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Abstract
Hamiltonian Monte Carlo (HMC) sampling
methods provide a mechanism for defining dis-
tant proposals with high acceptance probabilities
in a Metropolis-Hastings framework, enabling
more efficient exploration of the state space than
standard random-walk proposals. The popularity
of such methods has grown significantly in recen-
t years. However, a limitation of HMC methods
is the required gradient computation for simula-
tion of the Hamiltonian dynamical system—such
computation is infeasible in problems involving a
large sample size or streaming data. Instead, we
must rely on a noisy gradient estimate computed
from a subset of the data. In this paper, we ex-
plore the properties of such a stochastic gradient
HMC approach. Surprisingly, the natural imple-
mentation of the stochastic approximation can be
arbitrarily bad. To address this problem we intro-
duce a variant that uses second-order Langevin
dynamics with a friction term that counteracts the
effects of the noisy gradient, maintaining the de-
sired target distribution as the invariant distribu-
tion. Results on simulated data validate our the-
ory. We also provide an application of our meth-
ods to a classification task using neural networks
and to online Bayesian matrix factorization.

1. Introduction
Hamiltonian Monte Carlo (HMC) (Duane et al., 1987;
Neal, 2010) sampling methods provide a powerful Markov
chain Monte Carlo (MCMC) sampling algorithm. The
methods define a Hamiltonian function in terms of the tar-
get distribution from which we desire samples—the po-
tential energy—and a kinetic energy term parameterized
by a set of “momentum” auxiliary variables. Based on

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

simple updates to the momentum variables, one simu-
lates from a Hamiltonian dynamical system that enables
proposals of distant states. The target distribution is in-
variant under these dynamics; in practice, a discretiza-
tion of the continuous-time system is needed necessitating
a Metropolis-Hastings (MH) correction, though still with
high acceptance probability. Based on the attractive proper-
ties of HMC in terms of rapid exploration of the state space,
HMC methods have grown in popularity recently (Neal,
2010; Hoffman & Gelman, 2011; Wang et al., 2013).

A limitation of HMC, however, is the necessity to com-
pute the gradient of the potential energy function in order
to simulate the Hamiltonian dynamical system. We are in-
creasingly faced with datasets having millions to billions
of observations or where data come in as a stream and we
need to make inferences online, such as in online advertis-
ing or recommender systems. In these ever-more-common
scenarios of massive batch or streaming data, such gradi-
ent computations are infeasible since they utilize the entire
dataset, and thus are not applicable to “big data” problem-
s. Recently, in a variety of machine learning algorithms,
we have witnessed the many successes of utilizing a noisy
estimate of the gradient based on a minibatch of data to
scale the algorithms (Robbins & Monro, 1951; Hoffman
et al., 2013; Welling & Teh, 2011). A majority of these
developments have been in optimization-based algorithm-
s (Robbins & Monro, 1951; Nemirovski et al., 2009), and
a question is whether similar efficiencies can be garnered
by sampling-based algorithms that maintain many desir-
able theoretical properties for Bayesian inference. One at-
tempt at applying such methods in a sampling context is the
recently proposed stochastic gradient Langevin dynamics
(SGLD) (Welling & Teh, 2011; Ahn et al., 2012; Patterson
& Teh, 2013). This method builds on first-order Langevin
dynamics that do not include the crucial momentum term
of HMC.

In this paper, we explore the possibility of marrying the
efficiencies in state space exploration of HMC with the
big-data computational efficiencies of stochastic gradients.
Such an algorithm would enable a large-scale and online
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Bayesian sampling algorithm with the potential to rapidly
explore the posterior. As a first cut, we consider simply
applying a stochastic gradient modification to HMC and
assess the impact of the noisy gradient. We prove that the
noise injected in the system by the stochastic gradient no
longer leads to Hamiltonian dynamics with the desired tar-
get distribution as the stationary distribution. As such, even
before discretizing the dynamical system, we need to cor-
rect for this effect. One can correct for the injected gradi-
ent noise through an MH step, though this itself requires
costly computations on the entire dataset. In practice, one
might propose long simulation runs before an MH correc-
tion, but this leads to low acceptance rates due to large de-
viations in the Hamiltonian from the injected noise. The
efficiency of this MH step could potentially be improved
using the recent results of (Korattikara et al., 2014; Bar-
denet et al., 2014). In this paper, we instead introduce a
stochastic gradient HMC method with friction added to the
momentum update. We assume the injected noise is Gaus-
sian, appealing to the central limit theorem, and analyze the
corresponding dynamics. We show that using such second-
order Langevin dynamics enables us to maintain the desired
target distribution as the stationary distribution. That is, the
friction counteracts the effects of the injected noise. For
discretized systems, we consider letting the step size tend
to zero so that an MH step is not needed, giving us a sig-
nificant computational advantage. Empirically, we demon-
strate that we have good performance even for ε set to a
small, fixed value. The theoretical computation versus ac-
curacy tradeoff of this small-ε approach is provided in the
Supplementary Material.

