
Ensemble Methods for Structured Prediction

Corinna Cortes CORINNA@GOOGLE.COM

Google Research, 111 8th Avenue, New York, NY 10011

Vitaly Kuznetsov VITALY@CIMS.NYU.EDU

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012

Mehryar Mohri MOHRI@CIMS.NYU.EDU

Courant Institute and Google Research, 251 Mercer Street, New York, NY 10012

Abstract
We present a series of learning algorithms and
theoretical guarantees for designing accurate en-
sembles of structured prediction tasks. This in-
cludes several randomized and deterministic al-
gorithms devised by converting on-line learning
algorithms to batch ones, and a boosting-style al-
gorithm applicable in the context of structured
prediction with a large number of labels. We give
a detailed study of all these algorithms, including
the description of new on-line-to-batch conver-
sions and learning guarantees. We also report the
results of extensive experiments with these algo-
rithms in several structured prediction tasks.

1. Introduction

Ensemble methods are general techniques in machine
learning for combining several hypotheses to create a more
accurate predictor (Breiman, 1996; Freund & Schapire,
1997; Smyth & Wolpert, 1999; MacKay, 1991; Freund
et al., 2004). These methods often significantly improve
the performance in practice and additionally benefit from
favorable learning guarantees. However, ensemble meth-
ods and their theory have been developed primarily for the
binary classification problem or regression tasks. These
techniques do not readily apply to structured prediction
problems. While it is straightforward to combine scalar
outputs for a classification or regression problem, it is less
clear how to combine structured predictions such as phone-
mic pronunciation hypotheses, speech recognition lattices,
parse trees, or outputs of several machine translation sys-
tems.

Consider for example the problem of devising an ensemble
method for pronunciation, a critical component of modern
speech recognition (Ghoshal et al., 2009). Often, several

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

pronunciation models or experts are available for transcrib-
ing words into sequences of phonemes. These models may
have been derived using other machine learning algorithms
or they may be based on carefully hand-crafted rules. In
general, none of these pronunciation experts is fully ac-
curate and each expert may be making mistakes at differ-
ent positions in the output sequence. One can hope that a
model that patches together the pronunciation of different
experts could achieve a superior performance.

Similar ensemble structured prediction problems arise in
other tasks, including machine translation, part-of-speech
tagging, optical character recognition and computer vision,
with structures or substructures varying with each task. We
seek to tackle all of these problems simultaneously and
consider the general setting where the label or output as-
sociated to an input x ∈ X is a structure y ∈ Y that can be
decomposed and represented by l substructures y1, . . . , yl.
For the pronunciation example just discussed, x is a spe-
cific word or word sequence and y its phonemic transcrip-
tion. A natural choice for the substructures yk is then the
individual phonemes forming y. Other possible choices in-
clude n-grams of consecutive phonemes or more general
subsequences.

We will assume that the loss function considered admits an
additive decomposition over the substructures, as is com-
mon in structured prediction. We also assume access to a
set of structured prediction experts h1, . . . , hp that we treat
as black boxes. Given an input x ∈ X , each of these ex-
perts predicts l substructures hj(x) = (h1

j (x), . . . , hl
j(x)).

The hypotheses hj may be the output of other structured
prediction algorithms such as Conditional Random Fields
(Lafferty et al., 2001), Averaged Perceptron (Collins,
2002), StructSVM (Tsochantaridis et al., 2005), Max Mar-
gin Markov Networks (Taskar et al., 2004), the Regression
Technique for Learning Transductions (Cortes et al., 2005),
or some other algorithmic or human expert. Given a labeled
training sample (x1,y1), . . . , (xm,ym), our objective is to
combine the predictions of these experts to form an accu-
rate ensemble.

Ensemble Learning for Structured Prediction

Variants of the ensemble problem just formulated have
been studied in the past in the natural language processing
and machine learning literature. One of the most recent,
and possibly most relevant studies for sequence data is that
of Nguyen & Guo (2007), which is based on the forward
stepwise selection procedure introduced by Caruana et al.
(2004). Starting with a possibly empty collection of ex-
perts, E0, that algorithm performs T iterations. To make
predictions using a collection of models, Et, a variant of a
majority-vote scheme per position is proposed, and at each
iteration t, a new expert hj from {h1, . . . , hp} is added to
the collection Et−1 in such a way that Et = Et−1 ∪ {hj}
has the best performance on the training set among all sets
Et−1 ∪ {hj}, j = 1, . . . , p. This algorithm always per-
forms at least as well as the best expert among h1, . . . , hp

on the training set. If the initial collection E0 of experts is
empty, then E1 simply contains the expert with the smallest
error on the training set. Further additions to Et only de-
crease that error, hence the performance of this algorithm
on the training set cannot be worse than the performance of
the best expert.

