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Abstract
We present a new probabilistic model of compact
commutative Lie groups that produces invariant-
equivariant and disentangled representations of
data. To define the notion of disentangling, we
borrow a fundamental principle from physics that
is used to derive the elementary particles of a sys-
tem from its symmetries. Our model employs a
newfound Bayesian conjugacy relation that en-
ables fully tractable probabilistic inference over
compact commutative Lie groups – a class that
includes the groups that describe the rotation and
cyclic translation of images. We train the model
on pairs of transformed image patches, and show
that the learned invariant representation is highly
effective for classification.

1. Introduction
Recently, the field of deep learning has produced some re-
markable breakthroughs. The hallmark of the deep learn-
ing approach is to learn multiple layers of representation of
data, and much work has gone into the development of rep-
resentation learning modules such as RBMs and their gen-
eralizations (Welling et al., 2005), and autoencoders (Vin-
cent et al., 2008). However, at this point it is not quite clear
what characterizes a good representation. In this paper, we
take a fresh look at the basic principles behind unsuper-
vised representation learning from the perspective of Lie
group theory1.

Various desiderata for learned representations have been
expressed: representations should be meaningful (Bengio
& Lecun, 2014), invariant (Goodfellow et al., 2009), ab-
stract and disentangled (Bengio et al., 2013), but so far
most of these notions have not been defined in a mathe-
matically precise way. Here we focus on the notions of in-
variance and disentangling, leaving the search for meaning
for future work.
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What do we mean, intuitively, when we speak of invari-
ance and disentangling? A disentangled representation is
one that explicitly represents the distinct factors of varia-
tion in the data. For example, visual data (i.e. pixels) can
be thought of as a composition of object identity, position
and pose, lighting conditions, etc. Once disentangling is
achieved, invariance follows easily: to build a representa-
tion that is invariant to the transformation of a factor of vari-
ation (e.g. object position) that is considered a nuisance for
a particular task (e.g. object classification), one can sim-
ply ignore the units in the representation that encode the
nuisance factor.

To get a mathematical handle on the concept of disentan-
gling, we borrow a fundamental principle from physics,
which we refer to as Weyl’s principle, following Kanatani
(1990). In physics, this idea is used to tease apart (i.e.
disentangle) the elementary particles of a physical system
from mere measurement values that have no inherent phys-
ical significance. We apply this principle to the area of vi-
sion, for after all, pixels are nothing but physical measure-
ments.

Weyl’s principle presupposes a symmetry group that acts
on the data. By this we mean a set of transformations
that does not change the “essence” of the measured phe-
nomenon, although it may change the “superficial appear-
ance”, i.e. the measurement values. As a concrete example
that we will use throughout this paper, consider the group
known as SO(2), acting on images by 2D rotation about the
origin. A transformation from this group (a rotation) may
change the value of every pixel in the image, but leaves in-
variant the identity of the imaged object. Weyl’s principle
states that the elementary components of this system are
given by the irreducible representations of the symmetry
group – a concept that will be explained in this paper.

Although this theoretical principle is widely applicable,
we demonstrate it for real-valued compact commutative
groups only. We introduce a probabilistic model that de-

1. We will at times assume a passing familiarity with Lie
groups, but the main ideas of this paper should be accessible to
a broad audience.
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scribes a representation of such a group, and show how it
can be learned from pairs of images related by arbitrary and
unobserved transformations in the group. Compact com-
mutative groups are also known as toroidal groups, so we
refer to this model as Toroidal Subgroup Analysis (TSA).
Using a novel conjugate prior, the model integrates proba-
bility theory and Lie group theory in a very elegant way.
All the relevant probabilistic quantities such as normal-
ization constants, moments, KL-divergences, the posterior
density over the transformation group, the marginal density
in data space, and their gradients can be obtained in closed
form.

1.1. Related work

The first to propose a model and algorithm for learning
Lie group representations from data were Rao & Ruder-
man (1999). This model deals only with one-parameter
groups, a limitation that was later lifted by Miao and Rao
(2007). Both works rely on MAP-inference procedures that
can only deal with infinitesimally small transformations.
This problem was solved by Sohl-Dickstein et al. (2010)
using an elegant adaptive smoothing technique, making it
possible to learn from large transformations. This model
uses a general linear transformation to diagonalize a one-
parameter group, and combines multiple one-parameter
groups multiplicatively.