A number of simulated experiments validate our theoretical
results and demonstrate the differences between (i) exact
HMC, (ii) the naı̈ve implementation of stochastic gradient
HMC (simply replacing the gradient with a stochastic gra-
dient), and (iii) our proposed method incorporating friction.
We also compare to the first-order Langevin dynamics of
SGLD. Finally, we apply our proposed methods to a classi-
fication task using Bayesian neural networks and to online
Bayesian matrix factorization of a standard movie dataset.
Our experimental results demonstrate the effectiveness of
the proposed algorithm.

2. Hamiltonian Monte Carlo
Suppose we want to sample from the posterior distribution
of θ given a set of independent observations x ∈ D:

p(θ|D) ∝ exp(−U(θ)), (1)

where the potential energy function U is given by

U = −
∑
x∈D

log p(x|θ)− log p(θ). (2)

Hamiltonian (Hybrid) Monte Carlo (HMC) (Duane et al.,
1987; Neal, 2010) provides a method for proposing sam-
ples of θ in a Metropolis-Hastings (MH) framework that
efficiently explores the state space as compared to stan-
dard random-walk proposals. These proposals are gener-
ated from a Hamiltonian system based on introducing a set
of auxiliary momentum variables, r. That is, to sample
from p(θ|D), HMC considers generating samples from a
joint distribution of (θ, r) defined by

π(θ, r) ∝ exp

(
−U(θ)− 1

2
rTM−1r

)
. (3)

If we simply discard the resulting r samples, the θ sam-
ples have marginal distribution p(θ|D). Here, M is a mass
matrix, and together with r, defines a kinetic energy term.
M is often set to the identity matrix, I , but can be used to
precondition the sampler when we have more information
about the target distribution. The Hamiltonian function is
defined by H(θ, r) = U(θ) + 1

2r
TM−1r. Intuitively, H

measures the total energy of a physical system with posi-
tion variables θ and momentum variables r.

To propose samples, HMC simulates the Hamiltonian dy-
namics {

dθ = M−1r dt
dr = −∇U(θ) dt.

(4)

To make Eq. (4) concrete, a common analogy in 2D is as
follows (Neal, 2010). Imagine a hockey puck sliding over a
frictionless ice surface of varying height. The potential en-
ergy term is based on the height of the surface at the current
puck position, θ, while the kinetic energy is based on the
momentum of the puck, r, and its mass, M . If the surface
is flat (∇U(θ) = 0,∀θ), the puck moves at a constant ve-
locity. For positive slopes (∇U(θ) > 0), the kinetic energy
decreases as the potential energy increases until the kinet-
ic energy is 0 (r = 0). The puck then slides back down
the hill increasing its kinetic energy and decreasing poten-
tial energy. Recall that in HMC, the position variables are
those of direct interest whereas the momentum variables
are artificial constructs (auxiliary variables).

Over any interval s, the Hamiltonian dynamics of Eq. (4)
defines a mapping from the state at time t to the state at
time t + s. Importantly, this mapping is reversible, which
is important in showing that the dynamics leave π invari-
ant. Likewise, the dynamics preserve the total energy, H ,
so proposals are always accepted. In practice, however, we
usually cannot simulate exactly from the continuous system
of Eq. (4) and instead consider a discretized system. One
common approach is the “leapfrog” method, which is out-
lined in Alg. 1. Because of inaccuracies introduced through
the discretization, an MH step must be implemented (i.e.,
the acceptance rate is no longer 1). However, acceptance
rates still tend to be high even for proposals that can be
quite far from their last state.
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Algorithm 1: Hamiltonian Monte Carlo

Input: Starting position θ(1) and step size ε
for t = 1, 2 · · · do

Resample momentum r
r(t) ∼ N (0,M)
(θ0, r0) = (θ(t), r(t))
Simulate discretization of Hamiltonian dynamics
in Eq. (4):
r0 ← r0 − ε

2∇U(θ0)
for i = 1 to m do

θi ← θi−1 + εM−1ri−1
ri ← ri−1 − ε∇U(θi)

end
rm ← rm − ε

2∇U(θm)

