
Diagnosis determination: decision trees optimizing simultaneously
worst and expected testing cost

Ferdinando Cicalese CICALESE@DIA.UNISA.IT

University of Salerno, Italy

Eduardo Laber LABER@INF.PUC-RIO.BR

PUC-Rio, Brazil

Aline Medeiros Saettler ASAETTLER@INF.PUC-RIO.BR

PUC-Rio, Brazil

Abstract
In several applications of automatic diagnosis
and active learning a central problem is the eval-
uation of a discrete function by adaptively query-
ing the values of its variables until the values read
uniquely determine the value of the function. In
general reading the value of a variable is done at
the expense of some cost (computational or pos-
sibly a fee to pay the corresponding experiment).
The goal is to design a strategy for evaluating the
function incurring little cost (in the worst case or
in expectation according to a prior distribution on
the possible variables’ assignments).

Our algorithm builds a strategy (decision tree)
which attains a logarithmic approximation simul-
taneously for the expected and worst cost spent.
This is best possible since, under standard com-
plexity assumption, no algorithm can guarantee
o(log n) approximation.

1. Introduction
An automatic agent that implements a high frequency trad-
ing strategy decides the next action to be performed as
sending or canceling a buy/sell order, on the basis of some
market variables as well as private variables (e.g., stock
price, traded volume, volatility, order books distributions
as well as complex relations among these variables). For
instance in (Nevmyvaka et al., 2006) the trading strategy is
learned in the form of a discrete function, described as a
table, that has to be evaluated whenever a new scenario is

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

faced and an action (sell/buy) has to be taken. The evalua-
tion can be performed by computing every time the value of
each single variable. However, this might be very expen-
sive. By taking into account the structure of the function
together with information on the probability distribution on
the states of the market and also the fact that some variables
are more expensive (or time consuming) to calculate than
others, the algorithm can significantly speed up the evalu-
ation of the function. Since market conditions change on a
millisecond basis, being able to react very quickly to a new
scenario is the key to a profitable strategy.

In a classical Bayesian active learning problem, the task
is to select the right hypothesis from a possibly very large
set H = {h1, . . . , hn}. Each h ∈ H is a mapping from
a set X called the query/test space to the set (of labels)
{1, . . . , `}. It is assumed that the functions inH are unique,
i.e., for each pair of them there is at least one point in X
where they differ. There is one function h∗ ∈ H which
provides the correct labeling of the space X and the task is
to identify it through queries/tests. A query/test coincides
with an element x ∈ X and the result is the value h∗(x).
Each test x has an associated cost c(x) that must be paid
in order to acquire the response h∗(x), since the process
of labeling an example may be expensive either in terms
of time or money (e.g. annotating a document). The goal
is to identify the correct hypothesis spending as little as
possible.

In an example of automatic diagnosis, H represents the set
of possible hypotheses and X the set of symptoms or med-
ical tests, with h∗ being the exact diagnosis that has to be
achieved by reducing the cost of the examinations. In (Bel-
lala et al., 2012), a more general variant of the problem was
considered where rather than the diagnosis it is important
to identify the therapy (e.g., for cases of poisoning it is im-
portant to quickly understand which antidote to administer

Decision trees with optimal worst and expected cost

rather than identifying the exact poisoning). This problem
can be modeled by defining a partition P on H with each
class of P representing the subset of diagnoses which re-
quires the same therapy. The problem is then how to iden-
tify the class of the exact h∗ rather than h∗ itself. This
model has also been studied by Golovin et al. (Golovin
et al., 2010) to tackle the problem of erroneous tests’ re-
sponses in Bayesian active learning.

The above examples can all be cast into the following gen-
eral problem.

The Discrete Function Evaluation Problem (DFEP).
An instance of the problem is defined by a quintuple
(S,C, T,p, c), where S = {s1, . . . , sn} is a set of objects,
C = {C1, . . . , Cm} is a partition of S into m classes, T is
a set of tests, p is a probability distribution on S, and c is
a cost function assigning to each test t a cost c(t) ∈ Q+.
A test t ∈ T , when applied to an object s ∈ S, incurs a
cost c(t) and outputs a number t(s) in the set {1, . . . , `}.
It is assumed that the set of tests is complete, in the sense
that for any distinct s1, s2 ∈ S there exists a test t such
that t(s1) 6= t(s2). The goal is to define a testing proce-
dure which uses tests from T and minimizes the testing
cost (in expectation and/or in the worst case) for identify-
ing the class of an unknown object s∗ chosen according to
the distribution p.

The DFEP can be rephrased in terms of minimizing the
cost of evaluating a discrete function that maps points
(corresponding to objects) from some finite subset of
{1, . . . , `}|T | into values from {1, . . . ,m} (corresponding
to classes), where each object s ∈ S corresponds to the
point (t1(s), . . . , t|T |(s)) which is obtained by applying
each test of T to s. This perspective motivates the name
we chose for the problem. However, for the sake of unifor-
mity with more recent work (Golovin et al., 2010; Bellala
et al., 2012) we employ the definition of the problem in
terms of objects/tests/classes.