Other, non-group-theoretical approaches to learning trans-
formations and invariant representations exist (Memisevic
& Hinton, 2010). These gating models were found to
perform a kind of joint eigenspace analysis (Memisevic,
2012), which is somewhat similar to the irreducible reduc-
tion of a toroidal group.

Motivated by a number of statistical phenomena observed
in natural images, Cadieu & Olshausen (2012) describe a
model that decomposes a signal into invariant amplitudes
and covariant phase variables.

None of the mentioned methods take into account the full
uncertainty over transformation parameters, as does TSA.
Due to exact or approximate symmetries in the data, there
is in general no unique transformation relating two images,
so that only a multimodal posterior distribution over the
group gives a complete description of the geometric situa-
tion. Furthermore, posterior inference in our model is per-
formed by a very fast feed-forward procedure, whereas the
MAP inference algorithm by Sohl-Dicksteint et al. requires
a more expensive iterative optimization.

2. Preliminaries
2.1. Equivalence, Invariance and Reducibility

In this section, we discuss three fundamental concepts on
which the analysis in the rest of this paper is based: equiv-
alence, invariance and reducibility.

Consider a function Φ : RD → X that assigns to each pos-
sible data point x ∈ RD a class-label (X = {1, . . . , L})
or some distributed representation (e.g. X = RL). Such a
function induces an equivalence relation on the input space
RD: we say that two vectors x,y ∈ RD are Φ-equivalent if
they are mapped onto the same representation by Φ. Sym-
bolically, x ≡Φ y⇔ Φ(x) = Φ(y).

Every equivalence relation on the input space fully de-
termines a symmetry group acting on the space. This
group, call it G, contains all invertible transformations
ρ : RD → RD that leave Φ invariant: G = {ρ | ∀x ∈
RD : Φ(ρ(x)) = Φ(x)}. G describes the symmetries of
Φ, or, stated differently, the label function/representation Φ
is invariant to transformations in G. Hence, we can speak
of G-equivalence: x ≡G y ⇔ ∃ρ ∈ G : ρ(x) = y. For
example, if some elements of G act by rotating the image,
two images are G-equivalent if they are rotations of each
other.

Before we can introduce Weyl’s principle, we need one
more concept: the reduction of a group representation
(Kanatani, 1990). Let us restrict our attention to linear
representations of Lie groups: ρ becomes a matrix-valued
function ρg of an abstract group element g ∈ G, such that
∀g, h ∈ G : ρg◦h = ρgρh. In general, every coordinate yi
of y = ρgx can depend on every coordinate xj of x. Now,
since x is G-equivalent to y, it makes no sense to consider
the coordinates xi as separate quantities; we can only con-
sider the vector x as a single unit because the symmetry
transformations ρg tangle all coordinates. In other words,
we cannot say that coordinate xi is an independent part of
the aggregate x, because a mapping x → x′ = ρgx that is
supposed to leave the intrinsic properties of x unchanged,
will in fact induce induce a functional dependence between
all supposed parts x′i and xj .

However, we are free to change the basis of the measure-
ment space. It may be possible to use a change of basis to
expose an invariant subspace, i.e. a subspace V ⊂ RD that
is mapped onto itself by every transformation in the group:
∀g ∈ G : x ∈ V ⇒ ρgx ∈ V . If such a subspace ex-
ists and its orthogonal complement V ⊥ ⊂ RD is also an
invariant subspace, then it makes sense to consider the two
parts of x that lie in V and V ⊥ to be distinct, because they
remain distinct under symmetry transformations.

Let W be a change of basis matrix that exposes the invari-
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ant subspaces, that is,

ρg = W

[
ρ1
g

ρ2
g

]
W−1, (1)

for all g ∈ G. Both ρ1
g and ρ2

g form a representation of
the same abstract group as represented by ρ. The group
representations ρ1

g and ρ2
g describe how the individual parts

x1 ∈ V and x2 ∈ V ⊥ are transformed by the elements of
the group. As is common in group representation theory,
we refer to both the group representations ρ1

g, ρ
2
g and the

subspaces V and V ⊥ corresponding to these group repre-
sentations as “representations”.

The process of reduction can be applied recursively to ρ1
g

and ρ2
g . If at some point there is no more (non-trivial) in-

variant subspace, the representation is called irreducible.
Weyl’s principle states that the elementary components of
a system are the irreducible representations of the symme-
try group of the system. Properly understood, it is not a
physics principle at all, but generally applicable to any situ-
ation where there is a well-defined notion of equivalence2.
It is completely abstract and therefore agnostic about the
type of data (images, optical flows, sound, etc.), making it
eminently useful for representation learning.