(θ̂, r̂) = (θm, rm)
Metropolis-Hastings correction:
u ∼ Uniform[0, 1]

ρ = eH(θ̂,r̂)−H(θ(t),r(t))

if u < min(1, ρ), then θ(t+1) = θ̂
end

There have been many recent developments of HMC to
make the algorithm more flexible and applicable in a va-
riety of settings. The “No U-Turn” sampler (Hoffman &
Gelman, 2011) and the methods proposed by Wang et al.
(2013) allow automatic tuning of the step size, ε, and num-
ber of simulation steps,m. Riemann manifold HMC (Giro-
lami & Calderhead, 2011) makes use of the Riemann ge-
ometry to adapt the mass M , enabling the algorithm to
make use of curvature information to perform more effi-
cient sampling. We attempt to improve HMC in an orthog-
onal direction focused on computational complexity, but
these adaptive HMC techniques could potentially be com-
bined with our proposed methods to see further benefits.

3. Stochastic Gradient HMC
In this section, we study the implications of implementing
HMC using a stochastic gradient and propose variants on
the Hamiltonian dynamics that are more robust to the noise
introduced by the stochastic gradient estimates. In all s-
cenarios, instead of directly computing the costly gradient
∇U(θ) using Eq. (2), which requires examination of the
entire dataset D, we consider a noisy estimate based on a
minibatch D̃ sampled uniformly at random from D:

∇Ũ(θ) = −|D|
|D̃|

∑
x∈D̃

∇ log p(x|θ)−∇ log p(θ), D̃ ⊂ D.

(5)
We assume that our observations x are independent and,
appealing to the central limit theorem, approximate this

noisy gradient as

∇Ũ(θ) ≈ ∇U(θ) +N (0, V (θ)). (6)

Here, V is the covariance of the stochastic gradient noise,
which can depend on the current model parameters and
sample size. Note that we use an abuse of notation in E-
q. (6) where the addition of N (µ,Σ) denotes the introduc-
tion of a random variable that is distributed according to
this multivariate Gaussian. As the size of D̃ increases, this
Gaussian approximation becomes more accurate. Clearly,
we want minibatches to be small to have our sought-after
computational gains. Empirically, in a wide range of set-
tings, simply considering a minibatch size on the order of
hundreds of data points is sufficient for the central limit
theorem approximation to be accurate (Ahn et al., 2012).
In our applications of interest, minibatches of this size still
represent a significant reduction in the computational cost
of the gradient.

3.1. Naı̈ve Stochastic Gradient HMC

The most straightforward approach to stochastic gradient
HMC is simply to replace∇U(θ) in Alg. 1 by∇Ũ(θ). Re-
ferring to Eq. (6), this introduces noise in the momentum
update, which becomes ∆r = −ε∇Ũ(θ) = −ε∇U(θ) +
N (0, ε2V ). The resulting discrete time system can be
viewed as an ε-discretization of the following continuous
stochastic differential equation:{

dθ = M−1r dt
dr = −∇U(θ) dt+N (0, 2B(θ)dt).

(7)

Here, B(θ) = 1
2εV (θ) is the diffusion matrix contributed

by gradient noise. As with the original HMC formulation,
it is useful to return to a continuous time system in order to
derive properties of the approach. To gain some intuition
about this setting, consider the same hockey puck analogy
of Sec. 2. Here, we can imagine the puck on the same
ice surface, but with some random wind blowing as well.
This wind may blow the puck further away than expected.
Formally, as given by Corollary 3.1 of Theorem 3.1, when
B is nonzero, π(θ, r) of Eq. (3) is no longer invariant under
the dynamics described by Eq. (7).

Theorem 3.1. Let pt(θ, r) be the distribution of (θ, r) at
time t with dynamics governed by Eq. (7). Define the
entropy of pt as h(pt) = −

∫
θ,r
f(pt(θ, r))dθdr, where

f(x) = x lnx. Assume pt is a distribution with density
and gradient vanishing at infinity. Furthermore, assume
the gradient vanishes faster than 1

ln pt
. Then, the entropy of

pt increases over time with rate

∂th(pt(θ, r)) =∫
θ,r

f
′′
(pt)(∇rpt(θ, r))TB(θ)∇rpt(θ, r)dθdr. (8)



Stochastic Gradient Hamiltonian Monte Carlo

Eq. (8) implies that ∂th(pt(θ, r)) ≥ 0 since B(θ) is a pos-
itive semi-definite matrix.