Decision Tree Optimization. Any testing procedure can
be represented by a decision tree, which is a tree where
every internal node is associated with a test and every leaf
is associated with a set of objects that belong to the same
class. More formally, a decision tree D for (S,C, T,p, c)
is a leaf associated with class i if every object of S belongs
to the same class i. Otherwise, the root r ofD is associated
with some test t ∈ T and the children of r are decision
trees for the sets {S1

t , ..., S
`
t}, where Sit , for i = 1, . . . , `,

is the subset of S that outputs i for test t.

Given a decision tree D, rooted at r, we can identify the
class of an unknown object s∗ by following a path from r
to a leaf as follows: first, we ask for the result of the test
associated with r when performed on s∗; then, we follow
the branch of r associated with the result of the test to reach

Figure 1. Decision tree for 5 objects presented in the table in the
left, with c(t1) = 2, c(t2) = 1 and c(t3) = 3. Letters and
numbers in the leaves indicate, respectively, classes and objects.

a child ri of r; next, we apply the same steps recursively for
the decision tree rooted at ri. The procedure ends when a
leaf is reached, which determines the class of s∗.

We define cost(D, s) as the sum of the tests’ cost on the
root-to-leaf path from the root of D to the leaf associated
with object s. Then, the worst testing cost and the expected
testing cost of D are, respectively, defined as

costW (D) = max
s∈S
{cost(D, s)} (1)

costE(D) =
∑
s∈S

cost(D, s)p(s) (2)

Figure 1 shows an instance of the DFEP and a decision tree
for it. The tree has worst testing cost 1 + 3 + 2 = 6 and
expected testing cost (1× 0.1) + (6× 0.2) + (6× 0.4) +
(4× 0.3) = 4.9.

Our Results. Our main result is an algorithm that builds a
decision tree whose expected testing cost and worst testing
cost are at most O(log n) times the minimum possible ex-
pected testing cost and the minimum possible worst testing
cost, respectively. In other words, the decision tree built
by our algorithm achieves simultaneously the best possible
approximation achievable with respect to both the expected
testing cost and the worst testing cost. In fact, for the spe-
cial case where each object defines a distinct class—known
as the identification problem— both the minimization of
the expected testing cost and the minimization of the worst
testing cost do not admit a sub-logarithmic approximation
unless P = NP, as shown in (Chakaravarthy et al., 2007)
and in (Laber & Nogueira, 2004), respectively. In addi-
tion, in Section 5, we show that the same inapproximabil-
ity results holds in general for the case of m classes for any
m ≥ 2.

It shoud be noted that in general there are instances for
which the decision tree that minimizes the expected testing
cost has worst testing cost much larger than that achieved
by the decision tree with minimum worst testing cost. Also
there are instances where the converse happens. Therefore,

Decision trees with optimal worst and expected cost

it is reasonable to ask whether it is possible to construct
decision trees that are efficient with respect to both perfor-
mance criteria. This might be important in practical appli-
cations where only an estimate of the probability distribu-
tion is available which is not very accurate. Also, in sce-
narios like the one depicted in (Bellala et al., 2012), very
high cost (or time) might have disastrous consequences. In
such a case, one could try to minimize the expected test-
ing cost with the additional constraint that the worst testing
cost shall not be much larger than the optimal one.

With respect to the minimization of the expected testing
cost, our result improves upon the previous O(log 1/pmin)
approximation shown in (Golovin et al., 2010) and (Bellala
et al., 2012), where pmin is the minimum positive probabil-
ity among the objects in S. From the result in these papers
an O(log n) approximation could be attained only for the
particular case of uniform costs via a technique used by
Kosaraju in (Kosaraju et al., 1999).

From a high-level perspective, our method closely follows
the one used by Gupta et al. (Gupta et al., 2010) for ob-
taining the O(log n) approximation for the expected test-
ing cost in the identification problem. Both constructions
of the decision tree consist of building a path (backbone)
that splits the input instance into smaller ones, for which
decision trees are recursively constructed and attached as
children of the nodes in the path.

A closer look, however, reveals that our algorithm is much
simpler than the one presented in (Gupta et al., 2010). First,
it is more transparently linked to the structure of the prob-
lem, which remained somehow hidden in (Gupta et al.,
2010) where the result was obtained via an involved map-
ping from adaptive TSP. Second, our algorithm avoids ex-
pensive computational steps as the Sviridenko procedure
(Sviridenko, 2004) and some non-intuitive/redundant steps
that are used to select the tests for the backbone of the tree.
In fact, we believe that providing an algorithm that is much
simpler to implement and an alternative proof of the result
in (Gupta et al., 2010) is an additional contribution of this
paper.

State of the art. The DFEP has been recently studied
under the names of class equivalence problem (Golovin
et al., 2010) and group identification problem (Bellala et al.,
2012) and long before it had been described in the excel-
lent survey by Moret (B.M.E. Moret, 1982). Both (Golovin
et al., 2010) and (Bellala et al., 2012) giveO(log(1/pmin))
approximation algorithms for the version of the DFEP
where the exptected testing cost has to be minimized and
both the probabilities and the testing costs are non-uniform.
In addition, when the testing costs are uniform both al-
gorithms can be converted into a O(log n) approxima-
tion algorithm via the approach of Kosaraju (Kosaraju
et al., 1999). The algorithm in (Golovin et al., 2010) is

more general because it addresses multiway tests rather
than binary ones. The minimization of the worst testing
cost—for which our algorithm provides the best possible
approximation—had been left as an open problem in (Bel-
lala et al., 2012).