In the rest of this paper, we will demonstrate Weyl’s princi-
ple in the simple case of a compact commutative subgroup
of the special orthogonal group in D dimensions. We want
to stress though, that there is no reason the basic ideas can-
not be applied to non-commutative groups acting on non-
linear latent representation spaces.

2.2. Maximal Tori in the Orthogonal Group

In order to facilitate analysis, we will from here on con-
sider only compact commutative subgroups of the special
orthogonal group SO(D). For reasons that will become
clear shortly, such groups are called toroidal subgroups of
SO(D). Intuitively, the toroidal subgroups of general com-
pact Lie groups can be thought of as the “commutative
part” of these groups. This fact, combined with their an-
alytic tractability (evidenced by the results in this paper)
makes them suitable as the starting point of a theory of
probabilistic Lie-group representation learning.

Imposing the constraint of orthogonality will make the
computation of matrix inverses very cheap, because for or-
thogonal Q, Q−1 = QT . Orthogonal matrices also avoid
numerical problems, because their condition number is al-
ways equal to 1. Another important property of orthogo-
nal transformations is that they leave the Euclidean metric
invariant: ‖Qx‖ = ‖x‖. Therefore, orthogonal matrices
cannot express transformations such as contrast scaling, but
they can still model the interesting structural changes in im-
ages (Bethge et al., 2007). For example, since 2D image ro-
tation and (cyclic) translation are linear and do not change

the total energy (norm) of the image, they can be repre-
sented by orthogonal matrices acting on vectorized images.

As is well known, commuting matrices can be simultane-
ously diagonalized, so one could represent a toroidal group
in terms of a basis of eigenvectors shared by every element
in the group, and one diagonal matrix of eigenvalues for
each element of the group, as was done in (Sohl-Dickstein
et al., 2010) for 1-parameter Lie groups. However, or-
thogonal matrices do not generally have a complete set of
real eigenvectors. One could use a complex basis instead,
but this introduces redundancies because the eigenvalues
and eigenvectors of an orthogonal matrix come in com-
plex conjugate pairs. For machine learning applications,
this is clearly an undesirable feature, so we opt for a joint
block-diagonalization of the elements of the toroidal group:
ρϕ = WR(ϕ)WT , where W is orthogonal and R(ϕ) is a
block-diagonal rotation matrix3:

R(ϕ) =

R(ϕ1)
. . .

R(ϕJ)

 . (2)

The diagonal of R(ϕ) contains 2× 2 rotation matrices

R(ϕj) =

[
cos(ϕj) − sin(ϕj)
sin(ϕj) cos(ϕj)

]
. (3)

In this parameterization, the real, orthogonal basis W iden-
tifies the group representation, while the vector of rotation
angles ϕ identifies a particular element of the group. It
is now clear why such groups are called “toroidal”: the
parameter space ϕ is periodic in each element ϕj and
hence is a topological torus. For a J-parameter toroidal
group, all the ϕj can be chosen freely. Such a group is
known as a maximal torus in SO(D), for which we write
TJ = {ϕ |ϕj ∈ [0, 2π], j = 1, . . . J}.

To gain insight into the structure of toroidal groups with
fewer parameters, we rewrite eq. 2 using the matrix expo-
nential:

R(ϕ) = exp

 J∑
j=1

ϕjAj

. (4)

The anti-symmetric matrices Aj = d
dϕj

R(ϕ)
∣∣
0

are known
as the Lie algebra generators, and the ϕj are Lie-algebra
coordinates.

The Lie algebra is a structure that largely determines the
structure of the corresponding Lie group, while having the
important advantage of forming a linear space. That is, all

2. The picture becomes a lot more complicated, though, when
the group does not act linearly or is not completely reducible

3. For ease of exposition, we assume an even dimensional space
D = 2J , but the equations are easily generalized.
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Figure 1. Parameter space ϕ = (ω1s, ω2s) of two toroidal sub-
groups, for ω1 = 2, ω2 = 3 (left) and ω1 = 1, ω2 = 2π (right).
The pointϕmoves over the dark green line as s is changed. Wrap-
ping around is indicated in light gray. In the incommensurable
case (right), coupling does not add structure to the model, because
all transformations (points in the plane) can still be constructed by
an appropriate choice of s.

linear combinations of the generators belong to the Lie al-
gebra, and each element of the Lie algebra corresponds to
an element of the Lie group, which itself is a non-linear
manifold. Furthermore, every subgroup of the Lie group
corresponds to a subalgebra (not defined here) of the Lie
algebra. All toroidal groups are the subgroup of some max-
imal torus, so we can learn a general toroidal group by first
learning a maximal torus and then learning a subalgebra of
its Lie algebra. Due to commutativity, the structure of the
Lie algebra of toroidal groups is such that any subspace of
the Lie algebra is in fact a subalgebra. The relevance of
this observation to our machine learning problem is that to
learn a toroidal group with I parameters (I < J), we can
simply learn a maximal toroidal group and then learn an
I-dimensional linear subspace in the space of ϕ.

