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Abstract
The Mass Volume (MV) curve is a visual tool
to evaluate the performance of a scoring func-
tion with regard to its capacity to rank data in
the same order as the underlying density func-
tion. Anomaly ranking refers to the unsupervised
learning task which consists in building a scor-
ing function, based on unlabeled data, with a MV
curve as low as possible at any point. In this
paper, it is proved that, in the case where the
data generating probability distribution has com-
pact support, anomaly ranking is equivalent to
(supervised) bipartite ranking, where the goal is
to discriminate between the underlying probabil-
ity distribution and the uniform distribution with
same support. In this situation, the MV curve
can be then seen as a simple transform of the
corresponding ROC curve. Exploiting this view,
we then show how to use bipartite ranking al-
gorithms, possibly combined with random sam-
pling, to solve the MV curve minimization prob-
lem. Numerical experiments based on a variety
of bipartite ranking algorithms well-documented
in the literature are displayed in order to illustrate
the relevance of our approach.

1. Introduction
Motivated by a great range of applications such as the de-
sign of search engines in information retrieval, credit-risk
screening in finance or supervised anomaly detection in
signal processing, the problem of learning how to rank
data with ordinal labels has been the subject of a good
deal of attention in machine-learning these last few years,
see (Duchi et al., 2010; Clémençon et al., 2008; Agarwal
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et al., 2005) among others. A wide variety of criteria have
been considered so as to cast the task of ranking observa-
tions in an order as close as possible to that induced by
the ordinal output variable as a M-estimation problem, in-
cluding the (area under the) receiver operator characteristic
curve (ROC curve in short) and the precision-recall curve
in the bipartite situation (i.e. when the output variable is
binary), the normalized discounted cumulative gain crite-
rion or the ROC manifold in the general multipartite frame-
work. Many practical ranking algorithms, supported by
sound theoretical results extending the probabilistic theory
of pattern recognition, are now documented in the litera-
ture, see (Freund et al., 2003; Clémençon & Vayatis, 2009;
Rakotomamonjy, 2004; Pahikkala et al., 2007) for instance.
However, in many applications, which can be referred to
as unsupervised anomaly/novelty detection and comprise
the monitoring of complex systems such as the functioning
of aircraft engines, system management in data centers (cf
(Viswanathan et al., 2012)), network intrusion surveillance
or fraud detection, it would be desirable as well to rank
multivariate data, so that top ranked observations should
be ideally the likeliest ”outliers”, in absence of any output
variable indicating the degree of ”abnormality”. Through-
out the article, this problem shall be termed anomaly rank-
ing or anomaly scoring, insofar as the most natural way to
define a preorder on a general feature space X ⊂ Rd, with
d ≥ 1, is to transport the natural order on the real half-line
by means of a (measurable) scoring function s : X → R+.
The ideal way of ordering all the elements of the feature
space naturally corresponds to the reverse of the order in-
duced by the (generally unknown) underlying density func-
tion. Because density estimation should be avoided in a
high dimensional setup, due to the curse of dimensional-
ity phenomenon, a performance criterion of functional na-
ture, just like the ROC curve in the supervised framework,
has been recently introduced in (Clémençon & Jakubow-
icz, 2013), which permits to evaluate the accuracy of any
ranking rule, as regards the objective pursued. It has been
termed the Mass Volume curve (MV curve) and the lower
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the MV curve of a scoring function, the more accurate the
ranking it induces. But, in contrast to the supervised frame-
work, no algorithm is readily available to build a scor-
ing function with a nearly optimal MV curve from (unla-
beled) training data. It should also be recalled that min-
imum volume set estimation techniques (Scott & Nowak,
2006), originally designed to solve unsupervised anomaly
detection problems, are not appropriate for anomaly rank-
ing, cast as MV curve minimization, since they consist in
recovering a single density level set, corresponding thus to
single point of the optimal MV curve (with the target mass
level as abcissa).

