Weighted Graph Clustering with Non-Uniform Uncertainties

7. Proofs
7.1. Proof of Theorem 1
Observe that Y € Speq C Spuctear, S0 it suffices to prove the theorem assuming S = Spycear in (3).

We need some additional notation. Suppose the size of the i-th cluster is K, and the rank—r SVD of Y* is USU . Note
that UU " is a block diagonal matrix with r blocks such that the i-th block has size K; x K; with all entries equal to
% < % We define the projections Pr and Pr. by

PrZ=UU"Z+2ZUU" —UU"ZUU"
and
PriZ =2 —PrZ.

Define the matrix W;; := ((24;; — 1)B¢j)?j:1 € R™*" and the quantities § := E [(1 — 2P;;) B;;]and p :=E [ij] —02.
Note that
EW;; = E[E[(24;; — 1) Bi;|P]] = (2V; — 1) E[(1 — 2P;;) By] = (2Y;; — 1) 0

and
2

Var [W;] = E [W2] — (EWy;)? =E [(QAU —1)? ij} —(2v; —1)%6% = p.

Our proof requires two standard concentration results for the random matrix .

Lemma 1. If0 < W;; < by almost surely for all i, j and the condition (6) holds, then with high probability, we have

W —E[W]| <c (blogn+ \/pnlogn) (12)

and

2 2
||UUT (W_E[W])Hoo < Vb2 log n + pKlogn (13)

- K
for some universal constants cs, cs.

We prove the lemma in Section 7.1.1 to follow. We now prove Theorem 1 assuming the two inequalities (12) and (13) in
the lemma hold.

For any matrix Y, we define A(Y) := (Y* — Y, W). To prove the theorem, it suffices to show that A(Y") > 0 for all
feasible Y of the program 24 with Y # Y*. We rewrite A(Y) as

AY)=(EW,Y*-Y)+ (W —-EW,Y* -Y). (14)
We bound the two terms above. For any feasible Y obeying the constraint 4, the first term in (14) can be written as

EW,Y* —Y) =3 (25— 1)6- (¥~ Vi)
,J
=0[Y" = Y|, (15)
where the last equality follows from 0 < V;; < 1,Vi, 5.
On the other hand, if we let A := ¢5 (log n + +/pnlog n) , then by (12) we have

1 1
[ Y s

This means UU " + +Pr. (W — EW) is a subgradient of the function f(X) = ||X||. at X = Y*. Therefore, for any
feasible Y we have

1
0> Y]l — Y[l > (UUT + 3 Pre (W -EW).Y —Y7),

which means
(W—EW,Y*-Y) > (Pr(W—-EW)-AUU",Y*-Y) (16)
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We substitute (15) and (16) into (14) to obtain that for all feasible Y,
AY)>0|Y* — Y1+ (Pr (W —EW) - XUU",Y* -Y)
@ T *
> (0= MUU oo = [I[Pr (W —EW) [loo) IV = Y11
(b) A y
> (06— ' [Pr (W —EW) ||o | IV = Y1,
where (a) follows from the Holder’s inequality and (b) follows from the structure of U. But by definition of Pz, we have

[1Pr(W —EW)|| o < |[UUT (W = Bw)|| _ + (W —EW)UU | +||[UUT (W —EW)UU"||

Vb2log?n + Kplogn
K 7

<3| UUT (W —EW)|__ < 3cs
where the last inequality follows from (13). It follows that

bl Vpnl 2 Jog?
AY) > (9_02( ogn ++/pn ogn) _ 3 \/b log n+Kplogn> Y — Y.

K 3 K

If the condition 6 in the theorem holds, then the quantity inside the parenthesis is positive (note that p < E [B?j} ). This
means A(Y) > 0 for all Y # Y™*, which proves the theorem.

7.1.1. PROOF OF LEMMA 1

Let e; be the i-th standard basis vector in R™. For the first inequality in the lemma, note that

—EW = Z ]Esz 62 7

which is the sum of n? i.i.d. zero-mean matrix. We compute
H(le — ]EW”) eie;rH = |le — EW”‘ S b
for all (7, j) and

2 T T 2 T, T
EE Wi;)~ eje; ei€; IEE Wij) ei€ej eje;

p||Y eiel || =pn
]
Applying the matrix Bernstein inequality (Tropp, 2012) gives that w.h.p.