In this work, we are interested in compact subgroups only4,
which is to say that the parameter space should be closed
and bounded. To see that not all subgroups of a maximal
torus are compact, consider a 4D space and a maximal torus
with 2 generators A1 and A2. Let us define a subalgebra
with one generator A = ω1A1 + ω2A2, for real numbers
ω1 and ω2. The group elements generated by this algebra
through the exponential map takes the form

R(s) = exp (sA) =

[
R(ω1s)

R(ω2s)

]
. (5)

Each block R(ωjs) is periodic with period 2π/ωj , but their
direct sum R(s) need not be. When ω1 and ω2 are not
commensurate, all values of s ∈ R will produce differ-
ent R(s), and hence the parameter space is not bounded.
To obtain a compact one-parameter group with parameter
space s ∈ [0, 2π], we restrict the frequencies ωj to be inte-
gers, so that R(s) = R(s+ 2π) (see figure 1).

It is easy to see that each block of R(s) forms a real-valued
irreducible representation of the toroidal group, making
R(s) a direct sum of irreducible representations. From the
point of view expounded in section 2.1, we should view the
vector x as a tangle of elementary components uj = WT

j x,
where Wj = (W(:, 2j−1),W(:, 2j)) denotes theD×2 sub-
matrix of W corresponding to the j-th block in R(s). Each

one of the elementary parts uj is functionally independent
of the others under symmetry transformations.

The variable ωj is known as the weight of the representa-
tion (Kanatani, 1990). When the representations are equiv-
alent (i.e. they have the same weight), the parts are “of the
same kind” and are transformed identically. Elementary
components with different weights transform differently.

In the following section, we show how a maximal toroidal
group and a 1-parameter subgroup can be learned from cor-
respondence pairs, and how these can be used to generate
invariant representations.

3. Toroidal Subgroup Analysis
We will start by modelling a maximal torus. A data pair
(x,y) is related by a transformation ρϕ = WR(ϕ)WT :

y = WR(ϕ)WTx + ε, (6)

where ε ∼ N (0, σ2) represents isotropic Gaussian noise.
In other symbols, p(y|x, ϕ) = N (y|WR(ϕ)WTx, σ2).

We use the following notation for indexing invariant sub-
spaces. As before, Wj = (W(:, 2j−1),W(:, 2j)). Let
uj = WT

j x and vj = WT
j y. If we want to access one

of the coordinates of u or v, we write uj1 = WT
(:, 2j−1)x

or uj2 = WT
(:, 2j)x.

We assume the ϕj to be marginally independent and von-
Mises distributed. The von-Mises distribution is an expo-
nential family that assigns equal density to the endpoints of
any length-2π interval of the real line, making it a suit-
able choice for periodic variables such as ϕj . We will
find it convenient to move back and forth between the con-
ventional and natural parameterizations of this distribution.
The conventional parameterization of the von-Mises distri-
butionM(ϕj |µj , κj) uses a mean µj and precision κj :

p(ϕj) =
1

2πI0(κj)
exp (κj cos(ϕj − µj)). (7)

The function I0 that appears in the normalizing constant is
known as the modified Bessel function of order 0.

Since the von-Mises distribution is an exponential fam-
ily, we can write it in terms of natural parameters ηj =
(ηj1 , ηj2)T as follows:

p(ϕj) =
1

2πI0(‖ηj‖)
exp (ηTj T (ϕj)), (8)

where T (ϕj) = (cos(ϕj), sin(ϕj))
T are the sufficient

statistics. The natural parameters can be computed from

4. The main reason for this restriction is that compact groups
are simpler and better understood than non-compact groups. In
practice, many non-compact groups can be compactified, so not
much is lost.
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conventional parameters using,

ηj = κj [cos(µj), sin(µj)]
T (9)

and vice versa,

κj = ‖ηj‖, µj = tan−1(ηj2/ηj1) (10)