Intuitively, Theorem 3.1 is true because the noise-free
Hamiltonian dynamics preserve entropy, while the addi-
tional noise term strictly increases entropy if we assume
(i) B(θ) is positive definite (a reasonable assumption due
to the normal full rank property of Fisher information) and
(ii) ∇rpt(θ, r) 6= 0 for all t. Then, jointly, the entropy
strictly increases over time. This hints at the fact that the
distribution pt tends toward a uniform distribution, which
can be very far from the target distribution π.

Corollary 3.1. The distribution π(θ, r) ∝ exp (−H(θ, r))
is no longer invariant under the dynamics in Eq. (7).

The proofs of Theorem 3.1 and Corollary 3.1 are in the
Supplementary Material.

Because π is no longer invariant under the dynamics of
Eq. (7), we must introduce a correction step even before
considering errors introduced by the discretization of the
dynamical system. For the correctness of an MH step
(based on the entire dataset), we appeal to the same argu-
ments made for the HMC data-splitting technique of Neal
(2010). This approach likewise considers minibatches of
data and simulating the (continuous) Hamiltonian dynam-
ics on each batch sequentially. Importantly, Neal (2010)
alludes to the fact that the resulting H from the split-data
scenario may be far from that of the full-data scenario af-
ter simulation, which leads to lower acceptance rates and
thereby reduces the apparent computational gains in simu-
lation. Empirically, as we demonstrate in Fig. 2, we see that
even finite-length simulations from the noisy system can
diverge quite substantially from those of the noise-free sys-
tem. Although the minibatch-based HMC technique con-
sidered herein is slightly different from that of Neal (2010),
the theory we have developed in Theorem 3.1 surrounding
the high-entropy properties of the resulting invariant distri-
bution of Eq. (7) provides some intuition for the observed
deviations in H both in our experiments and those of Neal
(2010).

The poorly behaved properties of the trajectory of H based
on simulations using noisy gradients results in a complex
computation versus efficiency tradeoff. On one hand, it
is extremely computationally intensive in large datasets to
insert an MH step after just short simulation runs (where
deviations in H are less pronounced and acceptance rates
should be reasonable). Each of these MH steps requires a
costly computation using all of the data, thus defeating the
computational gains of considering noisy gradients. On the
other hand, long simulation runs between MH steps can
lead to very low acceptance rates. Each rejection corre-
sponds to a wasted (noisy) gradient computation and simu-
lation using the proposed variant of Alg. 1. One possible di-

rection of future research is to consider using the recent re-
sults of Korattikara et al. (2014) and Bardenet et al. (2014)
that show that it is possible to do MH using a subset of data.
However, we instead consider in Sec. 3.2 a straightforward
modification to the Hamiltonian dynamics that alleviates
the issues of the noise introduced by stochastic gradients.
In particular, our modification allows us to again achieve
the desired π as the invariant distribution of the continuous
Hamiltonian dynamical system.

3.2. Stochastic Gradient HMC with Friction

In Sec. 3.1, we showed that HMC with stochastic gradients
requires a frequent costly MH correction step, or alterna-
tively, long simulation runs with low acceptance probabili-
ties. Ideally, instead, we would like to minimize the effect
of the injected noise on the dynamics themselves to allevi-
ate these problems. To this end, we consider a modification
to Eq. (7) that adds a “friction” term to the momentum up-
date:{

dθ= M−1r dt
dr = −∇U(θ) dt−BM−1rdt+N (0, 2Bdt).

(9)

Here and throughout the remainder of the paper, we omit
the dependence of B on θ for simplicity of notation. Let us
again make a hockey analogy. Imagine we are now playing
street hockey instead of ice hockey, which introduces fric-
tion from the asphalt. There is still a random wind blowing,
however the friction of the surface prevents the puck from
running far away. That is, the friction term BM−1r help-
s decrease the energy H(θ, r), thus reducing the influence
of the noise. This type of dynamical system is commonly
referred to as second-order Langevin dynamics in physic-
s (Wang & Uhlenbeck, 1945). Importantly, we note that the
Langevin dynamics used in SGLD (Welling & Teh, 2011)
are first-order, which can be viewed as a limiting case of
our second-order dynamics when the friction term is large.
Further details on this comparison follow at the end of this
section.

Theorem 3.2. π(θ, r) ∝ exp(−H(θ, r)) is the unique sta-
tionary distribution of the dynamics described by Eq. (9).