The particular case of the DFEP where each object belongs
to a different class—known as the identification problem—
has been more extensively investigated (Dasgupta, 2004;
Adler & Heeringa, 2008; Chakaravarthy et al., 2007; 2009).
Both the minimization of the worst and the expected test-
ing cost do not admit a sublogarithmic approximation un-
less P = NP as proved by (Laber & Nogueira, 2004) and
(Chakaravarthy et al., 2007). For the expected testing cost,
in the variant with multiway tests, non uniform probabili-
ties and non uniform testing costs, an O(log(1/pmin)) ap-
proximation is given by Guillory and Blimes in (Guillory &
Bilmes, 2009). Gupta et al. (Gupta et al., 2010) improved
this result to O(log n) employing new techniques not rely-
ing on the Generalized Binary Search (GBS)—the basis of
all the previous strategies.

AnO(log n) approximation algorithm for the minimization
of the worst testing cost for the identification problem has
been given by Arkin et. al. (Arkin et al., 1993) for binary
tests and uniform cost and by Hanneke (Hanneke, 2006) for
case with mutiway tests and non-uniform testing costs. The
worst case cost is also investigated in (Guillory & Bilmes,
2011) under the framework of covering and learning.

2. Preliminaries
Given an instance I = (S,C, T,p, c) of the DFEP, we will
denote by OPTE(I) (OPTW (I)) the expected testing cost
(worst testing cost) of a decision tree with minimum pos-
sible expected testing cost (worst testing cost) over the in-
stance I. When the instance I is clear from the context, we
will also use the notation OPTW (S) (OPTE(S)) for the
above quantity, referring only to the set of objects involved.
We use pmin to denote the smallest non-zero probability
among the objects in S.

Let (S, T, C,p, c) be an instance of DFEP and let S′ be a
subset of S. In addition, let C ′, p′ and c′ be, respectively,
the restrictions of C, p and c to the set S′. Our first ob-
servation is that every decision tree D for (S,C, T,p, c) is
also a decision tree for the instance I ′ = (S′, C ′, T,p′, c′).
The following proposition immediately follows.
Proposition 1. Let I = (S,C, T,p, c) be an instance of
the DFEP and let S′ be a subset of S. Then, OPTE(I ′) ≤
OPTE(I) and OPTW (I ′) ≤ OPTW (I), where I ′ =
(S′, C ′, T,p′, c′) is the restriction of I to S′.

In order to measure the progress of our strategy, we con-
sider the set of objects which satisfy all the tests performed
and count the number of pairs of such objects which be-

Decision trees with optimal worst and expected cost

long to different classes. The following definition formal-
izes this concept of pairs for a given set of objects.
Definition 1 (Pairs). Let I = (S, T, C,p, c) be an instance
of the DFEP and G ⊆ S. We say that two objects x, y ∈ S
constitute a pair of G if they both belong to G but come
from different classes. We denote by P (G) the number of
pairs of G. In formulae, we have

P (G) =

m−1∑
i=1

m∑
j=i+1

ni(G)nj(G)

where for 1 ≤ i ≤ m and A ⊆ S, ni(A) denotes the
number of objects in A belonging to class Ci.

As an example, for the set of objects S in Figure 1 we have
P (S) = 8 and the following set of pairs

{(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)}.

Let t be a sequence of tests applied to identify the class of
s∗ (it corresponds to a path in the decision tree) and let G
be the set of objects that agree with the outcomes of all tests
in t. If P (G) = 0, then all objects in G belong to the same
class, which must coincide with the class of the selected
object s∗. Hence, P (G) = 0 indicates the identification of
the class of the chosen object s∗.

For each test t ∈ T and for each i = 1, . . . , `, let Sit ⊆ S
be the set of objects for which the outcome of test t is
i. For a test t, the outcome resulting in the largest num-
ber of pairs is of special interest for our strategy. We de-
note with S∗t the set among S1

t , . . . , S
`
t such that P (S∗t) =

max{P (S1
t), . . . , P (S

`
t)} (ties are broken arbitrarily). We

denote with σS(t) the set of objects not included in S∗t , i.e.,
we define σS(t) = S \ S∗t . Whenever S is clear from the
context we use σ(t) instead of σS(t).

Given a set of objects S, each test produces a tripartition of
the pairs in S: the ones in σ(t), those in S \ σ(t) and those
with one element in σ(t) and one element in S \ σ(t). We
say that the pairs in σ(t) are kept by t, the pairs in S \ σ(t)
are avoided by t and finally the pairs with one element from
σ(t) and one element in S\σ(t) are separated by t.We also
say that a pair is covered by the test t if it is either kept or
separated by t. Analogously, we say that a test t covers an
object s if s ∈ σ(t); otherwise, we say that t avoids s.

For any set Q ⊆ S we define p(Q) =
∑
s∈Q p(s).

3. Minimization of the Expected Testing Cost
In this section, we describe our algorithm DecTree and
analyze its performance w.r.t. the expected testing cost. In
this section, the term cost is generally intended to mean
expected cost.

The concept of the separation cost of a sequence of tests
will turn useful for defining and analyzing our algorithm.