Using the natural parameterization, it is easy to see that
the prior is conjugate to the likelihood, so that the poste-
rior p(ϕ|x,y) is again a product of von-Mises distributions.
Such conjugacy relations are of great utility in Bayesian
statistics, because they simplify sequential inference. To
our knowledge, this conjugacy relation has not been de-
scribed before. To derive this result, first observe that the
likelihood term splits into a sum over the invariant sub-
spaces indexed by j:

p(ϕ|x,y) ∝ p(y|x, ϕ)p(ϕ)

∝ exp

(
− 1

2σ2
‖y −WR(ϕ)WTx‖2

)
p(ϕ)

∝ exp

 J∑
j=1

vTj R(ϕj)uj

σ2
+ ηTj T (ϕj)



Both the bilinear forms vTj R(ϕj)uj and the prior terms
ηTj T (ϕ) are linear functions of cos(ϕj) and sin(ϕj), so that
they can be combined into a single dot product:

p(ϕ|x,y) ∝ exp

 J∑
j=1

η̂Tj T (ϕj)

, (11)

which we recognize as a product of von-Mises in natural
form.

The parameters η̂j of the posterior are given by:

η̂j = ηj +
1

σ2
[uj1vj1 + uj2vj2 , uj1vj2 − uj2vj1 ]T

= ηj +
‖uj‖‖vj‖

σ2
[cos(θj), sin(θj)]

T ,

(12)

where θj is the angle between uj and vj . Geometrically,
we can interpret the Bayesian updating procedure in eq. 12
as follows. The orientation of the natural parameter vector
ηj determines the mean of the von-Mises, while its mag-
nitude determines the precision. To update this parame-
ter with new information obtained from data uj , vj , one
should add the vector (cos(θj), sin(θj))

T to the prior, us-
ing a scaling factor that grows with the magnitude of uj
and vj and declines with the square of the noise level σ.
The longer uj and vj and the smaller the noise level, the
greater the precision of the observation. This geometrically

sensible result follows directly from the consistent applica-
tion of the rules of probability.

Observe that when using a uniform prior (i.e. ηj = 0), the
posterior mean µ̂j (computed from η̂j by eq. 10) will be
exactly equal to the angle θj between uj and vj . We will
use this fact in section 3.1 when we derive the formula for
the orbit distance in a toroidal group.

Previous approaches to Lie group learning only provide
point estimates of the transformation parameters, which
have to be obtained using an iterative optimization proce-
dure (Sohl-Dickstein et al., 2010). In contrast, TSA pro-
vides a full posterior distribution which is obtained us-
ing a simple feed-forward computation. Compared to the
work of Cadieu & Olshausen (2012), our model deals well
with low-energy subspaces, by simply describing the un-
certainty in the estimate instead of providing inaccurate es-
timates that have to be discarded.

3.1. Invariant Representation and Metric

One way of doing invariant classification is by using an in-
variant metric known as the manifold distance. This metric
d(x,y) is defined as the minimum distance between the or-
bits Ox = {ρϕx |ϕ ∈ G} and Oy = {ρϕy |ϕ ∈ G}.
Observe that this is only a true metric that satisfies the co-
incidence axiom d(x,y) = 0 ⇔ x = y if we take the
condition x = y to mean “equivalence up to symmetry
transformations” or x ≡G y, as discussed in section 2.1.

In practice, it has proven difficult to compute this distance
exactly, so approximations such as tangent distance have
been invented (Simard et al., 2000). But for a maximal
torus, we can easily compute the exact manifold distance:

d2(x,y) = min
ϕ
‖y −WR(ϕ)WTx‖2

=
∑
j

min
ϕj

‖vj −R(ϕj)uj‖2

=
∑
j

‖vj −R(µ̂j)uj‖2,

(13)

where µ̂j is the mean of the posterior p(ϕj |x,y), obtained
using a uniform prior (κj = 0). The last step of eq. 13
follows, because as we saw in the previous section, µ̂j is
simply the angle between uj and vj when using a uniform
prior. Therefore, R(µ̂j) aligns uj and vj , minimizing the
distance between them.

Another approach to invariant classification is through an
invariant representation. Although the model presented
above aims to describe the transformation between obser-
vations x and y, an invariant-equivariant representation ap-
pears automatically in terms of the parameters of the pos-
terior over the group. To see this, consider all the transfor-
mations in the learned toroidal group G that take an image
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x to itself. This set is known as the stabilizer stabG(x)
of x. It is a subgroup of G and describes the symmetries
of x with respect to G. When a transformation ϕ ∈ G is
applied to x, the stabilizer subgroup is left invariant, for if
θ ∈ stabG(x) then ρθρϕx = ρϕρθx = ρϕx and hence
ρθ ∈ stabG(ρϕx).