W —EW| < co (blogn + \/pnlogn)

for some constant cs.
We prove the second inequality. Fix (4, j). Assume node i belongs to the cluster k. Then
1
T - -
(UU (W - ]EW))U T K z'ezc*(W —EW)u;,
k

which is the average of K}, independent zero-mean random variables taking values in [—b, b] with variance bounded by p.
Therefore, by standard Bernstein inequality, we know that for some constant c3 that

2 2
’(UUT(W — IEW))”‘ < KLC?’ (blogn—i— N logn) < c3 Vb log nK+ KplOgn, w.h.p.
k

where the last inequality follows from K}, > K. The lemma follows from a union bound over all (¢, 5).
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7.2. Proof of Corollary 1

For the first part of the corollary, we only need to show that the condition (6) in Theorem 1 is satisfied. Take by := 10log %
Note that under the assumption of the theorem, we have almost surely
1— P 1-2P; 1 _ 1
MLE i . i
B;j = B;; " = log 5 2 < min {P]’lOge} <10 (1 — 2Pij) log . a7

(%] i

s0 B;; < bg. The condition (8) in the corollary statement implies that

1 nlogn by bo logn
Z_p. > 00 70 20
EK? PZ>B”] =ATTRT 107970 K

since P j = P;; and K < n. On the other hand, the second term in the RHS of (6) can be upper bounded as follows:

vnlogn 1—P;; 1—P;]+vnlogn
cO\/]E[ij}KgCO\/E{log Pijjdog _ ]] g

2y K
(a) _ 1— P, /nlog(1/e)logn
< 1000\/E [(1 —2P;)log 5 a} & 7
(b) CO

Y 1—15”}

B E |:(1 - 2Pij) lOg P

ij
Co
= 5 E[(1 —2Py) Byl
where the ineqyality (a) follows from the previous bound (17), and (b) follows from the condition (8) in the corollary
statement and P;; > P;;. Combining the last two display equations proves that (6) is satisfied.

The RHS of (8) is upper bounded

For the second part of the corollary, we note that P;; := max {5, Pij} > € := .
by log 16 - c1 7% logn. Because log 1=£ > -(1 — 2z) = 1 (3 —x) forall z < 3, we have (5 — P;;) log 1},—?_“ >
: »

:(3-F -)2 > & (3P -)2 almost surely. It follows that the LHS of (8) is lower bounded by {5E [(% B )2}

Under the condition 9, we conclude that (8) is satisfied.

7.3. Proof of Theorem 2

We prove the lemma using Fano’s inequality. By Stirling’s formula we have

_ n n/2
'y‘(n/2) =2

Now suppose Y* is sampled uniformly at random from ), and then P and A are generated according to our model. We
have

I(A,P;Y*)=H(A,P)— H (A, P|Y*)

2
<n*I(An, P Y7h),

< (n) [H (A1, Pr1) — H (A, Pa| Y1)

where the first inequality follows from symmetry. Let a = A1, p = P11 and y = Y7,. We now compute

) — Pla,ply)] _ P (aly, p) Q(p)
H0i0) B o8 ] = B [ B TG0

=Eq,py logP (aly,p)] — Eap,y [logP (a|p)]

1 1
—E, ., llogP (aly,p)] - E, [p log 2} R, [(1 ) log 2} .
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One verifies that
Eap.y (logP (aly,p)] = Eap,y [E[logP (aly,p) [a, y]] = Ep [plog p| + Ep [(1 — p) log(1 —p)].
Combining the last three display equations gives

< n’E, [plog2p + (1 — p)log2(1 — p)]
<n’E,[p(2p—1) + (1 —p) (1 —2p)]

It follows that under the condition (10) of the theorem, we have

/

Q

1
I(A,P;Y") <n®- —=dn < Jlog|Y|

3|

provided ¢’ is sufficiently small. Applying Fano’s inequality, we obtain that for any Y,

A P;Y")+log2 1
log |V -2

where the probability is w.r.t. the randomness in Y*, P and A. Because the supremum is lower bounded by the average,
we conclude that

P ?(A,P);AY*]21—I(

sup P [Y(A, P) # Y*} >
Y*ey

DN | =

Taking the infimum over all Y proves the theorem.