The separation cost of a sequence of tests. Given an
instance I of the DFEP, for a sequence of tests t =
t1, t2, . . . , tq, we define the separation cost of t in the in-
stance I, denoted by sepcost(I, t), as follows: Fix an ob-
ject x. If there exists j < q such that x ∈ σ(tj) then we
set i(x) = min{j | x ∈ σ(tj)}. If x 6∈ σ(tj) for each
j = 1, . . . , q − 1, then we set i(x) = q. Define the cost of
separating x in the instance I by means of the sequence t

as sepcost(I, t, x) =
∑i(x)
j=1 c(tj).

The separation cost of t (in the instance I) is defined by

sepcost(I, t) =
∑
s∈S

p(s)sepcost(I, t, s). (3)

Lower bounds on the cost of an optimal decision tree
for the DFEP. We denote by sepcost∗(I) the minimum
separation cost in I attainable by a sequence of tests in T
which covers all the pairs in S.

The following theorem shows that for any instance I =
(S,C, T,p, c) of the DFEP the minimum separation cost
of a sequence of tests covering all pairs in S is a lower
bound on the cost of an optimal solution for the instance I.

Theorem 1. For any instance I = (S,C, T,p, c) of the
DFEP, it holds that sepcost∗(I) ≤ OPT (I).

Proof. (Sketch)

Let D∗ be a decision tree for the instance I with expected
cost equal to OPT (I).

Let t1, t2, . . . , tq, l be the root-to-leaf path in D∗ such that
for each i = 2, . . . , q, the node associated to ti is on the
branch stemming from ti−1 which is associated with S \
σ(ti−1), and l is the child of tq associated wih the objects in
S \σ(tq). This is the path followed when the object chosen
is some x such that for each test t performed following the
strategy D∗ we have that x 6∈ σ(t).

It can be shown that t = t1, t2, . . . , tq is a sequence of tests
covering all pairs of S, hence sepcost(t) ≥ sepcost∗(I)
and also sepcost(I, t, s) ≤ cost(D∗, s), for any object s.

These two inequalities together with (3) imply

sepcost∗(I) ≤ sepcost(I, t) =
∑
s∈S

p(s)sepcost(I, t, s)

≤
∑
s∈S

p(s)cost(D∗, s) = OPT (I).

The following subadditivity property will be useful.

Proposition 2 (Subadditivity). Let S1, S2, . . . , Sq be a
partition of the object set S. We have OPTE(S) ≥∑q
j=1OPTE(Sj), where OPTE(Sj) is the minimum ex-

pected testing cost when the set of objects is Sj .

Decision trees with optimal worst and expected cost

The optimization of submodular functions of sets of
tests. Let I = (S, T, C,p, c) be an instance of the DFEP.
A set function f : 2T 7→ R+ is submodular non-decreasing
if for every R ⊆ R′ ⊆ T and every t ∈ T \R′, it holds that
f(R∪{t})−f(R) ≥ f(R′∪{t})−f(R′) (submodularity)
and f(R) ≤ f(R′) (non-decreasing).

It is not hard to verify that the functions

f1 : R ⊆ T 7→ P (S)− P (S \
⋃
t∈R

σS(t))

f2 : R ⊆ T 7→ p(S)− p(S \
⋃
t∈R

σS(t))

are non-negative non-decreasing submodular set functions.
In words f1(R) (resp. f2(R)) is the function mapping a set
of testsR into the number of pairs (resp. probability) of the
set of objects covered by the tests in R

Consider the following optimization problem defined over
a non-negative, non-decreasing, sub modular function f :

P : max
R⊆T

{
f(R) :

∑
t∈R

c(t) ≤ B

}
. (4)

In (Wolsey, 1982), Wolsey studied the solution to the prob-
lem P provided by Algorithm 1 below, called the adapted
greedy heuristic.

Algorithm 1 Wolsey greedy algorithm
Procedure Adapted-Greedy(S, T, f, c, B)
1: spent← 0, A← ∅, k ← 0
2: repeat
3: k ← k + 1
4: let tk be a test t maximizing f(A∪{t})−f(A)

c(t)
among all t ∈

T s.t. c(t) ≤ B
5: T ← T \ {tk}, spent← spent+ c(tk), A← A∪{tk}
6: until spent > B or T = ∅
7: if f({tk}) ≥ f(A \ {tk}) then Return {tk}

else Return {t1 t2 . . . tk−1}

The following theorem summarizes results from (Wolsey,
1982)[Theorems 2 and 3].

Theorem 2. (Wolsey, 1982) Let R∗ be the solution of the
problem P and R be the set returned by Algorithm 1. Let e
be the base of the natural logarithm and χ be the solution of
eχ = 2−χ. Then we have that f(R) ≥ (1−e−χ)f(R∗) ≈
0.35f(R∗). Moreover, if there exists c such c(t) = c for
each t ∈ T and c divides B, then we have f(R) ≥ (1 −
1/e)f(R∗) ≈ 0.63f(R∗).

Corollary 1. Let t = t1 . . . tk−1tk be the sequence of
all the tests selected by Adapted-Greedy, i.e., the con-
catenation of the two possible outputs in line 7. Then, we
have that the total cost of the tests in t is at most 2B and
f({t1, . . . , tk−1, tk}) ≥ (1− e−χ)f(R∗) ≈ 0.35f(R∗).

We will employ this greedy heuristic for finding approxi-
mate solutions to the optimization problem P over the sub-
modular set functions f1 and f2 defined above.