It is the major purpose of this paper to highlight the connec-
tion between (supervised) bipartite ranking and anomaly
ranking. Indeed, it is shown in the present article that,
in the case where the underlying probability distribution
F(dx) has compact support, included in [0, 1]d say, the MV
curve of any scoring function s(x) and its ROC curve with
regard to the bipartite ranking problem, where the ”posi-
tive distribution” is the probability measure F(dx) which
the observations are drawn according to and the ”negative
distribution” is uniform on [0, 1]d, are symmetrical w.r.t.
the first diagonal. Hence, minimization of the MV curve
boils down to maximizing the corresponding ROC curve,
which task can be achieved by various algorithms based
on two independent data samples, one drawn from F(dx)
and the other drawn from the uniform distribution. Build-
ing on this crucial observation, we first propose to ”hi-
jack” bipartite ranking algorithms by implementing them
with the originally unlabeled sample as ”negative sample”
and a simulated ”positive sample” made of i.i.d. data uni-
formly distributed on [0, 1]d. Incidentally, we point out that
sampling data from a reference measure in order to reveal
properties of the density under study by means of super-
vised techniques is well-known folklore in applied statis-
tics, generalized association rules for instance are precisely
based on this approach (see Chapter 14 in (Friedman et al.,
2009)) and (Steinwart et al., 2005) proposed a method, in-
volving the simulation of uniformly distributed data too,
to turn (unsupervised) anomaly detection into a supervised
binary classification problem. We next explain how to ex-
tend the TREERANK approach, originally introduced in
(Clémençon & Vayatis, 2009) to the unsupervised frame-
work. Beyond the fact that it may produce interpretable
ranking rules, visualizable by means of an oriented tree
graphic, in contrast to other bipartite ranking algorithms,
its implementation in the unsupervised context does not re-
quire to sample any extra data uniformly distributed over
[0, 1]d. Numerical experiments have been also carried out
in order to illustrate the performance of various bipartite
ranking algorithms for anomaly ranking.

The rest of the article is structured as follows. In section
2, notations are first set out and key notions of the anomaly

ranking problem are recalled, together with basic concepts
of bipartite ranking and ROC analysis. Section 3 explains
at length the connection between the supervised and un-
supervised ranking problems in the compact support case,
while section 4 shows how to extend the use of certain bi-
partite ranking algorithms to anomaly ranking from a prac-
tical perspective. Finally, numerical results based on syn-
thetic/real datasets are displayed in section 5 for illustration
purpose.

2. Background and Preliminaries
Here we essentially describe the issue of anomaly rank-
ing and briefly recall the related key concepts of MV curve
analysis. We also set out the notations that shall be needed
throughout the paper.

2.1. The Statistical Framework

In the anomaly ranking problem, the goal pursued is to
learn how to order observations by degree of ”abnormal-
ity”, on the basis of a training sample X1, . . . , Xn made
of i.i.d. copies of a random variable X, taking its values in
a (possibly high-dimensional) space X ⊂ Rd with d ≥ 1
and distributed according to a continuous probability mea-
sure F(dx) = f(x)dx. The preorder on X is defined by
means of a (measurable) scoring function s : X → R+:
∀(x, x ′) ∈ X 2, x �s x ′ ⇔ s(x) ≤ s(x ′). We denote
by S the set of all scoring functions on X integrable w.r.t.
Lebesgue measure on X (see the next subsection for the
explanation of the integrability constraint). Given the na-
ture of the problem, the optimal ranking is naturally that
determined by the density function f(x). The set S∗ ⊂ S
of optimal scoring functions is made of (λ-integrable) non-
negative strictly increasing transforms of the density func-
tion.

We point out that the nature of the problem considered is
very different from that of (nonparametric) density estima-
tion: there is no need to estimate the local values taken
by the density function, only the preorder on X it induces
is of interest here. We also emphasize that in many ap-
plications, the very purpose of unsupervised anomaly de-
tection is not to assign a label ”normal” vs. ”abnormal”
to any new observation, compared to the vast majority of
the data previously observed (i.e. the training data), but
to rank any new set of observations (i.e. test data) by de-
gree of abnormality. The form of the output, an ordered
list namely, may greatly facilitates the work of human op-
erators. For instance, in the context of Distributed Fleet
Monitoring (DFM) for Flight Operational Quality Assur-
ance (FOQA) programs, an anomaly scoring function (tak-
ing flight data and aircraft features as input variables in par-
ticular) could permit to set priorities and help optimize the
work of FOQA analysts who do not have time to look at the
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data for hundreds of thousands of flights: depending on op-
erational constraints, the 10 most abnormal flights will be
examined first, then the next 10 flights, etc.. Finally, we un-
derline that the framework we develop in this paper is fully
nonparametric. In particular, no parametric assumption on
the tail behavior of the underlying multivariate distribution,
permitting to rank new observations according the corre-
sponding p-values, is made.

The following assumptions shall be involved in the subse-
quent analysis.

H1 The random variable f(X) is continuous.

H2 The density f is bounded: supx∈X f(x) < +∞.

Here we denote by λ the Lebesgue measure on X , by
I{E} the indicator function of any event E . The general-
ized inverse function of any cdf K(t) on R is denoted by
K−1(u) = inf{t ∈ R : K(t) ≥ u}.

