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1 Derivation of Conjugacy Relation

1.1 Regular von-Mises / uncoupled model

We show that a product of von-Mises distributions is a conjugate prior for the
ϕ parameter of a toroidal parameterization of the Gaussian distribution.
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Recall that

R(ϕj) =
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cos(ϕj) − sin(ϕj)
sin(ϕj) cos(ϕj)

]
T (ϕj) = [cos(ϕj), sin(ϕj)]

T

(1)

The coefficients in the bilinear form multiplying cosine and sine are vj1uj1 +
vj2uj2 and vj2uj1 − vj1uj2 respectively. We can group these into a vector and
dot it with T (ϕj) = (cos(ϕj), sin(ϕj))

T . Next, factor out the T (ϕj) to obtain
the result listed in the main paper:
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where

η̂j = ηj +
1

σ2
[uj1vj1 + uj2vj2 , uj1vj2 − uj2vj1 ]T (3)

1.2 Generalized von-Mises / coupled model

p(ϕ|x,y) ∝ p(y|x, ϕ)p(ϕ)
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where now we have:

R(s) =
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(4)

Expanding the bilinear form, we find:
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Factoring out the trigonometric functions of each unique frequency j yields the
result in the paper:
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2 Marginal likelihood
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The derivation for the coupled model is completely analogous, except that

we now have to work towards a form where the GvM conjugacy can be used.
Then the integral is simply the computation of the normalization constant of
the GvM. That this normalization constant is equal to a Generalized Bessel
Function (GBF) can be seen in the paper by Dattoli et al. cited in the main
article, and is easily derived.

3 MAP inference

In order to perform MAP inference in the coupled model, we recast our real-
valued model into complex form, and then apply the algorithm of Sohl-Dickstein
et al directly. Recall that the transformations in our model are parameterized as
Q(s) = WR(s)WT , where R(s) is block -diagonal. Sohl-Dickstein et al. use a
fully diagonal form, Q(s) = UDU−1, where U is complex and not constrained
in any way (except for the requirement of invertibility).

We can diagonalize our model by performing an eigendecomposition of the
generator matrix A =

∑
jAj . This matrix is zero everywhere, except for the

entries a2j, 2j−1 = 1 and a2j−1, 2j = −1. Let E be the eigenvectors of this
matrix, then U = WE.

The diagonal matrix D is given by the matrix exponential of a diagonal
matrix, D = exp (sΛ). To get a model that is equivalent to TSA, set Λ2j−1 = iωj
and Λ2j−1 = −iωj . One can verify that the matrices UDU−1 and WR(s)WT

are indeed the same, numerically. Now, we can use Sohl-Dicksteins method to
obtain a MAP estimate of s. It is most likely not too hard to apply the basic
idea of S-D et al. directly to TSA, but we have not tried this yet.

To get good results using the method of S-D et al., we found that it is
necesary to initialize the smoothing parameter σ at a value of around 3. Much
higher and we run into numerical issues due to the exponentiation, and much
lower (e.g. 0) and the algorithm will not find a good minimum.
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4 Computation of Generalized Bessel Functions

One way to define the modified Generalized Bessel functions (GBF) is as follows:

In(x1, . . . , xM ) =

∞∑
l=−∞

In−Ml(x1, . . . , xM−1)Il(xM ) (8)

where the scalar function In(xi) is the modified Bessel function or order n.
Analogous functions can be defined by replacing some or all of the Il in this
recursion by the ordinary Bessel function Jl, but here we will only focus on the
pure-I form.

A set of complex parameters τm (m = 1, . . .M − 1) may be included in the
definition:

In(x1, . . . , xM ; τ1, . . . , τM−1) =

∞∑
l=−∞

In−Ml(x1, . . . , xM−1; τ1, . . . , τM−2)Il(xM )τ lM−1

(9)
In the main paper we use a slightly different convention where we use M pa-
rameters:

In(x1, . . . , xM ; τ1, . . . , τM ) =

∞∑
l=−∞

In−Ml(x1, . . . , xM−1; τ1, . . . , τM−1)Il(xM )τ lM

(10)
so that the two-variable two-parameter GBF takes the form

In(x1, x2; τ1, τ2) =

∞∑
l=−∞

In−2l(x1)τn−2l1 Il(xM )τ lM

The GBF plays an important role in many areas of physics, and many ana-
lytical results are known. However, at this point not much computational work
has been done. The only works we have found, [3] and [2], focus on 2-variable
GBF, which is not nearly enough for our purposes. The authors of [2] derive a
fast and accurate but rather complicated method that works only for 2-variable
GBFs. According to [1], the computation of GBF is considered difficult: “[..]
gives rise to so-called generalized Bessel functions which are infinite sums of or-
dinary Bessel functions and have proven to be notoriously difficult to evaluate.”

5 Algorithm for the computation of GBF

The modified Bessel function In(xi) has the property that it tends towards zero
as n→∞ and as n→ −∞, so we can truncate the sum:

In(x1, . . . , xM ) ≈
L∑

l=−L

In−Ml(x1, . . . , xM−1)Il(xM ) (11)

However, a naive implementation of this function using a recursion or nested
summation has a runtime complexity that is exponential in the number of vari-
ables M , because each of the 2L+ 1 values l ∈ [−L,L] will call a GBF of order
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M − 1, which itself makes 2L + 1 calls, and so on. This yields a complexity of
O(LM ), which is intractable as the number of variables M grows large.

A much faster algorithm can be obtained by creating a function that uses
convolutions to compute the GBF, and can return an array of GBFs of different
orders n at once. The algorithm proceeds as follows. First obtain an array of
(M −1)-variable bessel functions of different orders using a single recursive call:

IM−1 = {I−L(x1, . . . , xM−1), . . . , IL(x1, . . . , xM−1)}. (12)

Next, create an array

IM = {I−L/M (xM ), 0, . . . , 0, I−L/M+1(xM ), 0, . . . , 0, IL/M+1(xM )} (13)

where each gap of zeros has length M −1, and we have assumed that M divides
L evenly. The function In(x1, . . . , xM ) can now be obtained as the n-th element
away from the center of the convolution IM∗IM−1. In other words, by computing
the convolution, we get the GBF for all orders at once. GBF with parameters
can be computed simply by multplying each element of the array IM by the
appropriate power of by τM−1 or τM (depending on the convention).

The convolutions can be performed in time L logL by doing a fast Fourier
transform of the arrays, then computing their product and then computing the
inverse transform on that. The computational complexity of the full method
is then O(ML logL): for M variables there are O(M) convolutions to be per-
formed, each one taking O(L logL).
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