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Supplementary Material

A. Background on Fokker-Planck Equation

The Fokker-Planck equation (FPE) associated with a giv-
en stochastic differential equation (SDE) describes the time
evolution of the distribution on the random variables under
the specified stochastic dynamics. For example, consider
the SDE:

dz = g(z)dt + N (0,2D(z)dt), (16)

where z € R”, g(z) € R", D(z) € R™*". The distribution
of z governed by Eq. (16) (denoted by p;(z)), evolves under
the following equation
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Here g;(z) is the i-th entry of vector g(z) and D;;(z) is the
(4, ) entry of the matrix D. In the dynamics considered in
this paper, z = (6, r) and

o[ ]

That is, the random variables are momentum 7 and position
6, with noise only added to r (though dependent upon 6).
The FPE can be written in the following compact form:

Opi(z) = =V g(2)pe(2)] + VT [D(2)Vpe(2)], (18)
where V7 [g(2)p(2)] = 2701, 9:,[9:(2)pe(2)] , and
VT [DVp:(6,r)]
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Note that 0., D;;(z) = 0 for all 4, j, since 0,, B;;(0) = 0

(the noise is only added to r and only depends on parameter
0).
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B. Proof of Theorem 3.1
Let G = [ 9 _OI and D = [ 8 B(()G) } The noisy

Hamiltonian dynamics of Eq. (7) can be written as
d[ f } =— [ ? —01 } [ ]Vw[{(fg ]dt—i—N(O,QDdt)
=— GVH(9,r)dt + N(0,2Ddt).
Applying Eq. (18), defining g(z) = —GV H), the corre-
sponding FPE is given by
e (0,7)=VTIGVH(0,r)p:(0,7)] + VI [DVp,(8, r%]g
19)
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We use z = (6,r) to denote the joint variable of position
and momentum. The entropy is defined by h(p:(0,r)) =

f9r (p¢(0,7))dOdr. Here f(x) = wlnz is a strictly

convex function deﬁned on (0, +00). The evolution of the
entropy is governed by

/ £ )V [D(2)Vpe(2))dz

The entropy evolution can be described as the sum of t-
wo parts: the noise-free Hamiltonian dynamics and the s-
tochastic gradient noise term. The Hamiltonian dynamics
part does not change the entropy, since

TIGVH(2)p:]dz

TIGVH (2)]pidz

/ f (pe(2))(Vpe(

)) [GVH(z)]|dz

In the second equality, we use the fact that VI [GV H (2)] =
—0p0r-H + 0,09 H = 0. The last equality is given by inte-
gration by parts, using the assumption that the probability
density vanishes at infinity and f(z) — 0 as  — 0 such
that f(p:(2))[GVH(z)] — 0as z — .

The contribution due to the stochastic gradient noise can be
calculated as

- [ 1o
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(0)V,.p(0,7)dOdr.

The first equality is again given by integration by part-
s, assuming that the gradient of p; vanishes at infinity
faster than . That is, f'(p:(2))Vpe(2) = (1 +
Inpy(2))Vpe(z) — 0 such that f(pi(2))[D (=) Vpi(2)] =
0 as z — oo. The statement of Theorem 3.1 immediately
follows.

C. Proof of Corollary 3.1

Assume 7(0,7) = exp(—H(0,r))/Z is invariant un-
der Eq. (7) and is a well-behaved distribution such that
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H(0,r) — oo as ||0],]|r]] — oo. Then it is straight-
forward to verify that 7(6,r) and lnw(0,r)Vn(0,r) =
—exp (—H(0,r)) VH?(6,r) vanish at infinity, such that
m satisfies the conditions of Theorem 3.1. We also have
V,m(0,r) = % exp (—H(0,7)) M~'r. Using the assump-
tion that the Fisher information matrix B(6) has full rank,
and noting that f”(p) > 0 for p > 0, from Eq. (8) of
Theorem 3.1 we conclude that entropy increases over time:
Oth(pe(0,7))|p,=« > 0. This contradicts that 7 is the in-
variant distribution.

D. FPE for Second-Order Langevin Dynamics

Second-order Langevin dynamics can be described by the
following equation

d{ f } =— [ ? }] ] [ EU_(S) }dt+N(O,27Ddt)

=—[D+ G|VH(0,r)dt + N(0,27Ddt),
(20)
where 7 is a temperature (usually set to 1). In this paper,

we use the following compact form of the FPE to calculate
the distribution evolution under Eq (20):

atpt (05 T) :VT{[D+G] [pt (0, T)VH(@, T) + Tvpt (97 T)]}

2D
To derive this FPE, we apply Eq. (18) to Eq (20), defining
g(z) = —(D + G)V H, which yields

Aupe(0,7)=V"{[D+G] [VH(0,7)p:(0,7)]}+V" [rDVp:(0,r)] .