2.2. Mass Volume Curves

In (Clémençon & Jakubowicz, 2013), a natural way of mea-
suring the ranking performance of a given scoring function
s ∈ S in the unsupervised setting has been introduced (see
Definition 2 therein). It consists of plotting its Mass Vol-
ume (MV) curve, namely the Probability Measure plot:

t > 0 7→ (P{s(X) ≥ t}, λ({x ∈ X : s(x) ≥ t})) . (1)

With Ωs,t = {x ∈ X : s(x) ≥ t} for any
t ≥ 0, the MV curve is the parametrized curve t >
0 7→ (F(Ωs,t), λ(Ωs,t)). Observe that, since s is
supposed to be λ-integrable, the measure λ(Ωs,t) ≤
(
∫
u∈R+

s(u)du)/t is finite for any t > 0. Connecting
points corresponding to possible jumps of the parametric
curve, the curve can be seen as the plot of a continuous
mapping MVs : α ∈ (0, 1) 7→ MVs(α), starting at (0, 0).
Denoting by Fs(t) the cdf of the r.v. s(X), in the case where
Fs ◦ F−1

s (α) = α, we have:

MVs(α) = λ
(
{x ∈ X : s(x) ≥ F−1

s (1− α)}
)
. (2)

Let α ∈ (0, 1). Under the Assumptions H1 − H2, the set
Ω∗α = {x ∈ X : f(x) ≥ F−1

f (1−α)} is the unique solution
of the minimum volume set problem

min
Ω∈B(X)

λ(Ω) subject to F(Ω) ≥ α, (3)

where B(X ) denotes the ensemble made of all borelian
subsets of X . For small values of the mass level α, min-
imum volume sets are expected to contain the modes of the
distribution, whereas their complementary sets correspond
to ”abnormal observations” when considering large values

of α. Refer to (Einmahl & Mason, 1992; Polonik, 1997)
for an account of minimum volume set theory and to (Vert
& Vert, 2006; Scott & Nowak, 2006) for related statistical
learning results. As stated in Proposition 3 of (Clémençon
& Jakubowicz, 2013), this implies that the MV curve of
the scoring function f(x), which plots the (minimum) vol-
ume λ(Ω∗α) against the mass F(Ω∗α) = α and which shall
be denoted by MV∗, is dominated by any other MV curve
everywhere:

∀s ∈ S, ∀α ∈ (0, 1), MV∗(α) ≤ MVs(α). (4)

It is noteworthy that MV∗ is a convex function and MV
curves are invariant under strictly increasing transforms. A
list of properties of MV curves is given in Proposition 5 in
(Clémençon & Jakubowicz, 2013). A typical MV curve is
depicted in Fig. 5.1. When the distribution F(dx) is much
concentrated around its modes and exhibits a light tail be-
havior, the optimal MV curve increases very slowly and
rises near 1. Of course, MV curves are generally unknown
in practice, just like the distribution F(dx), and must be es-
timated by their empirical counterparts, see Theorem 8 in
(Clémençon & Jakubowicz, 2013) for more details on sta-
tistical estimation of MV curves.

A partial order on S . The concept of MV curve in-
duces a partial order on the set of scoring functions S. Let
(s1, s2) ∈ S2, we will say that the scoring function s1 is
more accurate than s2 if and only if its MV curve is below
of s2 everywhere, i.e. ∀α ∈ (0, 1), MVs1

(α) ≤ MVs2
(α):

for any fixed mass level, s1 defines a subset of smaller vol-
ume. Equipped with this functional performance criterion,
the optimal scoring functions s ∈ S are the elements of
S∗ = {T◦f : T : Imf(X) → R+ strictly increasing}, where
Imf(X) denotes the image of the r.v. f(X). The closer
the MV curve of a scoring function candidate to MV∗, the
more accurate the ranking it defines. Of course, there a
many ways of quantifying closeness in the MV space. One
could naturally consider Lp distances, 1 ≤ p ≤ +∞, as in
(Clémençon & Jakubowicz, 2013).

In this paper, focus is on the situation where the assumption
below is fulfilled.

H3 The probability distribution F(dx) has compact sup-
port, equal to [0, 1]d say.