Proof. Let G =

[
0 −I
I 0

]
, D =

[
0 0
0 B

]
, where G

is an anti-symmetric matrix, and D is the symmetric (d-
iffusion) matrix. Eq. (9) can be written in the following
decomposed form (Yin & Ao, 2006; Shi et al., 2012)

d

[
θ
r

]
=−

[
0 −I
I B

] [
∇U(θ)
M−1r

]
dt+N (0, 2Ddt)

=− [D +G]∇H(θ, r)dt+N (0, 2Ddt).

The distribution evolution under this dynamical system is
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governed by a Fokker-Planck equation

∂tpt(θ, r)=∇T {[D+G] [pt(θ, r)∇H(θ, r) +∇pt(θ, r)]}.
(10)

See the Supplementary Material for details. We can ver-
ify that π(θ, r) is invariant under Eq. (10) by calculating[
e−H(θ,r)∇H(θ, r) +∇e−H(θ,r)

]
= 0. Furthermore, due

to the existence of diffusion noise, π is the unique station-
ary distribution of Eq. (10).

In summary, we have shown that the dynamics given by
Eq. (9) have a similar invariance property to that of the o-
riginal Hamiltonian dynamics of Eq. (4), even with noise
present. The key was to introduce a friction term using
second-order Langevin dynamics. Our revised momen-
tum update can also be viewed as akin to partial momen-
tum refreshment (Horowitz, 1991; Neal, 1993), which al-
so corresponds to second-order Langevin dynamics. Such
partial momentum refreshment was shown to not greatly
improve HMC in the case of noise-free gradients (Neal,
2010). However, as we have demonstrated, the idea is cru-
cial in our stochastic gradient scenario in order to counter-
balance the effect of the noisy gradients. We refer to the
resulting method as stochastic gradient HMC (SGHMC).

CONNECTION TO FIRST-ORDER LANGEVIN DYNAMICS

As we previously discussed, the dynamics introduced in E-
q. (9) relate to the first-order Langevin dynamics used in S-
GLD (Welling & Teh, 2011). In particular, the dynamics of
SGLD can be viewed as second-order Langevin dynamics
with a large friction term. To intuitively demonstrate this
connection, let BM−1 = 1

dt in Eq. (9). Because the fric-
tion and momentum noise terms are very large, the momen-
tum variable r changes much faster than θ. Thus, relative
to the rapidly changing momentum, θ can be considered as
fixed. We can study this case as simply:

dr = −∇U(θ)dt−BM−1rdt+N (0, 2Bdt) (11)

The fast evolution of r leads to a rapid convergence to
the stationary distribution of Eq. (11), which is given by
N (MB−1∇U(θ),M). Let us now consider a change in θ,
with r ∼ N (MB−1∇U(θ),M). Recalling BM−1 = 1

dt ,
we have

dθ = −M−1∇U(θ)dt2 +N (0, 2M−1dt2), (12)

which exactly aligns with the dynamics of SGLD where
M−1 serves as the preconditioning matrix (Welling & Teh,
2011). Intuitively, this means that when the friction is
large, the dynamics do not depend on the decaying series
of past gradients represented by dr, reducing to first-order
Langevin dynamics.

Algorithm 2: Stochastic Gradient HMC

for t = 1, 2 · · · do
optionally, resample momentum r as
r(t) ∼ N (0,M)
(θ0, r0) = (θ(t), r(t))
simulate dynamics in Eq.(13):
for i = 1 to m do

θi ← θi−1 + εtM
−1ri−1

ri ← ri−1 − εt∇Ũ(θi)− εtCM−1ri−1
+N (0, 2(C − B̂)εt)

end
(θ(t+1), r(t+1)) = (θm, rm), no M-H step

end

3.3. Stochastic Gradient HMC in Practice

In everything we have considered so far, we have assumed
that we know the noise model B. Clearly, in practice this
is not the case. Imagine instead that we simply have an es-
timate B̂. As will become clear, it is beneficial to instead
introduce a user specified friction term C � B̂ and consid-
er the following dynamics

dθ =M−1r dt
dr =−∇U(θ) dt− CM−1rdt

+N (0, 2(C − B̂)dt) +N (0, 2Bdt)
(13)

The resulting SGHMC algorithm is shown in Alg. 2. Note
that the algorithm is purely in terms of user-specified or
computable quantities. To understand our choice of dy-
namics, we begin with the unrealistic scenario of perfect
estimation of B.

Proposition 3.1. If B̂ = B, then the dynamics of Eq. (13)
yield the stationary distribution π(θ, r) ∝ e−H(θ,r).