3.1. Achieving logarithmic approximation

We will show that Algorithm 2 attains a logarithmic ap-
proximation for DFEP. The algorithm consists of 4 blocks.
The first block (lines 1-2) is the basis of the recursion,
which returns a leaf if all objects belong to the same class.
The second block (line 3) calls procedure FindBudget
to define the budget B allowed for the tests selected in the
third and fourth blocks.

Algorithm 2 Decision tree with cost O(log n)OPTE(I)

Procedure DecTree(S, T,C,p, c)
1: if all objects in S belong to the same class then
2: Return a single leaf l asssociated with S
3: B=FindBudget(S, T,C, c), spent ← 0, spent2 ←

0, U ← S, k ← 1
4: while there is a test in T of cost ≤ B − spent do
5: let tk be a test which maximizes p(U)−p(U\σS(t))

c(t)
among

all tests t s.t. t ∈ T and c(t) ≤ B − spent
6: If k = 1 then make t1 root of D else tk child of tk−1

7: for every i ∈ {1, . . . , `} such that (Sitk ∩ U) 6= ∅ and
Sitk 6= S∗tk do

8: Make Di ← DecTree(Sitk ∩U, T,C,p, c) child of tk
9: U ← U \ σS(tk), spent ← spent + c(tk) , T ← T \

{tk}, k ← k + 1
10: end while
11: repeat
12: let tk be a test which maximizes P (U)−P (U\σS(t))

c(t)
among

all tests t ∈ T s.t. c(t) ≤ B
13: Set tk as a child of tk−1

14: for every i ∈ {1, . . . , `} such that (Sitk ∩ U) 6= ∅ and
Sitk 6= S∗tk do

15: Make Di ←DecTree(U ∩ Sitk , T, C,p, c) child of tk
16: U ← U \ σS(tk), spent2 ← spent2 + c(tk) , T ←

T \ {tk}, k ← k + 1
17: until B − spent2 < 0 or T = ∅
18: D′ ← DecTree(U, T,C,p, c); Make D′ a child of tk−1

19: Return the decision tree D constructed by the algorithm

Procedure FindBudget(S, T,C, c)
1: Let f : R ∈ 2T 7→ P (S) − P (S \ ∪t∈Rσ(t)) and let α =

1− eχ ≈ 0.35
2: Do a binary search in the interval [1,

∑
t∈T c(t)] to find the

smallest B such that Adapted-Greedy(S, T, f, c, B) re-
turns a set of tests R covering at least αP (S) pairs

3: Return B

The third (lines 4-10) and the fourth (lines 11-17) blocks
are responsible for the construction of the backbone of the
decision tree (see Fig. 2) as well as to call DecTree re-
cursively to construct the decision trees that are children
of the nodes in the backbone. The third block (the while
loop) constructs the first part of the backbone (sequence
tA in Fig. 2) by iteratively selecting the test that covers

Decision trees with optimal worst and expected cost

the maximum uncovered mass probability per unit of test-
ing cost (line 5). The selected test tk induces a partition
(U1

tk
, . . . , U `tk) on the current set of objects U . In lines 7

and 8, the procedure is recursiverly called for each set of
this partition but for the one that is contained in the subset
S∗tk . With reference to Figure 2, these calls will build the
subtrees rooted at the children of the nodes in tA

Similarly, the fourth block (the repeat-until loop) con-
structs the second part of the backbone (sequence tB in
Fig. 2) by iteratively selecting the test that covers the max-
imum number of uncovered pairs per unit of testing cost
(line 12). It easy to see that also this procedure is based on
the adapted greedy heuristic of Algorithm 1. In fact, here
the sequence constructed is the concatenation of the two
possible outputs of Algorithm 1. As a consequence, we
can apply Corollary 1 to analyze the cost and the coverage
of this sequence.

tA

tB

...

...

...

...

...

...

...

...

Figure 2. The structure of the decision tree built by DecTree:
white nodes correspond to recursive calls. In each white subtree,
the number of pairs is at most P (S)/2, while in the lowest-right
gray subtree it is at most 8/9P (S) (see the proof of Theorem 4).

Let tI denote the sequence of tests obtained by concatenat-
ing the tests selected in the while loop and in the repeat-
until loop of the execution of DecTree over instance I.
We delay to the next section the proof of the following key
result.

Theorem 3. Let χ be the solution of eχ = 2 − χ, and
α = 1 − eχ ≈ 0.35. There exists a constant δ ≥ 1, such
that for any instance I = (S,C, T,p, c) of the DFEP, the
sequence tI covers at least α2P (S) > 1

9P (S) pairs and
sepcost(I, tI) ≤ δ · sepcost∗(I).
Theorem 4. For any instance I = (S,C, T,p, c) of
the DFEP, the algorithm DecTree outputs a decision
tree whose expected testing cost is at most O(log(n)) ·
OPTE(I)

Proof. For any instance I, let DA(I) be the decision tree
produced by the algorithm DecTree. Let I be the set
of instances on which the algorithm DecTree is recusively
called in lines 8,15 and 18.