In this case, the MV curve of any scoring function s ∈ S
ends at (1, 1). Let p ∈ [1,+∞], the performance of any
s ∈ S can be measured through the quantity

dp(s, s
∗) = ||MVs − MV∗||p, (5)

where ||.||p denotes the Lp-norm on [0, 1] and s∗ ∈ S∗. The
goal of anomaly ranking can be then stated in a quantita-
tive manner. Based on a training dataset {X1, . . . , Xn},
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the objective is to build a scoring function s ∈ S such that
dp(s, s

∗) is as small as possible with overwhelming proba-
bility. Notice finally that, since we have the decomposition
d1(s, s

∗) =
∫1
α=0

MVs(α)dα−
∫1
α=0

MV∗(α)dα (see Eq.
(4)), anomaly ranking reduces to minimization of the area
under the MV curve in the case p = 1.

Anomaly ranking versus anomaly detection. Anomaly
ranking is very different from (unsupervised) anomaly de-
tection, cast as minimum volume set estimation. A mass
level α ∈ (0, 1) being preliminarily fixed, the latter con-
sists in recovering from data a specific density level set
Ω∗α, while the former aims at building a scoring function
s(x) whose collection of level sets {Ωs,t}t>0 nearly corre-
sponds to that of the underlying density f(x), {Ω∗α}α∈(0,1)

(i.e. an increasing transform of f(x)). Hence, anomaly
ranking should be viewed as a continuum of anomaly de-
tection problems: finding the observations forming the top
1% the most abnormal, then those forming the top 2%, etc.

2.3. Ranking Bipartite and ROC Analysis

Consider now two probability distributions on the space X ,
G(dx) and H(dx), absolutely continuous with respect to
each other. The ROC curve of any scoring function s(x) is
defined as the PP-plot t > 0 7→ (1−Hs(t), 1−Gs(t)),
where Hs(dt) and Gs(dt) respectively denote the images
of the distributions H and G by the mapping s : X →
R+. Connecting by convention possible jumps by line seg-
ments, the ROC curve of the scoring function s(x) can
always be viewed as the plot of a continuous mapping
ROCs : α ∈ (0, 1) 7→ ROCs(α). It starts at (0, 0) and ends
at (1, 1). At any point α ∈ (0, 1) such that Hs ◦H−1

s (α) =
α, we have: ROCs(α) = 1−Gs ◦H−1

s (1−α). The curve
ROCs measures the capacity of s to discriminate between
distributions H and G. It coincides with the first diagonal
when Hs = Gs. Observe also that the stochastically larger
thanHs the distributionGs, the closer to the left upper cor-
ner of the ROC space the curve ROCs. One may refer to
(Fawcett, 2006) for an account of ROC analysis and its ap-
plications.

The notion of ROC curve defines a partial order on S. A
scoring function s1 is more accurate than s2 iff: ∀α ∈
(0, 1), ROCs1

(α) ≥ ROCs2
(α). A Neyman-Pearson argu-

ment shows that the optimal ROC curve, denoted by ROC∗,
is that of the likelihood ratio statistic φ(x) = dG/dH(x).
It dominates any other ROC curve everywhere: ∀(s, α) ∈
S × (0, 1), ROCs(α) ≤ ROC∗(α). The set S∗H,G =
{T ◦φ, T : Imφ(X) → R+ strictly increasing} is the set of
optimal scoring functions regarding the bipartite problem
considered.

The goal of bipartite ranking is to build a scoring func-
tion with a ROC curve as high as possible, based on
two independent labeled datasets: (X−

1 , . . . , X
−
m) and

(X+
1 , . . . , X

+
q ) made of independent realizations of H

and G respectively, with m, q ≥ 1. Assigning the la-
bel Y = +1 to observations drawn from G(dx) and label
Y = −1 to those drawn from H(dx), the objective can be
also expressed as to rank/score any pooled set of observa-
tions (in absence of label information) so that, ideally, the
higher the score of an observation X, the likelier its (hid-
den) label Y is positive.

The accuracy of any s ∈ S can be measured by:

Dp(s, s
∗) = ||ROCs − ROC∗||p, (6)

where s∗ ∈ S∗H,G and p ∈ [1,+∞]. Observe that, in the
case p = 1, one may write D1(s, s∗) = AUC∗ − AUC(s),
where AUC(s) =

∫1
α=0

ROCs(α)dα is the Area Under the
ROC Curve (AUC in short) and AUC∗ = AUC(φ) is the
maximum AUC. Hence, minimizing D1(s, s∗) boils down
to maximizing the ROC summary AUC(s). The popularity
of this quantity arises from the fact it can be interpreted, in
a probabilistic manner, as the rate of concording pairs

AUC(s) = P {s(X) < s(X ′)} +
1

2
P {s(X) = s(X ′)} , (7)

where X and X ′ denote independent r.v.’s defined on the
same probability space, drawn from H and G respectively.
An empirical counterpart of AUC(s) can be straightfor-
wardly derived from (7), paving the way for the imple-
mentation of ”empirical risk minimization” strategies, see
(Clémençon et al., 2008).

