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1 Derivation of Conjugacy Relation

1.1 Regular von-Mises / uncoupled model

We show that a product of von-Mises distributions is a conjugate prior for the
© parameter of a toroidal parameterization of the Gaussian distribution.
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The coefficients in the bilinear form multiplying cosine and sine are vj; u;, +
v, U5, and vj,u;, — v;, U, respectively. We can group these into a vector and
dot it with T(¢;) = (cos(¢;),sin(¢;))T. Next, factor out the T(p;) to obtain
the result listed in the main paper:
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where
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1.2 Generalized von-Mises / coupled model
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where now we have:
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T(s) = [cos(s),sin(s),...,cos(Ks),sin(Ks)]T.

Expanding the bilinear form, we find:
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Factoring out the trigonometric functions of each unique frequency j yields the
result in the paper:
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2 Marginal likelihood

p(ylx) = N(yIWR(p)WTx) [ [ M(p;n;)de

J ;
peT i

expn; T(p;)

1 1
= —— exp | ——ly - WR(p)WTx 2) d
o o (gl - WROW )

p€eT’

—= J T
exp (= gz (1% + [lyl” ))/ viR(pj)u; 4 1
= YT () de [] s
@ETY b Z o2 5 T(e5) | de - 2o (

(2mo)P j=1

_exp (—g= (X2 + Ny 1) o 1
o (2r0)D H/O exp (nj T(‘Py‘))dsﬂjm

J

_exp (== (Ix)1% + llyl*) Hfo 1351

N To([ln, 1)
™)

The derivation for the coupled model is completely analogous, except that
we now have to work towards a form where the GvM conjugacy can be used.
Then the integral is simply the computation of the normalization constant of
the GvM. That this normalization constant is equal to a Generalized Bessel
Function (GBF) can be seen in the paper by Dattoli et al. cited in the main
article, and is easily derived.

3 MAP inference

In order to perform MAP inference in the coupled model, we recast our real-
valued model into complex form, and then apply the algorithm of Sohl-Dickstein
et al directly. Recall that the transformations in our model are parameterized as
Q(s) = WR(s)WT where R(s) is block-diagonal. Sohl-Dickstein et al. use a
fully diagonal form, Q(s) = UDU™!, where U is complex and not constrained
in any way (except for the requirement of invertibility).

We can diagonalize our model by performing an eigendecomposition of the
generator matrix A = ) y A ;. This matrix is zero everywhere, except for the
entries agj 2j—1 = 1 and azj_1,2; = —1. Let E be the eigenvectors of this
matrix, then U = WE.

The diagonal matrix D is given by the matrix exponential of a diagonal
matrix, D = exp (sA). To get a model that is equivalent to TSA, set Agj_1 = iw;
and Agj_1 = —iw;. One can verify that the matrices UDU™! and WR(s)W7
are indeed the same, numerically. Now, we can use Sohl-Dicksteins method to
obtain a MAP estimate of s. It is most likely not too hard to apply the basic
idea of S-D et al. directly to TSA, but we have not tried this yet.

To get good results using the method of S-D et al., we found that it is
necesary to initialize the smoothing parameter o at a value of around 3. Much
higher and we run into numerical issues due to the exponentiation, and much
lower (e.g. 0) and the algorithm will not find a good minimum.
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4 Computation of Generalized Bessel Functions

One way to define the modified Generalized Bessel functions (GBF) is as follows:
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where the scalar function I, (z;) is the modified Bessel function or order n.
Analogous functions can be defined by replacing some or all of the I; in this
recursion by the ordinary Bessel function J;, but here we will only focus on the
pure-I form.

A set of complex parameters 7, (m =1,... M — 1) may be included in the
definition:
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In the main paper we use a slightly different convention where we use M pa-
rameters:
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so that the two-variable two-parameter GBF takes the form
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The GBF plays an important role in many areas of physics, and many ana-
lytical results are known. However, at this point not much computational work
has been done. The only works we have found, [3] and [2], focus on 2-variable
GBF, which is not nearly enough for our purposes. The authors of [2] derive a
fast and accurate but rather complicated method that works only for 2-variable
GBFs. According to [1], the computation of GBF is considered difficult: “[..]
gives rise to so-called generalized Bessel functions which are infinite sums of or-
dinary Bessel functions and have proven to be notoriously difficult to evaluate.”

5 Algorithm for the computation of GBF

The modified Bessel function I,,(x;) has the property that it tends towards zero
as n — oo and as n — —o0, so we can truncate the sum:
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However, a naive implementation of this function using a recursion or nested
summation has a runtime complexity that is exponential in the number of vari-
ables M, because each of the 2L + 1 values | € [—L, L] will call a GBF of order



M — 1, which itself makes 2L 4 1 calls, and so on. This yields a complexity of
O(LM), which is intractable as the number of variables M grows large.

A much faster algorithm can be obtained by creating a function that uses
convolutions to compute the GBF, and can return an array of GBFs of different
orders n at once. The algorithm proceeds as follows. First obtain an array of
(M —1)-variable bessel functions of different orders using a single recursive call:
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Next, create an array

In = {I—L/M(xM)v 0,...,0, I—L/M+1(xM)707 .50, IL/M—H(xM)} (13)

where each gap of zeros has length M — 1, and we have assumed that M divides
L evenly. The function I, (1, ...,z ) can now be obtained as the n-th element
away from the center of the convolution Iy;+Ip;_1. In other words, by computing
the convolution, we get the GBF for all orders at once. GBF with parameters
can be computed simply by multplying each element of the array Ip; by the
appropriate power of by 7ps_1 or 73 (depending on the convention).

The convolutions can be performed in time Llog L by doing a fast Fourier
transform of the arrays, then computing their product and then computing the
inverse transform on that. The computational complexity of the full method
is then O(M Llog L): for M variables there are O(M) convolutions to be per-
formed, each one taking O(LlogL).
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