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7. Proofs
7.1. Proof of Theorem 1

Observe that Y ⇤ 2 Spsd ⇢ Snuclear, so it suffices to prove the theorem assuming S = Snuclear in (3).

We need some additional notation. Suppose the size of the i-th cluster is K
i

, and the rank�r SVD of Y ⇤ is U⌃U>. Note
that UU> is a block diagonal matrix with r blocks such that the i-th block has size K

i

⇥ K
i

with all entries equal to
1
Ki

 1
K

. We define the projections P
T

and P
T

? by

P
T

Z = UU>Z + ZUU> � UU>ZUU>

and
P
T

?Z = Z � P
T

Z.

Define the matrix W
ij

:= ((2A
ij

� 1)B
ij

)

n

i,j=1 2 Rn⇥n and the quantities ✓ := E [(1� 2P
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)B
ij

] and ⇢ := E
⇥
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⇤
�✓2.

Note that
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ij

= E [E [(2A
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|P ]] =

�
2Y ⇤

ij

� 1

�
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ij

)B
ij

] =

�
2Y ⇤

ij

� 1

�
✓

and
Var [W

ij

] = E
⇥
W 2

ij

⇤
� (EW

ij

)

2
= E

h
(2A

ij

� 1)

2
B2

ij

i
�

�
2Y ⇤

ij

� 1

�2
✓2 = ⇢.

Our proof requires two standard concentration results for the random matrix W .
Lemma 1. If 0  W

ij

 b0 almost surely for all i, j and the condition (6) holds, then with high probability, we have

kW � E [W ]k  c2

⇣
b log n+

p
⇢n log n

⌘
(12)

and
��UU>

(W � E [W ])

��
1  c3

p
b2 log2 n+ ⇢K log n

K
(13)

for some universal constants c2, c3.

We prove the lemma in Section 7.1.1 to follow. We now prove Theorem 1 assuming the two inequalities (12) and (13) in
the lemma hold.

For any matrix Y , we define �(Y ) := hY ⇤ � Y,W i. To prove the theorem, it suffices to show that �(Y ) > 0 for all
feasible Y of the program 2–4 with Y 6= Y ⇤. We rewrite �(Y ) as

�(Y ) = hEW,Y ⇤ � Y i+ hW � EW,Y ⇤ � Y i. (14)

We bound the two terms above. For any feasible Y obeying the constraint 4, the first term in (14) can be written as

hEW,Y ⇤ � Y i =
X

i,j

�
2Y ⇤

ij

� 1

�
✓ ·

�
Y ⇤
ij

� Y
ij

�

= ✓kY ⇤ � Y k1, (15)

where the last equality follows from 0  Y
ij

 1, 8i, j.

On the other hand, if we let � := c2
�
log n+

p
⇢n log n

�
, then by (12) we have

����
1

�
P
T

? (W � EW )

���� 
����
1

�
(W � EW )

����  1.

This means UU>
+

1
�

P
T

? (W � EW ) is a subgradient of the function f(X) = ||X||⇤ at X = Y ⇤. Therefore, for any
feasible Y we have

0 � kY k⇤ � kY ⇤k⇤ � hUU>
+

1

�
P
T

? (W � EW ) , Y � Y ⇤i,

which means
hW � EW,Y ⇤ � Y i �

⌦
P
T

(W � EW )� �UU>, Y ⇤ � Y
↵

(16)
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We substitute (15) and (16) into (14) to obtain that for all feasible Y ,

�(Y ) � ✓kY ⇤ � Y k1 + hP
T

(W � EW )� �UU>, Y ⇤ � Y i
(a)
�
�
✓ � �kUU>k1 � kP

T

(W � EW ) k1
�
kY ⇤ � Y k1

(b)
�
✓
✓ � �

K
� kP

T

(W � EW ) k1
◆
kY ⇤ � Y k1,

where (a) follows from the Holder’s inequality and (b) follows from the structure of U . But by definition of P
T

, we have

k|P
T

(W � EW )k1 
��UU>

(W � Ew)
��
1 +

��
(W � EW )UU>��

1 +

��UU>
(W � EW )UU>��1

 3

��UU>
(W � EW )

��
1  3c3

p
b2 log2 n+K⇢ log n

K
,

where the last inequality follows from (13). It follows that

�(Y ) �
 
✓ �

c2
�
b log n+

p
⇢n log n

�

K
� 3c3

p
b2 log2 n+K⇢ log n

K

!
kY ⇤ � Y k1.

If the condition 6 in the theorem holds, then the quantity inside the parenthesis is positive (note that ⇢  E
⇥
B2

ij

⇤
). This

means �(Y ) > 0 for all Y 6= Y ⇤, which proves the theorem.