The algorithms proposed to optimize the AUC criterion
or surrogate performance measures are too numerous to
be listed in an exhaustive manner. In the present article,
due to space limitations, we restrict our attention to the ex-
tension of the following algorithms to the anomaly rank-
ing problem: 1) the TREERANK method and its variants
(see (Clémençon & Vayatis, 2009; Clémençon et al., 2011;
2013)), which relies on recursive AUC maximization, see
subsection 4.2, 2) the RankBoost algorithm, which imple-
ments a boosting approach tailored for the ranking prob-
lem (see (Freund et al., 2003)), 3) the SVMrank algorithm
originally designed for ordinal regression (see (Herbrich
et al., 2000)) and 4) the RankRLS procedure proposed in
(Pahikkala et al., 2007).

3. Anomaly Ranking: a Bipartite View
With the notations of subsection 2.3, we take H(dx) as the
uniform distributionU(dx) on [0, 1]d andG(dx) as F(dx),
the distribution of interest in the anomaly ranking problem.
It follows immediately from the definitions and properties
recalled in section 2 that, for any scoring function s ∈ S ,
the curves MVs and ROCs are symmetrical with respect
to the first diagnonal of the unit square [0, 1]2. Hence, as
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stated in the next result, solving the anomaly ranking prob-
lem related to distribution F(dx) is equivalent to solving
the bipartite ranking problem related to the pair (U, F).

Theorem 1 Suppose that assumptions H1, H2 and H3
hold true. LetU(dx) be the uniform distribution on [0, 1]d.
For any (s, α) ∈ S × (0, 1), we have: ROC−1

s (α) =
MVs(α). We also have S∗ = S∗U,F, and

∀(s, s∗) ∈ S × S∗, Dp(s, s∗) = dp(s, s
∗),

for 1 ≤ p ≤ +∞. In particular, we have: ∀s ∈ S,

1−

∫1
α=0

MVs(α)dα = P{s(W) < s(X)}

+
1

2
P{s(W) < s(X)},

where W and X are independent r.v.’s, drawn from U(dx)
and F(dx) respectively.

The proof is straightforward, it suffices to observe thatφ =
dG/dH = f in this context. Details are thus left to the
reader.

Incidentally, we point out that, under the assumptions listed
above, the minimal area under the MV curve may be thus
interpreted as a measure of dissimilarity between the distri-
bution F(dx) and the uniform distribution on [0, 1]d. The
closer

∫1
0

MV∗(α)dα to 1/2, the more similar toU(dx) the
distribution F(dx).

Remark 2 (ON THE SUPPORT ASSUMPTION.) In gen-
eral, the support of F(dx) is unknown, just like the distri-
bution itself. However, the argument above remains valid
in the case where suppF(dx) ⊂ [0, 1]d. The sole dif-
ference lies in the fact that the curve MV∗ then ends at
the point of mass-axis coordinate 1 and volume-axis co-
ordinate λ(suppF) ≤ 1, the corresponding curve ROC∗

exhibiting a plateau: it reaches 1 from the false positive
rate λ(suppF). We point out that, when no information
about the support is available, one may always carry out
the analysis for the conditional distribution given X ∈ C,
where C denotes any compact set containing the observa-
tions X1, . . . , Xn.

4. Extending Bipartite Methods
Now that the connection between anomaly ranking and bi-
partite ranking has been highlighted, we show how to ex-
ploit it to extend efficient algorithms proposed in the super-
vised framework to MV curve minimization. Learning pro-
cedures are based on a training i.i.d. sample X1, . . . , Xn,
distributed according to the unknown probability measure
F(dx) with compact support, included in [0, 1]d say.

4.1. Sampling

One may extend the use of any bipartite ranking algorithm
A to the unsupervised context by simulating extra data, uni-
formly distributed on the unit hypercube, as follows.

1. Sample additional data X−
1 , . . . , X

−
m, uniformly dis-

tributed over [0, 1]d.

2. Assign a ”negative” label to the sample D−
m =

{X−
1 , . . . , X

−
m} and a ”positive” label to the origi-

nal data D+
n = {X1, . . . , Xn}.

3. Run algorithm A based on the bipartite statistical
population D−

m ∪ D+
n , producing the anomaly scor-

ing function s(x).