Proof. The momentum update simplifies to r =
−∇U(θ) dt−CM−1rdt+N (0, 2Cdt), with friction term
CM−1 and noise term N (0, 2Cdt). Noting that the proof
of Theorem 3.2 only relied on a matching of noise and fric-
tion, the result follows directly by using C in place of B in
Theorem 3.2.

Now consider the benefit of introducing the C terms and
revised dynamics in the more realistic scenario of inaccu-
rate estimation of B. For example, the simplest choice is
B̂ = 0. Though the true stochastic gradient noise B is
clearly non-zero, as the step size ε→ 0,B = 1

2εV goes to 0
andC dominates. That is, the dynamics are again governed
by the controllable injected noise N (0, 2Cdt) and friction
CM−1. It is also possible to set B̂ = 1

2εV̂ , where V̂ is esti-
mated using empirical Fisher information as in (Ahn et al.,
2012) for SGLD.
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COMPUTATIONAL COMPLEXITY

The complexity of Alg. 2 depends on the choice of M , C
and B̂, and the complexity for estimating∇Ũ(θ)—denoted
as g(|D|, d)—where d is the dimension of the parameter s-
pace. Assume we allow B̂ to be an arbitrary d × d pos-
itive definite matrix. Using empirical Fisher information
estimation of B̂, the per-iteration complexity of this esti-
mation step is O(d2|D̃|). Then, the time complexity for
the (θ, r) update is O(d3), because the update is dom-
inated by generating Gaussian noise with a full covari-
ance matrix. In total, the per-iteration time complexity is
O(d2|D̃| + d3 + g(|D̃|, d)). In practice, we restrict all of
the matrices to be diagonal when d is large, resulting in
time complexity O(d|D̃|+ d+ g(|D̃|, d)). Importantly, we
note that our SGHMC time complexity is the same as that
of SGLD (Welling & Teh, 2011; Ahn et al., 2012) in both
parameter settings.

In practice, we must assume inaccurate estimation of B.
For a decaying series of step sizes εt, an MH step is not
required (Welling & Teh, 2011; Ahn et al., 2012)1. Howev-
er, as the step size decreases, the efficiency of the sampler
likewise decreases since proposals are increasingly close
to their initial value. In practice, we may want to tolerate
some errors in the sampling accuracy to gain efficiency. As
in (Welling & Teh, 2011; Ahn et al., 2012) for SGLD, we
consider using a small, non-zero ε leading to some bias. We
explore an analysis of the errors introduced by such finite-ε
approximations in the Supplementary Material.

CONNECTION TO SGD WITH MOMENTUM

Adding a momentum term to stochastic gradient descent
(SGD) is common practice. In concept, there is a clear rela-
tionship between SGD with momentum and SGHMC, and
here we formalize this connection. Letting v = εM−1r,
we first rewrite the update rule in Alg. 2 as

∆θ = v

∆v =−ε2M−1∇Ũ(θ)− εM−1Cv
+N (0, 2ε3M−1(C − B̂)M−1).

(14)

Define η = ε2M−1, α = εM−1C, β̂ = εM−1B̂. The
update rule becomes{

∆θ = v

∆v =−η∇Ũ(x)− αv +N (0, 2(α− β̂)η).
(15)

Comparing to an SGD with momentum method, it is clear
from Eq. (15) that η corresponds to the learning rate and
1−α the momentum term. When the noise is removed (via
C = B̂ = 0), SGHMC naturally reduces to a stochastic

1We note that, just as in SGLD, an MH correction is not even
possible because we cannot compute the probability of the reverse
dynamics.
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Figure 1. Empirical distributions associated with various sam-
pling algorithms relative to the true target distribution with
U(θ) = −2θ2 + θ4. We compare the HMC method of Alg. 1
with and without the MH step to: (i) a naive variant that replaces
the gradient with a stochastic gradient, again with and without an
MH correction; (ii) the proposed SGHMC method, which does
not use an MH correction. We use ∇Ũ(θ) = ∇U(θ) +N (0, 4)
in the stochastic gradient based samplers and ε = 0.1 in all cases.
Momentum is resampled every 50 steps in all variants of HMC.

gradient method with momentum. We can use the equiv-
alent update rule of Eq. (15) to run SGHMC, and borrow
experience from parameter settings of SGD with momen-
tum to guide our choices of SGHMC settings. For example,
we can set α to a fixed small number (e.g., 0.01 or 0.1), s-
elect the learning rate η, and then fix β̂ = ηV̂ /2. A more
sophisticated strategy involves using momentum schedul-
ing (Sutskever et al., 2013). We elaborate upon how to se-
lect these parameters in the Supplementary Material.