Let β be such that β log 9
8 = δ, where δ is the constant

given in the statement of Theorem 3. Let us assume by
induction on the number of pairs that the algorithm guaran-
tees approximation β logP (G)+1 for every instance I ′ on
a set of objects G with 2 ≤ P (G) < P (S). We have that

cost(DA(I))

OPTE(I)
=
sepcost(I, tI) +

∑
I′∈I cost(D

A(I ′))

OPTE(I)
(5)

≤ sepcost(I, tI)

OPTE(I)
+ max

I′∈I

cost(DA(I ′))

OPTE(I ′)
(6)

≤ δ +max
I′∈I

cost(DA(I ′))

OPTE(I ′)
(7)

≤ δ +max
I′∈I

β logP (I ′) + 1 (8)

≤ δ + β log 8P (S)/9 + 1 (9)
= βlog(P (S)) + 1. (10)

The first equality follows by the recursive way the algo-
rithm DecTree builds the decision tree. Inequality (6)
follows from (5) by the subadditivity property (Proposi-
tion 2) and simple algebraic manipulations. The inequal-
ity in (7) follows by Theorem 3 together with Theorem 1
yielding sepcost(I, tI) ≤ δ OPTE(I). The inequality in
(8) follows by induction (we are using P (I ′) to denote the
number of pairs of instance I ′).

To prove that the inequality in (9) holds we have to argue
that every instance I ′ ∈ I has at most 8/9P (S) pairs. Let
U itk = Sitk ∩ U as in the lines 8 and 15. First we show
that the number of pairs of U itk is at most P (S)/2. In
fact, because Sitk 6= S∗tk and S∗tk is the set in the partition
{S1

tk
, . . . , S`tk}, induced by tk on the set S, with the maxi-

mum number of pairs, it follows that P (U itk) ≤ P (Sitk) ≤
P (S)/2.Now it remains to show that the instance I ′, recur-
sively called, in line 18 has at most 8/9P (S) pairs. This
is true because the number of pairs of I ′ is equal to the
number of pairs not covered by tI which is bounded by
(1− α2)P (S) ≤ 8P (S)/9 by Theorem 3.

3.2. The proof of Theorem 3

Given an instance I, for a sequence of tests t = t1, . . . , tq,
we will denote by totcost(I, t) the sum of the costs of the
tests, i.e., totcost(I, t) =

∑q
j=1 c(tj).

Due to the space limitations, the proof of the following lem-
mas is deferred to the full version of the paper.

Lemma 1. For any instance I = (S,C, T,p, c), the
value B returned by FindBudget(S, T, C, c) satisfies
B ≤ totcost(I, t̃), for every sequence t̃ that covers
all pairs of I . In addition, the execution of procedure
Adapted-Greedy over the instance I , with budget B,
and f : R ⊆ S 7→ P (S) − P (S \ ∪t∈Rσ(t)) selects a
sequence of tests that covers at least αP (S) pairs, where
α = 1− eχ ≈ 0.35 and χ is the solution of eχ = 2− χ.

Decision trees with optimal worst and expected cost

Given an instance I, for a sequence of tests t = t1, . . . , tk
and a real K > 0, let sepcostK(I, t) be the separation cost
of t when every non-covered object is charged K, that is,

sepcostK(I, t) =
∑

x is covered by t
p(x)sepcost(I, t, x)+

∑
x is not covered by t

p(x) ·K

Lemma 2. Let tA be the sequence obtained by concate-
nating the tests selected in the while loop of Algorithm
2. Then, totcost(I, tA) ≤ B and sepcostB(I, t

A) ≤
γ · sepcost∗(I), where γ is a positive constant and B is
the budget calculated at line 3.

Lemma 3. The sequence tI covers at least α2P (S) pairs
and it holds that totcost(I, tI) ≤ 3B.

The proof of Theorem 3 will now follow by combining the
sequences provided by the previous three lemmas.

Proof of Theorem 3. First, it follows from Lemma 3 that
tI covers at least α2P (S) pairs.

To prove that sepcost(I, tI) ≤ sepcost∗(I), we decom-
pose tI into tA = tA1 , . . . , t

A
q and tB = tB1 , . . . , t

B
r , the

sequences of tests selected in the while and in the repeat-
until loop of Algorithm 2, respectively.

For i = 1, . . . , q, let πi = σ(tAi) \ (
⋃i−1
j=1 σ(t

A
j)). In addi-

tion, let πA be the set of objects which are avoided by all
the tests in tA. Thus,

sepcost(I, tI) ≤
q∑
i=1

p(πi)

 i∑
j=1

c(tAj)

+ 3B · p(πA)

≤ 3sepcostB(I, t
A) ≤ 3γsepcost∗(I),

where the last inequality follows from Lemma 2. The proof
is complete.

4. DecTree provides a logarithmic
approximation for the worst testing cost

In this section, we prove that the DecTree algorithm pro-
vides O(log n)-approximation (in fact best possible due to
Theorem 6) also for the minimization of the worst testing
cost.

Theorem 5. For an instance I = (S,C, T,p, c) of the
DFEP, the algorithm DecTree outputs a decision tree
whose worst testing cost is at most O(log n) ·OPTW (I).

Proof. Let D be the decision tree produced by the algo-
rithm DecTree. Let D∗ be a decision tree such that
costW (D∗) = OPTW (I) and t∗ be the sequence of tests

on a root-to-leaf path in D∗ such that the sequence t∗ cov-
ers all the pairs in the instance I (see the proof of The-
orem 1 for how to choose such a sequence). We have
totcost(I, t∗) ≤ OPTW (I).