Except the choice of the algorithm A and the selection of
its hyperparameters, the sole tuning parameter which must
be set is the size m of the uniformly distributed sample. In
practice, it should be chosen as large as possible, depending
on the current computational constraints. From a practical
perspective, it should be noticed that the computational cost
of the sampling stage is reduced. Indeed, the d components
of a r.v. uniformly distributed on the hypercube [0, 1]d

being independent and uniformly distributed according to
the uniform distribution on the unit interval, the ”negative”
sample can be thus generated by means of pseudo-random
number generators (PRNG’s), involving no complex sim-
ulation algorithm. Furthermore, uniform distributions on
any (borelian) subset of [0, 1]d can be naturally simulated
in a quite similar fashion, with an additional conditioning
step.

We point out that, in the context of density estimation,
a similar sampling technique for transforming this unsu-
pervised problem into one of supervised function approx-
imation is discussed in section 14.2.4 in (Friedman et al.,
2009), where it is used in particular to build generalized
association rules. This idea is also exploited in (Stein-
wart et al., 2005) for anomaly detection, see also (Scott
& Davenport, 2007). In this respect, it should be men-
tioned that a variety of techniques, including that proposed
in (Schölkopf et al., 2001) where the SVM machinery has
been extended to the unsupervised framework and now re-
ferred to as ONE CLASS SVM, have been proposed to re-
cover the setΩ∗α for a target mass level α ∈ (0, 1), fixed in
advance. Therefore, even if the estimates produced of are
of the form {x ∈ X : f̂(x) > tα} and one could consider
using the decision function f̂(x) as scoring function, one
should keep in mind that there is no statistical guarantee
that the ensembles {x ∈ X : f̂(x) > t} are good estimates
of density level sets for t 6= tα. This explains the poor
performance of such a ”plug-in” approach in practice, as
exhibited in section 5.
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4.2. Unsupervised TreeRank

The TREERANK algorithm, a bipartite ranking technique
optimizing the ROC curve in a recursive fashion, has been
introduced in (Clémençon & Vayatis, 2009) and its proper-
ties have been investigated in detail in (Clémençon et al.,
2011). Its output consists of an ordered partition of the fea-
ture space X (defining thus a ranking, for which elements
of a same cell being viewed as ties). The ordered recursive
partitioning process is described by a left-to-right oriented
binary tree structure, referred to as ranking tree, with fixed
maximum depth J ≥ 0. At depth j ≤ J, there are 2j nodes,
indexed by (j, k) with 0 ≤ k < 2j. The root node depicts
the entire space C0,0 = X and each internal node (j, k)
with j < J and k ∈ {0, . . . , 2j − 1} represents a subset
Cj,k ⊂ X , whose left and right siblings respectively corre-
spond to disjoint subsets Cj+1,2k and Cj+1,2k+1 such that
Cj,k = Cj+1,2k ∪ Cj+1,2k+1. At the root, one starts with
a constant scoring function s1(x) = I{x ∈ C0,0} ≡ 1 and
after m = 2j + k iterations, 0 ≤ k < 2j, the current scor-
ing function is sm(x) =

∑2k−1
l=0 (m − l) · I{x ∈ Cj+1,l} +∑2j−1

l=k (m − k − l) · I{x ∈ Cj,l} and the cell Cj,k is split
in order to form a refined version of the scoring function,
sm+1(x) =

∑2k
l=0(m− l) · I{x ∈ Cj+1,l} +

∑2j−1
l=k+1(m−

k − l) · I{x ∈ Cj,l} namely, with maximum (empirical)
AUC. Therefore, it happens that this problem boils down
to solve a cost-sensitive binary classification problem on
the set Cj,k, see subsection 3.3 in (Clémençon et al., 2011)
for further details. Indeed, one may write the AUC incre-
ment as AUC(sm+1) − AUC(sm) = 1

2H(Cj,k)G(Cj,k) ×
(1 − Λ(Cj+1,2k | Cj,k)), where Λ(Cj+1,2k | Cj,k)

def
=

G(Cj,k \ Cj+1,2k)/G(Cj,k) + H(Cj+1,2k)/H(Cj,k). Set-
ting p = G(Cj,k)/(H(Cj,k) + G(Cj,k)), the crucial point
of the TREERANK approach is that the quantity 2p(1 −
p)Λ(Cj+1,2k | Cj,k) can be interpreted as the cost-sensitive
error of a classifier on Cj,k predicting positive label on
Cj+1,2k and negative label on Cj,k\Cj+1,2k with cost p (re-
spectively, 1−p) assigned to the error consisting in predict-
ing label +1 given Y = −1 (resp., label −1 given Y = +1),
balancing thus the two types of error. Hence, at each
iteration of the ranking tree growing stage, the TREER-
ANK algorithm calls a cost-sensitive binary classification
algorithm, termed LEAFRANK, in order to solve a statis-
tical version of the problem above (replacing the theoreti-
cal probabilities involved by their empirical counterparts)
and split Cj,k into Cj+1,2k and Cj+1,2k+1. As described
at length in (Clémençon et al., 2011), one may use cost-
sensitive versions of celebrated binary classification algo-
rithms such as CART or SVM for instance as LEAFRANK
procedure, the performance depending on their ability to
capture the geometry of the level sets of the likelihood ra-
tio dG/dH(x). In general, the growing stage is followed
by a pruning procedure, where children of a same parent

