Hwang et al., 2011;
Zhou et al., 2011; Chen et al., 2011).

3. Related work
Various forms of auto-encoders have been studied in the
literature (Rumelhart et al., 1986; Baldi & Hornik, 1989;
Kavukcuoglu et al., 2009; Lee et al., 2009; Vincent et al.,
2008; Rifai et al., 2011b). While originally intended as a
technique for dimensionality reduction (Rumelhart et al.,
1986), auto-encoders have been repurposed to learn sparse
and distributed representation in the over-complete set-
tings, where the learned representation has higher dimen-
sions than the input space. To avoid learning an identity
mapping (thus uninteresting features) under this setting, it
is crucial to have regularization in those models. The sim-
plest form is to use weight decay (Bengio & LeCun, 2007),
which favors small weights. The sparse auto-encoders pro-
posed by (Lee et al., 2007; Ranzato et al., 2007) encour-
age sparse activation of the hidden representation. Our
work generalizes those ideas by suggesting more complex
forms of regularization, for example, being adaptive to in-
puts when using mask-out noise.

Connection to DAE and its variants. Denoising auto-
encoders (DAE) (Vincent et al., 2008) incorporate a new
form of regularization to force the mapping between the
inputs and the outputs to deviate from an identity mapping.
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That is achieved by corrupting the inputs (for instance, ran-
domly setting a subset of input dimensions to zero) while
demanding the corrupted dimensions be reconstructed at
the outputs.

Rifai et al. (2011b) asks the more direct question: what
kind of representations we desire and thus what regulariz-
ers do we need for a regular auto-encoder? Their contrac-
tive auto-encoder (CAE) thus explicitly encourages learn-
ing latent representation to be robust to small perturbation
to the inputs. To this end, CAE penalizes the magnitude
of the Jacobian matrix of the hidden units at the training
examples:

‖Jh(x)‖2F =

∥∥∥∥ ∂z

∂x

∥∥∥∥2
F

=

Dh∑
h=1

D∑
d=1

(
∂zh
∂x̃d

)2

In contrast, our regularizer in eq. (7) takes also into consid-
eration the curvature of the reconstruction loss function by
weighting the Jacobian with ∂2`

∂z2h
. Moreover, in contrast to

CAE, our regularizer is able to adapt to the inputs explicitly
by scaling with input-dependent noise variance.

Alain & Bengio (2013) aims to understand the regulariza-
tion property of the DAE by marginalizing the (Gaussian)
noise. They arrive at a reconstruction contractive auto-
encoder (RCAE) whose regularization term is the Jaco-
bian of the reconstruction function. While RCAE cannot
be seen as a direct replacement of CAE, it is interesting
to note that our mDAE has the flavor of both RCAE and
CAE — mDAE’s regularization encodes jointly the prop-
erties of the loss (thus indirectly the regression function)
and the hidden representations.

Connection to other marginalized models. Wager et al.
(2013) analyze the effect of dropout/mask-out on learning
logistic regression models. In particular, they analyze the
expected loss function of the learning algorithm with re-
spect to the corruption distribution. An approximation to
the expected loss is derived under small noise condition.
They discover that the effect of marginalizing out the noise
is equivalent to adding an adaptive regularization term to
the loss function formulated with the original training sam-
ples. A similar effect is also observed in our analysis, cf.
section 2.4.

While sharing in spirit with that line of work, our focus
is also inspired by (Chen et al., 2012; van der Maaten
et al., 2013) which see marginalization as a vehicle to ar-
rive at fast and efficient computational alternative to ex-
plicitly constructing corrupted learning samples. Because
the hidden layers in our auto-encoders are no longer lin-
ear, our analysis extends existing work in interesting di-
rections, revealing novel aspects of adaptive regularization
due to the need of learning latent representations and com-
pounded (sigmoidal) nonlinearity.

4. Experimental Results
We evaluate mDAE on a variety of popular benchmark
datasets for representation learning and contrast its per-
formance to several competitive state-of-the-art algorithms.
We start by describing the experimental setup, followed by
reporting results.

4.1. Setup

Datasets. Our datasets consist of the original MNIST
dataset (MNIST) for recognizing images of handwritten
digits, for the sake of comparison with prior work a sub-
sampled version (basic) and its several variants (Larochelle
et al., 2007; Vincent et al., 2010; Rifai et al., 2011b).
The variants consist of five more challenging modification
to the MNIST dataset, including images of rotated digits
(rot), images superimposed onto random (bg-rand) or im-
age background (bg-img) and the combination of rotated
digits with image background (bg-img-rot). We also exper-
imented on three shape classification tasks (convex, rect,
rect-img). Each dataset is split into three subsets: a train-
ing set for pre-training and fine-tuning the parameters, a
validation set for choosing the hyper-parameters and a test-
ing set on which the results are reported. More details can
be found in (Vincent et al., 2010).