One disadvantage of this greedy approach is that it may
fail to select an optimal ensemble of experts in cases where
experts specialize in local predictions. Consider the case
where expert hk is a strong predictor for the kth substruc-
ture but does not perform well on other substructures. As-
sume further that expert h0 is a jack-of-all-trades and per-
forms better than any of h1, . . . , hp on average, but each
hk beats h0 at position k. Then, one can show that the
stepwise selection routine may end up with an ensemble
consisting of only h0, while an optimal solution would use
expert hk to predict the kth substructure. We provide an
explicit construction of such an example in Appendix I and
report similar empirical observations in Section 5.

Ensemble methods for structured prediction based on bag-
ging, random forests and random subspaces have been pro-
posed in (Kocev et al., 2013). One of the limitations of this
work is that it is applicable only to a very specific class
of tree-based experts introduced in that paper. Similarly,
a boosting approach was developed in (Wang et al., 2007)
but it applies only to local experts. In the context of nat-
ural language processing, a variety of different re-ranking
techniques have been proposed for somewhat related prob-
lems (Collins & Koo, 2005; Zeman & Žabokrtský, 2005;
Sagae & Lavie, 2006; Zhang et al., 2009). But, re-ranking
methods do not combine predictions at the level of sub-
structures, thus the final prediction of the ensemble coin-
cides with the prediction made by one of the experts, which
can be shown to be suboptimal in many cases. Further-
more, these methods typically assume the use of probabilis-
tic models, which is not a requirement in our learning sce-
nario. Other ensembles of probabilistic models have also
been considered in text and speech processing by forming

a product of probabilistic models via the intersection of lat-
tices (Mohri et al., 2008), or a straightforward combination
of the posteriors from probabilistic grammars trained using
EM with different starting points (Petrov, 2010), or some
other rather intricate techniques in speech recognition (Fis-
cus, 1997). See Appendix J for a brief discussion of other
related work.

Most of the references mentioned do not give a rigorous
theoretical justification for the techniques proposed. We
are not aware of any prior theoretical analysis for the en-
semble structured prediction problem we consider. Here,
we aim to bridge this gap and develop ensemble methods
that both perform well in practice and enjoy strong theo-
retical guarantees. Two families of algorithms are intro-
duced. In Section 3 we develop ensemble methods based
on on-line algorithms. To do so, we extend existing on-
line-to-batch conversions to our more general setting. A
boosting-type algorithm is also presented and analyzed in
Section 4. Section 5 reports the results of our extensive
experiments.

2. Learning scenario

As in standard supervised learning problems, we as-
sume that the learner receives a training sample S =
((x1,y1), . . . , (xm,ym)) ∈ X × Y of m labeled points
drawn i.i.d. according to some distribution D used both
for training and testing. We also assume that the learner
has access to a set of p predictors h1, . . . , hp mapping X
to Y to devise an accurate ensemble prediction. Thus,
for any input x ∈ X , he can use the prediction of the p
experts h1(x), . . . , hp(x). No other information is avail-
able to the learner about these p experts, in particular the
way they have been trained or derived is not known to
the learner. But, we will assume that the training sam-
ple S available to learn the ensemble is distinct from what
may been used for training the algorithms that generated
h1(x), . . . , hp(x).

To simplify our analysis, we assume that the number of
substructures l ≥ 1 is fixed. This does not cause any loss
of generality so long as the maximum number of substruc-
tures is bounded, which is the case in all the applications
we consider. The quality of the predictions is measured by
a loss function L : Y×Y → R+ that can be decomposed as
a sum of loss functions `k : Yk → R+ over the substructure
sets Yk, that is, for all y = (y1, . . . , yl) ∈ Y with yk ∈ Yk

and y′ = (y′1, . . . , y′l) ∈ Y with y′k ∈ Yk,

L(y,y′) =
l∑

k=1

`k(yk, y′k). (1)

We will assume in all that follows that the loss function L
is bounded by some M > 0: L(y,y′) ≤M for all (y,y′).

Ensemble Learning for Structured Prediction

� �

���
���
���

�

���
���
���

���
���
���
���

�����
���
���
���

�

���
���
���

Figure 1. Directed graph G of path experts.

A prototypical example of such loss functions is the nor-
malized Hamming loss, LHam, which is the fraction of sub-
structures for which two labels y and y′ disagree.

3. On-line learning approach

In this section, we present an on-line learning solution to
the ensemble structured prediction problem just discussed.
We first formulate the problem as that of on-line learning
with expert advice, where the experts correspond to the
paths of a directed graph. The on-line algorithm generates
at each iteration a distribution over the path-experts. A crit-
ical component of our approach consists of using the dis-
tributions to define a prediction algorithm with good gener-
alization guarantees. This requires an extension of the ex-
isting on-line-to-batch conversion techniques to the more
general case of combining distributions over path-experts
(instead of combining intermediate hypotheses).