node are recursively merged in order to produce a rank-
ing subtree that maximizes an estimate of the AUC cri-
terion, based on cross-validation usually (cf section 4 in
(Clémençon et al., 2011)). Under adequate assumptions,
consistency results and rate bounds for the TREERANK ap-
proach (in the sup norm sense and for the AUC deficit both
at the same time) are established in (Clémençon & Vayatis,
2009) and (Clémençon et al., 2011), an extensive experi-
mental study can be found in (Clémençon et al., 2012).

In the anomaly ranking context, the ”negative distribution”
is U(dx). Therefore, in the situation where LEAFRANK
is chosen as a cost-sensitive version of the CART algo-
rithm with axis parallel splits (see (Breiman et al., 1984)),
all the cells Cj,k can be expressed as union of hypercubes.
The exact computation of the volume U(Cj,k) is then el-
ementarily feasible, as a function of the threshold values
involved in the decision tree describing the split and of the
volume of the parent node. Hence, only empirical coun-
terparts of the quantities F(C) for subset C ⊂ [0, 1]d can-
didates, F̂n(C) = (1/n)

∑n
i=1 I{X ∈ C}, are required to

estimate the cost-sensitive classification error and imple-
ment the splitting stage (AUC maximization). Hence, this
approach does not require to sample any additional data,
in contrast to that proposed in subsection 4.1. This is a
key advantage in practice, in contrast to ”simulation-based”
approaches: for high values of the dimension d, data are
expected to lie very sparsely in [0, 1]d and can be then
very easily separated from those obtained by sampling a
”reasonable” number of uniform observations, leading bi-
partite ranking algorithms to overfit. Similarly to the su-
pervised case, the UNSUPERVISED TREERANK algorithm
corresponds to a statistical version of an adaptive piecewise
linear interpolation scheme of the optimal MV curve, see
(Clémençon & Vayatis, 2009).
Interpretation. From a practical angle, a crucial advantage
of the approach describes above lies in the interpretability
of the anomaly ranking rules produced. In contrast to alter-
native techniques, they can be summarized by means of a
left-to-right oriented binary tree graphic: observations are
all the more considered as abnormal as they are located in
terminal leaves at the right of the anomaly ranking tree.
An arrow at the bottom of the tree indicates the direction
in which the density decreases. Each splitting rule possibly
involves the combination of elementary threshold rules of
the type ”X(k) > κ” or ”X(k) ≤ κ” with κ ∈ R in a hi-
erarchical manner. In addition, it is also possible to rank
the X(k)’s depending on their relative importance, mea-
sured through the empirical volume under the MV curve
decrease induced by splits involving X(k) as split vari-
able, just like in the supervised setup, see section 5.1 in
(Clémençon et al., 2011) for further details. This permits
to identify the variables which have most relevance to de-
tect anomalies.
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5. Numerical Experiments
We now illustrate the points put forward in sections 3
and 4 by means of numerical experiments, based on un-
labeled synthetic/real datasets. Precisely, we implemented
the modification of the TREERANK procedure based on lo-
cally weighted versions of the CART method (with axis
parallel splits) described at length in subsection 4.2, using
the package for R statistical software (see http://www.r-
project.org), available at http://treerank.sourceforge.net
(with parameters: minsplit = 1, maxdepth = 4, in the
LEAFRANK), see (Baskiotis et al., 2009). We have also
used RankBoost (aggregating 30 stumps, see (Rudin et al.,
2005)) and SVMRank (with linear and Gaussian ker-
nels with cross-validated parameters, see (Herbrich et al.,
2000)), using the SVM-light implementation available
at http://svmlight.joachims.org/. The RankRLS method
(http://www.tucs.fi/RLScore, see (Pahikkala et al., 2007))
that implements a regularized least square algorithm with
linear kernel (”bias = 1”) and with Gaussian kernel
(γ = 0.01) has also been used, selection of the intercept
on a grid being performed through a leave-one-out proce-
dure. The anomaly ranking procedure based on the latter
algorithms required to sample uniformly distributed ”nega-
tive” data, as explained in subsection 4.1. As said at the
end of section 4, the decision function output by the 1-
class SVM procedure can be used as a scoring function,
improperly however because the objective function it op-
timizes is related to a single point of the target MV curve
(see the toy example below). We used the R-package Kern-
lab with gaussian kernel, with parameters chosen automat-
ically by cross-validation. In the tables displayed below,
the anomaly scoring function produced by RankBoost is
referred to as ”RankBoost”, those computed by means of
SVMrank (respectively, by means of RankRLS) based on
a linear and a Gaussian kernels as ”SVMlin” and ”SVM-
gauss” (resp. ”RLSlin” and ”RLSgauss”) and that pro-
duced by one-class SVM as ”1cSVM”.