4. Experiments
4.1. Simulated Scenarios

To empirically explore the behavior of HMC using exact
gradients relative to stochastic gradients, we conduct ex-
periments on a simulated setup. As a baseline, we consider
the standard HMC implementation of Alg. 1, both with and
without the MH correction. We then compare to HMC with
stochastic gradients, replacing∇U in Alg. 1 with∇Ũ , and
consider this proposal with and without an MH correction.
Finally, we compare to our proposed SGHMC, which does
not use an MH correction. Fig. 1 shows the empirical distri-
butions generated by the different sampling algorithms. We
see that even without an MH correction, both the HMC and
SGHMC algorithms provide results close to the true distri-
bution, implying that any errors from considering non-zero
ε are negligible. On the other hand, the results of naı̈ve s-
tochastic gradient HMC diverge significantly from the truth
unless an MH correction is added. These findings validate
our theoretical results; that is, both standard HMC and S-
GHMC maintain π as the invariant distribution as ε → 0
whereas naı̈ve stochastic gradient HMC does not, though
this can be corrected for using a (costly) MH step.
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ics lead to diverging trajectories when friction is not introduced.
Resampling r helps control divergence, but the associated HMC
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Figure 3. Contrasting sampling of a bivariate Gaussian with cor-
relation using SGHMC versus SGLD. Here, U(θ) = 1
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θTΣ−1θ,

∇Ũ(θ) = Σ−1θ+N (0, I) with Σ11 = Σ22 = 1 and correlation
ρ = Σ12 = 0.9. Left: Mean absolute error of the covariance
estimation using ten million samples versus autocorrelation time
of the samples as a function of 5 step size settings. Right: First
50 samples of SGHMC and SGLD.

We also consider simply simulating from the discretized
Hamiltonian dynamical systems associated with the vari-
ous samplers compared. In Fig. 2, we compare the result-
ing trajectories and see that the path of (θ, r) from the noisy
system without friction diverges significantly. The modifi-
cation of the dynamical system by adding friction (corre-
sponding to SGHMC) corrects this behavior. We can al-
so correct for this divergence through periodic resampling
of the momentum, though as we saw in Fig. 1, the cor-
responding MCMC algorithm (“Naive stochastic gradient
HMC (no MH)”) does not yield the correct target distribu-
tion. These results confirm the importance of the friction
term in maintaining a well-behaved Hamiltonian and lead-
ing to the correct stationary distribution.

It is known that a benefit of HMC over many other MCM-
C algorithms is the efficiency in sampling from correlated
distributions (Neal, 2010)—this is where the introduction
of the momentum variable shines. SGHMC inherits this

property. Fig. 3 compares SGHMC and SGLD (Welling
& Teh, 2011) when sampling from a bivariate Gaussian
with positive correlation. For each method, we examine
five different settings of the initial step size on a linear-
ly decreasing scale and generate ten million samples. For
each of these sets of samples (one set per step-size setting),
we calculate the autocorrelation time2 of the samples and
the average absolute error of the resulting sample covari-
ance. Fig. 3(a) shows the autocorrelation versus estima-
tion error for the five settings. As we decrease the step-
size, SGLD has reasonably low estimation error but high
autocorrelation time indicating an inefficient sampler. In
contrast, SGHMC achieves even lower estimation error at
very low autocorrelation times, from which we conclude
that the sampler is indeed efficiently exploring the distribu-
tion. Fig. 3(b) shows the first 50 samples generated by the
two samplers. We see that SGLD’s random-walk behavior
makes it challenging to explore the tails of the distribution.
The momentum variable associated with SGHMC instead
drives the sampler to move along the distribution contours.

4.2. Bayesian Neural Networks for Classification

We also test our method on a handwritten digits classifica-
tion task using the MNIST dataset3. The dataset consists
of 60,000 training instances and 10,000 test instances. We
randomly split a validation set containing 10,000 instances
from the training data in order to select training parame-
ters, and use the remaining 50,000 instances for training.
For classification, we consider a two layer Bayesian neu-
ral network with 100 hidden variables using a sigmoid unit
and an output layer using softmax. We tested four meth-
ods: SGD, SGD with momentum, SGLD and SGHMC.
For the optimization-based methods, we use the validation
set to select the optimal regularizer λ of network weights4.
For the sampling-based methods, we take a fully Bayesian
approach and place a weakly informative gamma prior on
each layer’s weight regularizer λ. The sampling procedure
is carried out by running SGHMC and SGLD using mini-
batches of 500 training instances, then resampling hyperpa-
rameters after an entire pass over the training set. We run
the samplers for 800 iterations (each over the entire training
dataset) and discard the initial 50 samples as burn-in.