Let t be a sequence of tests on a root to leaf path in D. The
sequence t is constructed during several recursive calls to
the algorithm DecTree. Let t(1), . . . , t(r) be the disjoint
subsequences of t where t(i) is built in the ith recursive
call in which some part of t is constructed. Let I(i) be the
instance on which DecTree is called when the sequence
t(i) is constructed. Moreover, let t(i)I be the complete
sequence built during the recursive call of DecTree on
I(i) (in particular t(i) is some prefix of t(i)I). Let B(i) be
the value returned by FindBudget on the instance I(i).
We have

totcost(I, t(i)) = totcost(I(i), t(i)) ≤ totcost(I(i), t(i)I)

≤ 3B(i) ≤ 3totcost(I(i), t∗)

= 3totcost(I, t∗),

where the first and the last equality follow from the fact that
the tests’ costs are the same in I and I(i); the first inequality
follows from t(i) being a subsequence of t(i)I ; the second
inequality follows from Lemma 3 and the last inequality
from Lemma 1, because the sequence t∗ which covers all
the pairs in I , also covers, a fortiori, all the pairs in the
sub-instance I(i). It follows that

∑
t∈t

c(t) =

r∑
i=1

∑
t∈t(i)

c(t) ≤ 3r · totcost ≤ 3rOPTW (I)

= O(log n)OPTW (I),

where the last inequality follows by noticing that for each
i = 2, . . . , r, it holds that the number of pairs in the in-
stance I(i) are not more than 8/9 of the number of pairs
in the instance I(i), as shown in the proof of Theorem 5.
Hence we have that r = O(logP (S)) = O(log n).

Since
∑
t∈t c(t) ≤ O(log n)OPTW (I) holds for any

t which is on a root-to-leaf path in D it follows that
costW (D) = O(log n)OPTW (I).

On the bi-criteria optimization of DecTree. By Theo-
rems 4 and 5 we have that algorithm DecTree provides si-
multaneously the best possible approximation for the min-
imization of expected testing cost and worst testing cost.
We would like to remark that this is a very strong feature of
our algorithm. In this respect, let us consider the following
instance of the DFEP1: Let S = {s1, . . . , sn}; pi = 2−i,
for i = 1, . . . , n − 1 and pn = 2−(n−1); the set of tests

1 This is also an instance of the identification problem

Decision trees with optimal worst and expected cost

is in one to one correspondence with the set of all binary
strings of length n so that the test corresponding to a bi-
nary string b outputs 0(1) for object si if and only if the
ith bit of b is 0(1). Moreover, all tests have unitary costs.
This instance is also an instance of the problem of con-
structing an optimal prefix coding binary tree, which can
be solved by the Huffman’s algorithm. Let D∗E and D∗W
be, respectively, the decision trees with minimum expected
cost and minimum worst testing cost for this example. Us-
ing Huffman’s algorithm, it is not difficult to verify that
CostE(D

∗
E) ≤ 3 and CostW (D∗E) = n − 1. In addi-

tion, we have that CostE(D∗W) = CostW (D∗W) = log n.
This example shows that the minimization of the expected
testing cost may result in high worst testing cost and vice
versa the minimization of the worst testing cost may result
in high expected testing cost. In cases like this it might
provide a significant gain the ability of the algorithm to op-
timize with respect to both measures of cost.

5. O(log n) is the best possible approximation.
Let U = {u1, . . . , un} be a set of n elements and F =
{F1, . . . , Fm} be a family of subsets of U . The minimum
set cover problem asks for a family F ′ ⊆ F of minimum
cardinality such that

⋃
i∈F ′ Fi = U . It is well known that

this problem does not admit an o(log n) approximation un-
less P = NP .

First we show that an o(log n) approximation for the worst
case version of the DFEP with exactly b classes for b ≥
2, implies the same approximation for the Minimum Set
Cover problem so that one cannot expect to obtain a sublog-
arithmic approximation for the DFEP unless P = NP .

We construct an instance for the DFEP as follows. The set
of objects is S = U ∪ {o1, . . . , ob−1}. All the objects of U
belong to class 0 while the object oi, for i = 1, . . . , b − 1,
belongs to class i. For each Fi in F we create a test ti such
that ti has value 0 for the objects in Fi and value 1 for the
remaining objects. In addition, we create a test tm+1 which
has value 0 for objects in U and value i − 1 for object oi.
Each test has cost 1.

Let D∗ be the decision tree with minimum worst case cost
and let F∗ = {Fi1 , . . . , Fih} be a minimum set cover for
instance (U,F), where h = |F∗|. Now, we argue that h ≤
OPTW (D∗) ≤ h+ 1.

We can construct a decision tree D of worst testing cost
h + 1 by putting the test t∗1 associated with Fi1 in the root
of the tree, then the test associated with Fi2 as the child of
t∗1 and so on. At the bottom of the tree we add the test tm+1.
Thus, the worst case cost of D∗ is at most h + 1. On the
other hand, let P be the path from the root of the decision
tree D∗ to the leaf where object o1 lies. It is easy to realize
that the subsets associated with the tests in this path covers

all elements in U . This establishes the hardness for the
worst case version of the DFEP.