Methods. We compare to the original denoising auto-
encoder (DAE) (Vincent et al., 2010), the contractive auto-
encoder (CAE) (Rifai et al., 2011b) and the marginalized
linear auto-encoder (mLDAE) (Chen et al., 2012). The per-
formance of these algorithm before and after fine-tuning
the learned representation are both included. Our baseline
is a linear SVM on the raw image pixels.

We used cross-entropy loss and additive isotropic gaus-
sian noise for DAE and mDAE throughout these ex-
periments (similar trends was observed with mask-
out noise). The hyper-parameters for these dif-
ferent algorithms are chosen on the validation set.
These include the learning rate for pre-training and
fine-tuning (candidate set [0.01, 0.05, 0.1, 0.2]), noise
levels in mLDAE, DAE and our method mDAE
(candidate set [0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3])), and
the regularization coefficient in CAE (candidate set
[0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9]). Except mLDAE which
has closed-form solutions for learning representations, all
other methods use stochastic gradient descent for parame-
ter learning.

4.2. Results

Training speed. Figure 1 displays the testing error on all
benchmark data sets as a function of the training epochs.
The best results based on the validation set are highlighted
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Figure 1. Test error rates (in %) on the nine benchmark datasets obtained by DAE, CAE and our mDAE at different training epochs.

with small markers. We can see that mDAE is able to
match the performance of the DAE or CAE often with
much fewer training epochs, thus significantly reducing the
training time. In the most prominent case, bg-rand, it re-
quires less than five training epochs (after 5 minutes of
training time) to reach the same error as the DAE, which
requires over 4 hours to finish training. Similar trends are
observed on most datasets, with the exceptions of MNIST
(where mDAE performs slightly worse than DAE).

Better representations. If allowed to progress until the
lowest error on the validation set is reached, mDAE is
also able to yield better representations than DAE in 7 out

of 9 data sets. Figure 1 shows that the features learned
with mDAE quickly yield lower classification errors in
these cases. Table 3 summarizes the classification errors
of the linear SVMs (Fan et al., 2008) using representations
learned (before fine-tuning) by all algorithms, as well as
the errors after fine-tuning the learned representations us-
ing discriminative labels. The test errors obtained with the
raw pixel inputs are record in the baseline column. When
trained with one hidden layer, mDAE often outperforms
other approaches by significant margins. The table also
shows the results of two hidden layers, learned through
stacking (Vincent et al., 2010). With two layers, the bene-
ficial effects of mDAE decrease slightly, however training
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Table 3. Test error rates (in %) of a baseline linear SVM on raw input and mLDAE learned representation, as well as the error rates
produced by DAE, CAE and mDAE before (upper row) and after (lower row) fine-tuning. Best results with one layer and two layers are
indicated in bold (before fine-tuning) and bold(after fine-tuning), respectively.

Dataset baseline mLDAE1
one layer two layers

DAE1 CAE1 mDAE1 DAE2 CAE2 mDAE2

MNIST 8.31 7.17 1.42 1.88 1.64 1.38 - 1.60
1.37 1.49 1.37 1.29 - 1.43

basic 10.15 8.02 3.24 4.29 2.92 2.79 3.98 2.61
3.13 4.01 3.17 2.75 3.34 2.66

rot 49.34 25.31 15.89 23.49 14.84 15.50 20.09 16.61
12.61 14.58 12.05 11.94 13.62 10.36

bg-rand 20.83 21.31 13.35 15.82 9.46 11.67 13.23 8.15
13.85 15.05 13.07 11.56 14.84 11.04

bg-img 28.17 29.76 15.74 15.94 15.20 17.59 18.12 18.09
18.62 17.87 17.18 17.30 16.75 17.38

bg-img-rot 65.97 66.07 49.63 51.89 48.78 51.45 51.91 49.62
48.70 49.02 47.27 44.92 48.25 46.12

rect 24.66 12.50 0.26 0.29 0.12 0.06 0.22 0.05
0.20 0.10 0.07 0.04 0.19 0.07

rect-img 49.80 25.31 22.63 22.39 21.82 22.42 24.33 21.97
22.04 21.66 22.01 22.19 23.42 22.05

convex 46.27 29.96 26.20 26.94 27.46 22.10 26.25 21.52
21.35 21.01 20.53 18.44 19.30 18.10

is still significantly faster in most cases. Note that with-
out fine-tuning two stacked layers often do not improve
the feature quality across all approaches. A single-layer
mDAE is able to outperform stacking two layers of DAE
or CAE on several datasets, such as bg-rand and bg-img-
rot. Representation learned by mDAE without fine-tuning
is able to outperform DAE or CAE with fine-tuning on sev-
eral datasets, such as basic and bg-rand.

Analysis of the model parameters. The connection
weights between neural network layers are often inter-
preted as filters that transform lower-level inputs. Thus,
it is often instructive to study the properties of those filters
to understand the process of the learning.