Using the fact that V7 [GVp.(0,7)] = —00,p:(0,7) +
0r-0ppe(6,7) = 0, we get Eq. (21). This form of the FPE
allows easy verification that the stationary distribution is
given by 7(6,7) oc e~ = # @) In particular, if we substi-
tute the target distribution into Eq. (21), we note that

e_%H(e’r)VH(G, )+ TVG_%H(Q, r)| =0

such that 9;7(6,r) = 0, implying that 7 is indeed the sta-
tionary distribution.

The compact form of Eq. (21) can also be used to construct
other stochastic processes with the desired invariant distri-
bution. A generalization of the FPE in Eq. (21) is given
by Yin & Ao (2006). The system we have discussed in
? _OI and D
only depends on 6. In practice, however, it might be help-
ful to make G depend on 6 as well. For example, to make
use of the Riemann geometry of the problem, as in Giro-
lami & Calderhead (2011) and Patterson & Teh (2013), by
adapting GG according to the local curvature. For us to con-
sider these more general cases, a correction term needs to
be added during simulation (Shi et al., 2012). With that
correction term, we still maintain the desired target distri-
bution as the stationary distribution.

this paper considers cases where G =

E. Reversibility of SGHMC Dynamics

The dynamics of SGHMC are not reversible in the conven-
tional definition of reversibility. However, the dynamics
satisfy the following property:

Theorem E.1. Assume P(0:,7¢|00,r0) is the distribution
governed by dynamics in Eq. (20), i.e. P(0:,71¢|00,70) fol-
lows Eq. (21), then for w(0, 1) o< exp(—H (6, 1)),

7T(00,7”0)P(9t77"t|00,7”0) = 7T(9t7 _Tt)P(907 _T0|0ta _rt)-
(22)

Proof. Assuming 7 is the stationary distribution and
P* the reverse-time Markov process associated with P:
(00, 70) P (0, 7|00, 70) = m(0s, 1) P*(0g, 70|0,7¢). Let
L(p) = VI{[D + G| [pVH(0,7) + TVp]} be the genera-
tor of Markov process described by Eq. (21). The generator
of the reverse process is given by £*, which is the adjoint
operator of £ in the inner-product space /2 (7), with inner-
product defined by (p, ¢)x = Egr(z)[p(z)q(z)]. We can
verify that £*(p) = VT{[D — G][pVH(9,r) + 7Vp]}.
The corresponding SDE of the reverse process is given by

d [ f =[D - G]VH(9,r) + N(0,2rDdt),
which is equivalent to
d [ _HT =[D+G]VH(0,—r) +N(0,27Ddt).

This means P*(0y,70|0:,7¢) = P(6o,—r0|0:, —7¢). Re-
calling that we assume Gaussian momentum, r, centered
about 0, we also have 7(6,r) = (0, —r). Together, we
then have

7T(90,T0)P(9t77"t|90,7”0) = 7T(9t7rt)P*(907r0|9t77‘t)
= 7T(9t7 —Tt)P(a(), —’f'()|9t, —Tt).

O

Theorem E.1 is not strictly detailed balance by the conven-
tional definition since £L* # £ and P* # P. However, it
can be viewed as a kind of time reversibility. When we re-
verse time, the sign of speed needs to be reversed to allow
backward travel. This property is shared by the noise-free
HMC dynamics of (Neal, 2010). Detailed balance can be
enforced by the symmetry of  during the re-sampling step.
However, we note that we do not rely on detailed balance
to have 7 be the stationary distribution of our noisy Hamil-
tonian with friction (see Eq. (9)).

F. Convergence Analysis

In the paper, we have discussed that the efficiency of S-
GHMC decreases as the step size ¢ decreases. In practice,
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we usually want to trade a small amount of error for effi-
ciency. In the case of SGHMC, we are interested in a small,
nonzero e and fast approximation of B given by B. In this
case, even under the continuous dynamics, the sampling
procedure contains error that relates to € due to inaccurate
estimation of B with B. In this section, we investigate how
the choice of € can be related to the error in the final sta-
tionary distribution. The sampling procedure with inaccu-
rate estimation of B can be described with the following
dynamics

{ do =M"1r dt

dr =—VU(0) dt — CM = rdt + N(0,2(C + 6S)dt).