The posterior of x transformed into itself, p(ϕ|x,x, µ, κ =
0) =

∏
jM(ϕj |µ̂j , κ̂j) gives a probabilistic description

of the stabilizer of x, and hence must be invariant. Clearly,
the angle between x and x is zero, so µ̂ = 0. On the other
hand, κ̂ contains information about x and is invariant. To
see this, recall that κ̂j = ‖η̂j‖. Using eq. 12 we obtain
κ̂j = ‖uj‖2σ−2 = ‖WT

j x‖2σ−2. Since every transfor-
mation ϕ in the toroidal group acts on the 2D vector uj by
rotation, the norm of uj is left invariant.

We recognize the computation of κ̂ as the square pool-
ing operation often applied in convolutional networks to
gain invariance: project an image onto filters W:,2j−1 and
W:,2j and sum the squares. This computation is a direct
consequence of our model setup. In section 3.3, we will
find that the model for non-maximal tori is even more in-
formative about the proper pooling scheme.

Since we want to use κ̂ as an invariant representa-
tion, we should try to find an appropriate metric on κ̂-
space. Let κ̂(x) be defined by p(ϕ|x,x, κ = 0) =∏
jM(ϕ|µ̂j , κ̂j(x)). We suggest using the Hellinger dis-

tance:

H2(κ̂(x), κ̂(y)) =
1

2

∑
j

(√
κ̂j(x)−

√
κ̂j(y)

)2

=
1

2σ2

∑
j

‖uj‖2 + ‖vj‖2 − 2‖uj‖‖vj‖

=
1

2σ2

∑
j

‖vj −R(µ̂j)uj‖2,

which is equal to the exact manifold distance (eq. 13) up
to a factor of 1

2σ2 . The first step of this derivation uses eq.
12 under a uniform prior (ηj = 0), while the second step
again makes use of the fact that µ̂j is the angle between uj
and vj so that ‖uj‖‖vj‖ = uTj R(µ̂j)vj .

3.2. Relation to the Discrete Fourier Transform

We show that the DFT is a special case of TSA. The DFT
of a discrete 1D signal x = (x1, . . . , xD)T is defined:

Xj =

D−1∑
n=0

xnρ
−jn (14)

where ρ = e2πi/D is the D-th primitive root of unity. If we
choose a basis of sinusoids for the filters in W,

W(:, 2j−1) = R(ρ−j , . . . , ρ−j(D−1))T

= (cos(2πj/D), . . . , cos(2πj(D − 1)/D))T

W(:, 2j) = I(ρ−j , . . . , ρ−j(D−1))T

= (sin(−2πj/D), . . . , sin(−2πj(D − 1)/D))T ,

then the change of basis performed by W is a DFT. Specif-
ically, R(Xj) = uj1 and I(Xj) = uj2 .

Now suppose we are interested in the transformation tak-
ing some arbitrary fixed vector e = W(1, 0, . . . , 1, 0)T

to x. The posterior over ϕj is p(ϕj |e,x, ηj = 0, σ =
1) = M(ϕj |η̂j), where (by eq. 12) we have η̂j =
‖uj‖[cos(θj), sin(θj)]

T , θj being the angle between uj
and the “real axis” ej = (1, 0)T . In conventional coor-
dinates, the precision of the posterior is equal to the mod-
ulus of the DFT, κ̂j = ‖uj‖ = |Xj |, and the mean of
the posterior is equal to the phase of the Fourier transform,
µ̂ = θj = arg(Xj). Therefore, TSA provides a proba-
bilistic interpretation of the DFT coefficients, and makes it
possible to learn an appropriate generalized transform from
data.

3.3. Modeling a Lie subalgebra

Typically, one is interested in learning groups with fewer
than J degrees of freedom. As we have seen, for one pa-
rameter compact subgroups of a maximal torus, the weights
of the irreducible representations must be integers. We
model this using a coupled rotation matrix, as follows:

ρs = W

R(ω1s)
. . .

R(ωJs)

WT (15)

Where s ∈ [0, 2π] is the scalar parameter of this subgroup.
The likelihood then becomes y ∼ N (y|ρsx, σ2).

We have found that the conjugate prior for this likelihood
is the generalized von-Mises (Gatto & Jammalamadaka,
2007):

p(s) =M+(s|η+) = exp
(
η+ · T+(s)

)
/ Z+

= exp

 K∑
j=1

κ+
j cos(js− µ+

j )

 / Z+

where T+(s) = [cos(s), sin(s), . . . , cos(Ks), sin(Ks)]T .