7.1.1. PROOF OF LEMMA 1

Let e
i

be the i-th standard basis vector in Rn. For the first inequality in the lemma, note that

W � EW =

X

i,j

(W
ij

� EW
ij

) e
i

e>
j

,

which is the sum of n2 i.i.d. zero-mean matrix. We compute
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for all (i, j) and
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Applying the matrix Bernstein inequality (Tropp, 2012) gives that w.h.p.

kW � EWk  c2

⇣
b log n+

p
⇢n log n

⌘

for some constant c2.

We prove the second inequality. Fix (i, j). Assume node i belongs to the cluster k. Then

�
UU>

(W � EW )

�
ij

=

1

K
k

X

i

02C

⇤
k

(W � EW )

i

0
j

,

which is the average of K
k

independent zero-mean random variables taking values in [�b, b] with variance bounded by ⇢.
Therefore, by standard Bernstein inequality, we know that for some constant c3 that

���
�
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�
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1
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p
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⌘
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p
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K
, w.h.p.

where the last inequality follows from K
k

� K. The lemma follows from a union bound over all (i, j).



Weighted Graph Clustering with Non-Uniform Uncertainties

7.2. Proof of Corollary 1

For the first part of the corollary, we only need to show that the condition (6) in Theorem 1 is satisfied. Take b0 := 10 log

1
✏

.
Note that under the assumption of the theorem, we have almost surely

B
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= BMLE
ij

= log

1� ¯P
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, log
1

✏

�
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�
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�
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1

✏
, (17)

so B
ij

 b0. The condition (8) in the corollary statement implies that

E
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1
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◆
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�
� c1 ·

n log n

K2
· b0
10

� c1
b0
10

log n

K

since ¯P
ij

� P
ij

and K  n. On the other hand, the second term in the RHS of (6) can be upper bounded as follows:

c0

q
E
⇥
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K
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(b)
 c0

2

E

(1� 2P
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) log
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ij

¯P
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�

=

c0
2

E [(1� 2P
ij

)B
ij

] ,

where the inequality (a) follows from the previous bound (17), and (b) follows from the condition (8) in the corollary
statement and ¯P

ij

� P
ij

. Combining the last two display equations proves that (6) is satisfied.

For the second part of the corollary, we note that ¯P
ij

:= max

�
1
16 , Pij

 
� ✏ :=

1
16 . The RHS of (8) is upper bounded

by log 16 · c1 n

K

2 log n. Because log

1�x

x

� 1
10 (1 � 2x) =

1
5

�
1
2 � x

�
for all x  1

2 , we have
�
1
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ij

�
log

1�P̄ij

P̄ij
�

1
5
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1
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10

�
1
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�2 almost surely. It follows that the LHS of (8) is lower bounded by 1
10E

h�
1
2 � P

ij

�2i.
Under the condition 9, we conclude that (8) is satisfied.

7.3. Proof of Theorem 2

We prove the lemma using Fano’s inequality. By Stirling’s formula we have

|Y| =
✓

n

n/2

◆
� 2

n/2.

Now suppose Y ⇤ is sampled uniformly at random from Y , and then P and A are generated according to our model. We
have

I (A,P ;Y ⇤
) = H (A,P )�H (A,P |Y ⇤

)


✓
n

2

◆
[H (A11, P11)�H (A11, P11|Y ⇤

11)]

 n2I (A11, P11;Y
⇤
11) ,

where the first inequality follows from symmetry. Let a = A11, p = P11 and y = Y ⇤
11. We now compute

I (a, p; y) =E
a,p,y


log

P (a, p|y)
P (a, p)

�
= E

a,p,y


log

P (a|y, p)Q(p)

P (a|p)Q(p)

�

=E
a,p,y

[logP (a|y, p)]� E
a,p,y

[logP (a|p)]

=E
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[logP (a|y, p)]� E
p


p log

1

2

�
� E

p


(1� p) log

1

2

�
.
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One verifies that

E
a,p,y

[logP (a|y, p)] = E
a,p,y

[E [logP (a|y, p) |a, y]] = E
p

[p log p] + E
p

[(1� p) log(1� p)] .

Combining the last three display equations gives

I (A,P ;Y ⇤
)  n2E

p

[p log 2p+ (1� p) log 2(1� p)]

 n2E
p

[p (2p� 1) + (1� p) (1� 2p)]

= n2E
p

⇥
(1� 2p)2

⇤
.

It follows that under the condition (10) of the theorem, we have

I (A,P ;Y ⇤
)  n2 · c

0

n
= c0n  1

4

log |Y|

provided c0 is sufficiently small. Applying Fano’s inequality, we obtain that for any ˆY ,

P
h
ˆY (A,P ) 6= Y ⇤

i
� 1� I (A,P ;Y ⇤

) + log 2

log |Y| � 1

2

,

where the probability is w.r.t. the randomness in Y ⇤, P and A. Because the supremum is lower bounded by the average,
we conclude that

sup

Y

⇤2Y
P
h
ˆY (A,P ) 6= Y ⇤

i
� 1

2

.

Taking the infimum over all ˆY proves the theorem.