Figure 2 shows 100 randomly selected filters, from a total
of 1000, learned by mDAE on three datasets. Exemplary
inputs for the various data sets are shown on the very left.
mDAE is able to discover interesting (visibly non-random
and clearly structured) filters. On the basic (left) dataset,
it is able to learn specialized feature extractors, detecting
for example ink blobs, local oriented strokes and digit parts
such as loops. On both bg-rand (middle) and bg-img (right)
datasets, the model learns filters which are more sensitive to
foreground digits as well as filters which capture the back-
grounds.

Figure 3 compares the filters learned by four different auto-

encoder variants: an auto-encoder without denoising or
regularization (AE), DAE, CAE and our mDAE. As shown
in the figure, AE filters largely look random and fail to learn
any interesting features, confirming the importance of ap-
plying regularization to such models. Some of CAE’s fil-
ters capture interesting patterns such as edges and blobs.
Both DAE and mDAE seem to have highly specialized
and well-structured feature detectors. In particular, mDAE
seems to have sharply contrasted filters. The filters from
mDAE have the tendency to be specialized towards smaller
image regions. This may be an artifact of the regularization
term, which penalizes reconstruction paths across differ-
ent input dimensions. The strongest reconstruction signal
is usually the pixel itself and its neighboring pixels (which
are highly correlated) and the mDAE filters tend to focus
on exactly those. Note that these filters with local activa-
tion regions tend to have less overlap and are more likely
to be orthogonal. Both observations are in tune with the
analysis in section 2.4.

5. Conclusion
Regularized auto-encoders are important building blocks
for learning deep and rich representations of data. The stan-
dard approach of denoising auto-encoder incorporates reg-
ularization via learning reconstruction from partially cor-
rupted samples. While effective, this is often a computa-
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(a) rot, bg-rand, bg-img, bg-img-rot (b) rect, rect-img, convex

Figure 9: Samples form the various image classification problems. (a): harder variations on the
MNIST digit classification problems. (b): artificial binary classification problems.

On the 28×28 gray-scale image problems, SAE and SDAE used linear+sigmoid decoder layers
and were trained using a cross-entropy loss, due to this being a natural choice for this kind of (near)
binary images, as well as being functionally closer to RBM pretraining we wanted to compare
against.

However for training the first layer on the tzanetakis problem, that is, for reconstructing MPC
coefficients, a linear decoder and a squared reconstruction cost were deemed more appropriate (sub-
sequent layers used sigmoid cross entropy as before). Similarly the first layer RBM used in pre-
training a DBN on tzanetakis was defined with a Gaussian visible layer.

Table 2 lists the hyperparameters that had to be tuned by proper model selection (based on
validation set performance). Note that to reduce the choice space, we restricted ourselves to the
same number of hidden units, the same noise level, and the same learning rate for all hidden layers.

6.2 Empirical Comparison of Deep Network Training Strategies

Table 3 reports the classification performance obtained on all data sets using a 3 hidden layer neural
network pretrained with the three different strategies: by stacking denoising autoencoders (SDAE-
3), stacking restricted Boltzmann machines (DBN-3), and stacking regular autoencoders (SAE-3).
For reference the table also contains the performance obtained by a single hidden-layer DBN-1 and
by a Support Vector Machine with a RBF kernel (SVMrbf).12

12. SVMs were trained using the libsvm implementation. Their hyperparameters (C and kernel width) were tuned semi-
automatically (i.e., by human guided grid-search), searching for the best performer on the validation set.
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Figure 2. 100 filters (randomly selected from 1,000) learned by mDAE on the basic (left), bg-rand (middle), bg-img (right) datasets.
Exemplary input images are shown in the very left column. It is interesting to observe that for the bg-rand and bg-img data sets mDAE
learns different specialized filters for foreground and background attributes.

CAE DAE mDAEAE

Figure 3. 100 filters (randomly selected from 1,000) learnt by a regular auto-encoder without regularization (AE), CAE, DAE and our
mDAE on the basic dataset. Additive isotropic gaussian noise is used in DAE and mDAE.

tionally intensive and lengthy process. Our mDAE over-
comes the limitation by marginalizing the corruption pro-
cess, effectively learning from infinitely many corrupted
samples. At the core of our approach is to approximate
the expected loss function with its Taylor expansion. Our
analysis yields a regularization term that takes into consid-
eration both the reconstruction function’s sensitivity to the
hidden representations and the hidden representation’s sen-
sitivity to the inputs. Algebraically, those sensitivities are
measured by the norms of the corresponding Jacobians.

The idea of employing Jacobians to form regularizations
has been studied before and has since resulted in several
interesting models, including ones for regularizing auto-
encoders (Rifai et al., 2011b). We plan to advance further
in this direction by exploring high-order effects of corrupt.
For instance, inspiring thoughts include injecting noise into
a Jacobian-based regularizer itself (Rifai et al., 2011a) as
well as approximating with higher-order expansions.

In summary, this paper contributes to the deeper under-
standing of feature learning with DAE and also proposes a
novel practical algorithm. The modular structure of mDAE
allows many different corruption distributions as well as

reconstruction loss functions to be readily used in a plug-
and-play manner, providing interesting directions for future
research and analysis.
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