This conjugacy relation p(s|x,y) ∝ exp (η̂+ · T+(s)) is
obtained using similar reasoning as before, yielding the up-
date equation,

η̂+
j = η+

j +
∑

k:ωk=j

η̂k (16)
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where η̂k is obtained from eq. 12 using a uniform prior
ηk = 0. The sum in this update equation performs a pool-
ing operation over a weight space, which is defined as the
span of those invariant subspaces k whose weight ωk = j.
As it turns out, this is exactly the right thing to do in order
to summarize the data while maintaining invariance. As
explained by Kanatani (1990), the norm ‖η̂+

j ‖ of a linear
combination of same-weight representations is always in-
variant (as is the maximum of any two ‖η̂j‖ or ‖η̂+

j ‖). The
similarity to sum-pooling and max-pooling in convnets is
quite striking.

In the maximal torus model, there are J = D/2 degrees
of freedom in the group and the invariant representation
is D − J = J-dimensional (κ̂1, . . . , κ̂J ). This represen-
tation of a datum x identifies a toroidal orbit, and hence
the vector κ̂ is a maximal invariant with respect to this
group (Soatto, 2009). For the coupled model, there is only
one degree of freedom in the group, so the invariant repre-
sentation should be D − 1 dimensional. When all ωk are
distinct, we have J variables κ+

1 , . . . , κ
+
J that are invari-

ant. Furthermore, from eq. 15 we see that as x is trans-
formed, the angle between x and an arbitrary fixed refer-
ence vector in subspace j transforms as θj(s) = δj + ωjs
for some data-dependent initial phase δj . It follows that
ωjθk(s) − ωkθj(s) = ωj(δk + ωks) − ωk(δj + ωjs) =
ωjδk − ωkδj is invariant. In this way, we can easily con-
struct another J − 1 invariants, but unfortunately these are
not stable because the angle estimates can be inaccurate for
low-energy subspaces. Finding a stable maximal invariant,
and doing so in a way that will generalize to other groups
is an interesting problem for future work.

The normalization constant Z+ for the GvM has so far
only been described for the case of K = 2 harmon-
ics, but we have found a closed form solution in terms
of the so-called modified Generalized Bessel Functions
(GBF) of K-variables κ+ = κ+

1 , . . . , κ
+
K and parame-

ters5 exp (−iµ+) = exp (−iµ+
1 ), . . . , exp (−iµ+

K) (Dat-
toli et al., 1991):

Z+(κ+, µ+) = 2πI0(κ+; e−iµ
+

). (17)

We have developed a novel, highly scalable algorithm for
the computation of GBF of many variables, which is de-
scribed in the supplementary material.

Figure 2 shows the posterior over s for three image pairs
related by different rotations and containing different sym-
metries. The weights W and ω were learned by the pro-
cedure described in the next section. It is quite clear from
this figure that MAP inference does not give a complete
description of the possible transformations relating the im-
ages when the images have a degree of rotational sym-
metry. The posterior distribution of our model provides a
sensible way to deal with this kind of uncertainty, which

0 π 2π
0

.35

0 π 2π 0 π 2π

Figure 2. Posterior distribution over s for three image pairs.

(in the case of 2D translations) is at the heart of the well
known aperture problem in vision. Having a tractable pos-
terior is particularly important if the model is to be used
to estimate longer sequences (akin to HMM/LDS models,
but non-linear), where one may encounter multiple high-
density trajectories.

If required, accurate MAP inference can be performed us-
ing the algorithm of Sohl-Dickstein et al. (2010), as de-
scribed in the supplementary material. This allows us to
compute the exact manifold distance for the coupled model.

3.4. Maximum Marginal Likelihood Learning

We train the model by gradient descent on the marginal
likelihood. Perhaps surprisingly given the non-linearities
in the model, the integrations required for the evaluation of
the marginal likelihood can be obtained in closed form for
both the coupled and decoupled models. For the decoupled
model we obtain:

p(y|x) =

∫
ϕ∈TJ

N (y|WR(ϕ)WTx)
∏
j

M(ϕj |ηj)dϕ

=
exp

(
− 1

2σ2 (‖x‖2 + ‖y‖2)
)√

(2πσ)D

∏
j

I0(κ̂j)

I0(κj)
.