The test error as a function of MCMC or optimization iter-
ation (after burn-in) is reported for each of these methods
in Fig. 4. From the results, we see that SGD with mo-
mentum converges faster than SGD. SGHMC also has an
advantage over SGLD, converging to a low test error much
more rapidly. In terms of runtime, in this case the gradien-

2Autocorrelation time is defined as 1 +
∑∞
s=1 ρs, where ρs is

the autocorrelation at lag s.
3http://yann.lecun.com/exdb/mnist/
4We also tried MAP inference for selecting λ in the

optimization-based method, but found similar performance.
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Figure 4. Convergence of test error on the MNIST dataset using
SGD, SGD with momentum, SGLD, and SGHMC to infer model
parameters of a Bayesian neural net.

t computation used in backpropagation dominates so both
have the same computational cost. The final results of the
sampling based methods are better than optimization-based
methods, showing an advantage to Bayesian inference in
this setting, thus validating the need for scalable and effi-
cient Bayesian inference algorithms such as SGHMC.

4.3. Online Bayesian Probabilistic Matrix
Factorization for Movie Recommendations

Collaborative filtering is an important problem in web ap-
plications. The task is to predict a user’s preference over
a set of items (e.g., movies, music) and produce rec-
ommendations. Probabilistic matrix factorization (PM-
F) (Salakhutdinov & Mnih, 2008b) has proven effective for
this task. Due to the sparsity in the ratings matrix (user-
s versus items) in recommender systems, over-fitting is a
severe issue with Bayesian approaches providing a natural
solution (Salakhutdinov & Mnih, 2008a).

We conduct an experiment in online Bayesian PMF on the
Movielens dataset ml-1M5. The dataset contains about 1
million ratings of 3,952 movies by 6,040 users. The num-
ber of latent dimensions is set to 20. In comparing our
stochastic-gradient-based approaches, we use minibatches
of 4,000 ratings to update the user and item latent matri-
ces. We choose a significantly larger minibatch size in this
application than that of the neural net because of the dra-
matically larger parameter space associated with the PMF
model. For the optimization-based approaches, the hyper-
parameters are set using cross validation (again, we did not
see a performance difference from considering MAP esti-
mation). For the sampling-based approaches, the hyperpa-
rameters are updated using a Gibbs step after every 2, 000
steps of sampling model parameters. We run the sampler to
generate 2,000,000 samples, with the first 100,000 samples
discarded as burn-in. We use five-fold cross validation to

5http://grouplens.org/datasets/movielens/

Table 1. Predictive RMSE estimated using 5-fold cross validation
on the Movielens dataset for various approaches of inferring pa-
rameters of a Bayesian probabilistic matrix factorization model.

METHOD RMSE

SGD 0.8538 ± 0.0009
SGD WITH MOMENTUM 0.8539 ± 0.0009
SGLD 0.8412 ± 0.0009
SGHMC 0.8411 ± 0.0011

evaluate the performance of the different methods.

The results are shown in Table 1. Both SGHMC and S-
GLD give better prediction results than optimization-based
methods. In this experiment, the results for SGLD and S-
GHMC are very similar. We also observed that the per-
iteration running time of both methods are comparable. As
such, the experiment suggests that SGHMC is an effective
candidate for online Bayesian PMF.

5. Conclusion
Moving between modes of a distribution is one of the
key challenges for MCMC-based inference algorithms. To
address this problem in the large-scale or online setting,
we proposed SGHMC, an efficient method for generat-
ing high-quality, “distant” steps in such sampling meth-
ods. Our approach builds on the fundamental framework
of HMC, but using stochastic estimates of the gradient to
avoid the costly full gradient computation. Surprisingly,
we discovered that the natural way to incorporate stochas-
tic gradient estimates into HMC can lead to divergence and
poor behavior both in theory and in practice. To address
this challenge, we introduced second-order Langevin dy-
namics with a friction term that counteracts the effects of
the noisy gradient, maintaining the desired target distribu-
tion as the invariant distribution of the continuous system.
Our empirical results, both in a simulated experiment and
on real data, validate our theory and demonstrate the practi-
cal value of introducing this simple modification. A natural
next step is to explore combining adaptive HMC techniques
with SGHMC. More broadly, we believe that the unifi-
cation of efficient optimization and sampling techniques,
such as those described herein, will enable a significant s-
caling of Bayesian methods.
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