The same reduction works for the expected cost version. In
this case, we set the probability of o1 equals to 1 − (n +
b − 2)ε and the probability of the other objects equal to ε.
Thus, we have the following theorem

Theorem 6. Both the minimization of the worst case and
the expected case of the DFEP don’t admit an o(log n) ap-
proximation unless P = NP

6. Final remarks and Future Directions
We presented a new algorithm for the discrete evaluation
problem, a generalization of the classical Bayesian active
learning also studied under the names of Equivalence Class
Determination Problem (Golovin et al., 2010) and Group
Based Active Query Selection problem of (Bellala et al.,
2012). Our algorithm builds a decision tree which achieves
the best possible approximation simultaneously for the ex-
pected and the worst testing cost unles P = NP . This
closes the gap left open by the previous O(log 1/pmin) ap-
proximation shown in(Golovin et al., 2010) and (Bellala
et al., 2012), where pmin is the minimum positive probabil-
ity among the objects in S. In addition we close the open
problem raised by (Bellala et al., 2012) about efficiently
approximating the worst testing cost.

In the broader context of machine learning, given a set of
samples labeled according to an unknown function, a stan-
dard task is to find a good approximation of the labeling
function (hypothesis). In order to guarantee that the hy-
pothesis chosen has some generalization power w.r.t. to the
set of samples, we should avoid overfitting. When learning
is performed via decision tree induction this implies that
we shall not have leaves associated with a small number
of samples so that we end up with a decision tree that have
leaves associated with more than one label. There are many
strategies available in the literature to induce such a tree.

In the problem considered in this paper our aim is to over-
fit the data because the function is known a priori and we
are interested in obtaining a decision tree that allows us to
identify the label of a new sample with the minimum possi-
ble cost (time/money). The theoretical results we obtain for
the ”fitting” problem should be generalizable to the prob-
lem of approximating the function. To this aim we could
employ the framework of covering and learning (Guillory
& Bilmes, 2011) along the following lines: we would in-
terrupt the recursive process in Algorithm 2 through which
we construct the tree as soon as we reach a certain level of
learning (fitting) w.r.t. the set of labeled samples. Then,
it remains to show that our decision tree is at logarithmic
factor of the optimal one for that level of learning. This is
an interesting direction for future research.

Decision trees with optimal worst and expected cost

References
Adler, M. and Heeringa, B. Approximating optimal binary

decision trees. APPROX/RANDOM ’08, pp. 1–9, 2008.

Arkin, E. M., Meijer, H., Mitchell, J.S.B., Rappaport, D.
and Skiena, S.S. Decision trees for geometric models.
In Proc. of SCG ’93, pp. 369–378, 1993.

Bellala, G., Bhavnani, S. K., and Scott, C. Group-based
active query selection for rapid diagnosis in time-critical
situations. IEEE Trs. Inf. Theor., 58(1):459–478, 2012.

B.M.E. Moret. Decision Trees and Diagrams. ACM Com-
puting Surveys, pp. 593–623, 1982.

Chakaravarthy, V. T., Pandit, V., Roy, S., Awasthi, P., and
Mohania, M. Decision trees for entity identification: ap-
proximation algorithms and hardness results. In Proc.
PODS ’07, pp. 53–62, 2007.

Chakaravarthy, V. T., Pandit, V., Roy, S., and Sabharwal, Y.
Approximating decision trees with multiway branches.
In Proc. ICALP ’09, pp. 210–221, 2009.

Dasgupta, S. Analysis of a greedy active learning strategy.
In NIPS’04, 2004.

Golovin, D., Krause, A., and Ray, D. Near-optimal
bayesian active learning with noisy observations. In
Proc. of NIPS’10, pp. 766–774, 2010.

Guillory, A. and Bilmes, J. Average-case active learning
with costs. In Proc. of ALT’09, pp. 141–155, 2009.

Guillory, A. and Bilmes, J. Interactive submodular set
cover. In Proc. ICML’10, pp. 415–422. 2010.

Guillory, A. and Bilmes, J. Simultaneous learning and cov-
ering with adversarial noise. ICML’11, pp. 369–376.
2011.

Gupta, A., Nagarajan, V., and Ravi, R. Approximation
algorithms for optimal decision trees and adaptive tsp
problems. In Proc. ICALP’10, pp. 690–701, 2010.

Hanneke, S. The cost complexity of interactive learning.
unpublished, 2006.

Kaplan, H., Kushilevitz, E., and Mansour, Y.. Learning
with attribute costs. In STOC, pp. 356–365, 2005.

Kosaraju, S. Rao, Przytycka, Teresa M., and Borgstrom,
Ryan S. On an optimal split tree problem. In Proc. of
WADS ’99, pp. 157–168, 1999.

Laber, Eduardo S. and Nogueira, Loana Tito. On the hard-
ness of the minimum height decision tree problem. Dis-
crete Appl. Math., 144:209–212, 2004.

Nemhauser, G., Wolsey, L., and Fisher, M. L. An anal-
ysis of approximations for maximizing submodular set
functions-i. Math. Programming, 14:265–294, 1978.

Nevmyvaka, Y., Feng, Y., and Kearns, M.. Reinforce-
ment learning for optimized trade execution. In Proc.
of ICML’06, pp. 673–680, 2006.

Sviridenko, M. A note on maximizing a submodular set
function subject to a knapsack constraint. Operations
Research Letters, 32(1):41 – 43, 2004.

Wolsey, L. Maximising real-valued submodular functions.
Math. of Operation Research, 7(3):410–425, 1982.