(18)

Observing that I0(κ̂j)/I0(κj) is the ratio of normaliza-
tion constants of regular von-Mises distributions, the anal-
ogous expression for the coupled model is easily seen to
be equal to eq. 18, only replacing

∏
j I0(κ̂j) / I0(κj)

by Z+(κ̂+, µ̂+)/Z+(κ+, µ+). The derivation of this result
can be found in the supplementary material.

The gradient of the log marginal likelihood of the uncou-
pled model w.r.t. a batch X,Y (both storing N vectors in
the columns) is:

d

dW
ln p(Y|X) = X(RT (µ)WTY � A + WTX � By)T

+ Y(R(µ)WTX � A + WTY � Bx)T .

where we have used (P � Q)2j,n = Qj,nP2j,n and (P �
Q)2j−1,n = Qj,nP2j−1,n as a “subspace weighting” oper-

5. As described in the supplementary material, we use a slightly
different parameterization of the GBF.
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ation. A, B(x) and B(y) areD×N matrices with elements

ajn =
I1(κ̂jn)κj

I0(κ̂jn)κ̂jnσ2
,

bjn =
‖Wjy

(n)‖2

κjσ2
,

where the κ̂jn is the posterior precision in subspace j for
image pair x(n), y(n) (the n-th column of X, resp. Y).

The gradient of the coupled model is easily computed using
the differential recurrence relations that hold for the GBF
(Dattoli et al., 1991).

We use minibatch Stochastic Gradient Descent (SGD) on
the log-likelihood of the uncoupled model. After every pa-
rameter update, we orthogonalize W by setting all singular
values to 1: Let U,S,V = svd(W), then set W := UV.
This procedure and all previous derivations still work when
the basis is undercomplete, i.e. has fewer columns (filters)
than rows (dimensions in data space). To learn ωj , we esti-
mate the relative angular velocity ωj = θj/δ from a batch
of image patches rotated by a sub-pixel amount δ = 0.1◦.

4. Experiments
We trained a TSA model with 100 filters on a stream of
250.000 16 × 16 image patches x(t), y(t). The patches
x(t) were drawn from a standard normal distribution, and
y(t) was obtained by rotating x(t) by an angle s drawn uni-
formly at random from [0, 2π]. The learning rate α was ini-
tialized at α0 = 0.25 and decayed as α = α0/

√
T , where

T was incremented by one with each pass through the data.
Each minibatch consisted of 100 data pairs. After learn-
ing W, we estimate the weights ωj and sort the filter pairs
by increasing absolute value for visualization. As can be
seen in fig. 3, the filters are very clean and the weights are
estimated correctly except for a few filters on row 1 and 2
that are assigned weight 0 when in fact they have a higher
frequency.

We tested the utility of the model for invariant classifica-
tion on a rotated version of the MNIST dataset, using a
1-Nearest Neighbor classifier. Each digit was rotated by a
random angle and rescaled to 16 × 16 pixels, resulting in
60k training examples and 10k testing examples, with no
rotated duplicates. We compared the Euclidean distance
(ED) in pixel space, tangent distance (TD) (Simard et al.,
2000), Euclidean distance on the space of

√
κ̂ (equivalent

to the exact manifold distance for the maximal torus, see
section 3.1), the true manifold distance for the 1-parameter
2D rotation group (MD), and the Euclidean distance on the
non-rotated version of the MNIST dataset (ED-NR). The
results in fig. 4 show that TD outperforms ED, but is out-
performed by

√
κ̂ and MD by a large margin. In fact, the

MD-classifier is about as accurate as ED on a much sim-

Figure 3. Filters learned by TSA, sorted by absolute frequency
|ωj |. The learned ωj-values range from from −11 to 12.
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Figure 4. Results of classification experiment. See text for details.

pler dataset, demonstrating that it has almost completely
modded out the variation caused by rotation.

5. Conclusions and outlook
We have presented a novel principle for learning disentan-
gled representations, and worked out its consequences for
a simple type of symmetry group. This leads to a com-
pletely tractable model with potential applications to invari-
ant classification and Bayesian estimation of motion. The
model reproduces the pooling operations used in convolu-
tional networks from probabilistic and Lie-group theoretic
principles, and provides a probabilistic interpretation of the
DFT and its generalizations.

The type of disentangling obtained in this paper is contin-
gent upon the rather minimalist assumption that all that can
be said about images is that they are equivalent (rotated
copies) or inequivalent. However, the universal nature of
Weyl’s principle bodes well for future applications to deep,
non-linear and non-commutative forms of disentangling.
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