Here, §S = B — Bis the error term that is not considered by
the sampling algorithm. Assume the setting where B =0,
then we can let § = eand S = %V. Let 7 be the stationary
distribution of the dynamics. In the special case when V' =
C, we can calculate 7 exactly by

#(0,7) o exp (-@H(e,r)) .

This indicates that for small €, our stationary distribution is
indeed close to the true stationary distribution. In general
case, we consider the FPE of the distribution of this SDE,
given by

(23)

8tp5t(9, T‘) = [ﬁ + (SS]ﬁt (9, ’f‘). (24)

Here, L(p) = VI{[D+G] [pVH (8,7) + Vp]} is the oper-
ator corresponds to correct sampling process. Let the oper-
ator S(p) = V,.[SV,p| correspond to the error term intro-
duced by inaccurate B. Let us consider the x?2-divergence
defined by

(p(x) —m(@))*] _ p*(z)
———— | = Epr | 5|1,
w2 (x) w2 (x)
which provides a measure of distance between the distribu-

tion p and the true distribution 7. Theorem F.1 shows that
the y2-divergence decreases as § becomes smaller.

X2(p7 7T) = Emwrr |:

Theorem F.1. Assume p, evolves according to O;p; = Lpy,
and satisfies the following mixing rate \ with respect to x>
divergence at : ;X (py, )| p, =7 < —AX2(7, 7). Further
assume the process governed by S (0;q; = Sqy) has bound-
ed divergence change |0;x*(qi, m)| < c. Then 7 satisfies

oc

(7, ) < T (25)

Proof. Consider the divergence change of p governed by
Eq.(24). It can be decomposed into two components, the
change of divergence due to £, and the change of diver-
gence due to S
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We then evaluate the above equation at the station-

ary distribution of the inaccurate dynamics 7. Since
X% (Pr, m)|j== = 0, we have
)\X2(7~T,’7T) =9 ’(atX2(qt77r)|qt:ﬁ')’ < de.
O

This theorem can also be used to measure the error in S-
GLD, and justifies the use of small finite step sizes in S-
GLD. We should note that the mixing rate bound A at 7
exists for SGLD and can be obtained using spectral anal-
ysis (Levin et al., 2008), but the corresponding bounds for
SGHMC are unclear due to the irreversibility of the pro-
cess. We leave this for future work.

Our proof relies on a contraction bound relating the error
in the transition distribution to the error in the final sta-
tionary distribution. Although our argument is based on
a continuous-time Markov process, we should note that a
similar guarantee can also be proven in terms of a discrete-
time Markov transition kernel. We refer the reader to (Ko-
rattikara et al., 2014) and (Bardenet et al., 2014) for further
details.

G. Setting SGHMC Parameters

As we discussed in Sec. 3.3, we can connect SGHMC with
SGD with momentum by rewriting the dynamics as (see

Eq.(15))

{ Ab =v
Av = —nVU(z) — av + N(0,2(a — B)n).

In analogy to SGD with momentum, we call 7 the learning
rate and 1 — o the momentum term. This equivalent update
rule is cleaner and we recommend parameterizing SGHMC
in this form.

The B term corresponds to the estimation of noise that
comes from the gradient. One simple choice is to ignore
the gradient noise by setting B = 0 and relying on small
€. We can also set B = nV/Q, where V is estimated using
empirical Fisher information as in (Ahn et al., 2012).

There are then three parameters: the learning rate 7, mo-
mentum decay «, and minibatch size |D|. Define § =
eM~'B = %nV(G) to be the exact term induced by in-
troduction of the stochastic gradient. Then, we have

DI,
=0 ( ) ;

D]
where Z is fisher information matrix of the gradient, |D| is
size of training data, is size of minibatch, and 7 is our

learning rate. We want to keep 3 small so that the resulting
dynamics are governed by the user-controlled term and the

(26)
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sampling algorithm has a stationary distribution close to

the target distribution. From Eq. (26), we see that there is

no free lunch here: as the training size gets bigger, we can
1

either set a small learning rate 7 = O(W) or use a bigger

minibatch size |D|. In practice, choosing 77 = O(\TlD|) gives
better numerical stability, since we also need to multiply
n by VU, the mean of the stochastic gradient. Large n
can cause divergence, especially when we are not close to
the mode of distribution. We note that the same discussion
holds for SGLD (Welling & Teh, 2011).

In practice, we find that using a minibatch size of hundreds
(e.g |D| = 500) and fixing « to a small number (e.g. 0.01
or 0.1) works well. The learning rate can be set as n =
~v/|D|, where - is the “per-batch learning rate”, usually set
to 0.1 or 0.01. This method of setting parameters is also
commonly used for SGD with momentum (Sutskever et al.,
2013).