In the following experiment, an estimate of the area under
the MV-curve (AMV in short) is computed over 5 repli-
cations of a 5-fold cross validation as well as the overall
standard deviation (denoted by σ).

5.1. Toy Examples and Synthetic Data

Let Z be a q-dimensional Gaussian r.v. with mean µ
and covariance matrix Γ , and consider a borelian subset
C ⊂ Rq with non zero Lebesgue measure. We denote by
NC(µ, Γ) the conditional distribution of Z given Z ∈ C.
Equipped with this notation, we can write the probability

a. Pooled sample: red circles represent
instances with density f and blue stars those

with uniform distribution.

b. Density level sets.

Figure 1. Mixture of Gaussian distributions

Figure 2. MV-curves: in blue, the MV-curve
using the posterior distribution, in red the MV-
curves using TREERANK.

distribution used as toy example here as:
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The simulated dataset is plotted in Fig. 2a, while some level
sets of the density f are represented in Fig. 2b. We have in-
dependently sampled 5000 independent observations from
distribution f(x)dx and 5000 independent uniformly dis-
tributed points. The optimal AMV is denoted by AMV∗

(knowing the density, it can be estimated by a basic Monte-
Carlo scheme). As expected, given the distribution of the
data to be ranked, the linear methods perform worst. Notice
in addition that TREERANK and RLSgauss yield compara-
ble results and outperform RankBoost, SVMgauss on this
example. Among nonlinear rules, 1cSVM yields the poor-
est performance (cf section 4). The MV curves produced
by the TREERANK algorithm in Fig. 3.

5.2. A Real-World Example

We also used a benchmark dataset in anomaly de-
tection (computer network intrusion detection namely)
proposed as a challenge for intrusion detection in the
CMDC2013, see http://www.csmining.org/cdmc2013/ and
(Song, 2013). In the present analysis, we kept the three fea-
tures dst.host.rerror.rate, rerror.rate and serror.rate and re-
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Table 1. Comparison of the AMV test - AMV∗ = 0.2393

Method TreeRank RankBoost SVMlin SVMgauss RLSlin RLSgauss ocSVM

AMV test 0.2448 0.2598 0.4128 0.2502 0.4129 0.2443 0.3373
σ 0.0124 0.0119 0.0125 0.0122 0.0123 0.0122 0.0042

moved degenerate features, yielding a training set of 6802
instances. Then, we simulated 10000 extra ”negative” data,
uniformly distributed over the cube [0, 1]3. Estimates of the
area under the MV curve (AMV) have been computed over
five replications of a five-fold cross validation and the over-
all standard deviation is reported in Table 2. The modified
TREERANK procedure outperforms all the other methods,
illustrating the advantage of using a method avoiding any
sampling stage. Given the clear superiority of the methods
based on Gaussian kernels over linear techniques, one may
also guess that the level sets of the underlying density are
highly nonlinear.

6. Conclusion
Here we shed light on the connection between anomaly
ranking, cast as Mass Volume curve minimization, and bi-
partite ranking when the distribution F(dx) of the (unla-
beled) training data is compactly supported. Assuming
(rather than rescaling the observations) that the support
is included in [0, 1]d, the related bipartite problem corre-
sponds to the situation where F(dx) is the ”positive” distri-
bution and the ”negative” one is uniform on [0, 1]d. We
thus proved that, following the generation of uniformly
distributed data, bipartite ranking algorithms can be read-
ily used to build scoring functions which nearly solve MV
curve minimization. We illustrated this through numerical
experiments.
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Baskiotis, N., Clémençon, S., Depecker, M., and Vayatis,
N. R-implementation of the TreeRank algorithm. Sub-
mitted for publication, 2009.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. Clas-

sification and Regression Trees. Wadsworth and Brooks,
1984.
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