H. Experimental Setup
H.1. Bayesian Neural Network

The Bayesian neural network model used in Sec. 4.2 can
be described by the following equation:

P(y =i|z) occexp (A] o(B"z +b) + a;) . 27

Here, y € {1,2,---,10} is the output label of a digit. A €
R10x100 contains the weight for output layers and we use
A; to indicate i-th column of A. B € R4*100 ¢contains the
weight for the first layer. We also introduce a € RV and
b € R190 a5 bias terms in the model. In the MNIST dataset,
the input dimension d = 784. We place a Gaussian prior
on the model parameters

P(A) o exp(=Aal|A|*), P(B) o exp(=Ap| BI*)
P(a) o< exp(—Aqllal|*), P(b) o exp(=Ay/|a]?).

We further place gamma priors on each of the precision
terms A: »

A s, Aa X R e, ).
We simply set « and 3 to 1 since the results are usually
insensitive to these parameters. We generate samples from

the posterior distribution

pP@©D) < [[ Pylz,0)P(©), (28)

y,x€D

where parameter set © = {A,B,a,b,\a, B, Aa, Ao}
The sampling procedure is carried out by alternating the
following steps:

e Sample weights from P(A, B,a,b|Aa, A, Aa, Ay, D)
using SGHMC or SGLD with minibatch of 500 in-
stances. Sample for 100 steps before updating hyper-
parameters.

e Sample A from P(Aa, Ap, \a, M| 4, B, a,b) using a
Gibbs step. Note that the posterior for A is a gamma
distribution by conditional conjugacy.

We used the validation set to select parameters for the var-
ious methods we compare. Specifically, for SGD and S-
GLD, we tried step-sizes ¢ € {0.1,0.2,0.4,0.8} x 1074,
and the best settings were found to be ¢ = 0.1 x 10~*
for SGD and ¢ = 0.2 x 10~* for SGLD. We then fur-
ther tested ¢ = 0.16 x 10* and ¢ = 0.06 x 10~* for
SGD, and found ¢ = 0.16 x 10~* gave the best result,
thus we used this setting for SGD. For SGD with mo-
mentum and SGHMC, we fixed o« = 0.01 and B = 0,
and tried € {0.1,0.2,0.4,0.8} x 1075, The best set-
tings were n = 0.4 x 10~° for SGD with momentum, and
n = 0.2 x 1075 for SGHMC. For the optimization-based
methods, we use tried regularizer A € {0,0.1,1, 10,100},
and A = 1 was found to give the best performance.

H.2. Online Bayesian Probabilistic Matrix
Factorization

The Bayesian probabilistic matrix factorization (BPMF)
model used in Sec. 4.3 can be described as:

AU, AV, Aa, b i Gamma(1, 1)
Uki ~N (0,251, Vij ~ N(0,A51),
ai ~N(0,05 1), bi ~ N(0,0,1)
YU,V ~N UV 4 a; 4+ bj, 77 1.

(29)

The U; € R? and V; € R? are latent vectors for user i
and movie j, while a; and b; are bias terms. We use a s-
lightly simplified model than the BPMF model considered
in (Salakhutdinov & Mnih, 2008a), where we only place
priors on precision variables A = { Ay, Av, Aq, Ap . How-
ever, the model still benefits from Bayesian inference by
integrating over the uncertainty in the crucial regulariza-
tion parameter A\. We generate samples from the posterior
distribution

P(@O|Y) x P(Y|®)P(O), (30)

with the parameter set © = {U,V,a,b, Ay, A\v, Aas Ao }-
The sampling procedure is carried out by alternating the
followings

e Sample weights from P(U,V, a,b|Ay, Ay, Aa, Ao, Y)
using SGHMC or SGLD with a minibatch size of
4,000 ratings. Sample for 2,000 steps before updat-
ing the hyper-parameters.

e Sample A from P(Ay, Ay, Aa, \o|U, V, a,b) using a
Gibbs step.

The training parameters for this experiment were directly
selected using cross-validation. Specifically, for SGD and
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SGLD, we tried step-sizes ¢ € {0.1,0.2,0.4,0.8,1.6} x
1075, and the best settings were found to be e = 0.4 X 10-°
for SGD and € = 0.8 x 10~° for SGLD. For SGD with
momentum and SGHMC, we fixed a = 0.05 and B =0,
and tried n € {0.1,0.2,0.4,0.8} x 1075, The best settings
were 17 = 0.4 x 1076 for SGD with momentum, and 7 =
0.4 x 10~% for SGHMC.