3.1. Path experts

Each expert hj induces a set of substructure hypotheses
h1

j , . . . , h
l
j . As already discussed, one particular expert

may be better at predicting the kth substructure while some
other expert may be more accurate at predicting another
substructure. Therefore, it is desirable to combine the sub-
structure predictions of all experts to derive a more accurate
prediction. This leads us to considering a directed graph
G such as that of Figure 1 which admits l + 1 vertices
0, 1, . . . , l and an edge from vertex k to vertex k + 1 la-
beled with each of the p hypotheses hk

1 , . . . , hk
p induced by

the experts h1, . . . , hp for the kth substructure. Graph G
compactly represents a set of path experts: each path from
the initial vertex 0 to the final vertex l is labeled with a
sequence of substructure hypotheses h1

j1
, . . . , hl

jl
and de-

fines a hypothesis which associates to input x the output
h1

j1
(x) · · ·hl

jl
(x). We will denote by H the set of all pl

path experts. We also denote by h each path expert defined
by h1

j1
, . . . , hl

jl
, with jk ∈ {1, . . . , p}, and denote by hk

its kth substructure hypothesis hk
jk

. Our ensemble struc-
ture prediction problem can then be formulated as that of
selecting the best path expert (or collection of path experts)
in the graph G. Note that, in general, the path expert se-
lected does not coincide with any of the original experts
h1, . . . , hp.

More generally, our paths experts can be selected from a
directed acyclic graph of experts G′ distinct from G, as il-
lustrated by Figure 2. This can be motivated by scenarios

�

����

���

��

���

�

���
���
���

�����

���

���

���

���
��������

���
�

���
���
���

Figure 2. Alternative graph G′.

where some prior knowledge is available about the expert
predictions for different substructures (see Appendix A),
which could be related to phonotactic constraints, as in
the example of pronunciation sequences, or any other prior
constraint on illegal n-grams or other subsequences that
would result in ruling out certain paths of graph G.

For convenience, in what follows, we will discuss our al-
gorithms and solutions in the specific case of the graph G.
However, the on-line learning algorithms we use apply in
the same way to an arbitrary directed acyclic graph G′. The
randomized algorithm we describe can also be used in a
similar way and our batch learning guarantees for our ran-
domized algorithm can be straightforwardly extended to an
arbitrary graph G′. In fact, those guarantees are then some-
what more favorable since the number of path experts in G′

will be smaller than in G.

3.2. On-line algorithm

Using G, the size of the pool of experts H we consider is
pl, and thus is exponentially large with respect to p. But,
since learning guarantees in on-line learning admit only
a logarithmic dependence on that size, they remain infor-
mative in this context. However, the computational com-
plexity of most on-line algorithms also directly depends
on that size, which would make them impractical in this
context. But, there exist several on-line solutions precisely
designed to address this issue by exploiting the structure
of the experts as in the case of our path experts. These
include the algorithm of Takimoto & Warmuth (2003) de-
noted by WMWP, which is an extension of the (random-
ized) weighted-majority (WM) algorithm of Littlestone &
Warmuth (1994) (see also (Vovk, 1990)) to more general
bounded loss functions1 combined with the directed graph
Weight Pushing (WP) algorithm of Mohri (1997), and the
Follow the Perturbed Leader (FPL) algorithm of Kalai &
Vempala (2005).

The basis for the design of our batch algorithms is the
WMWP algorithm since it admits a more favorable regret
guarantee than the FPL algorithm in our context. However,
we have also carried out a full analysis based on the FPL

1The extension of the weighted majority algorithm to other
losses is also known as the Hedge algorithm (Freund & Schapire,
1997) or the exponentially weighted averaged algorithm (Cesa-
Bianchi & Lugosi, 2006).

Ensemble Learning for Structured Prediction

Algorithm 1 WMWP algorithm.
Inputs: sample {(x1,y1), . . . , (xT ,yT)}; set of experts
{h1, . . . , hp}; parameter β ∈ (0, 1).
for j = 1 to p and k = 1 to l do

w1,kj ← 1
p

end for
for t = 1 to T and j = 1 to p and k = 1 to l do

wt+1,kj ← wt,kjβ
`k(hk

j (xt),yt)Pp
j=1 wt,kjβ

`k(hk
j
(xt),yt)

end for
Return matrices {W1, . . . ,WT }

algorithm which can be found in Appendix D.

As in the standard WM algorithm (Littlestone & Warmuth,
1994), WMWP maintains a distribution pt, t ∈ [1, T],
over the set of all experts, which in this context are the
path experts h ∈ H. At each round t ∈ [1, T], the al-
gorithm receives an input sequence, xt, incurs the loss
Eh∼pt [L(h(xt),yt)] =

∑
h pt(h)L(h(xt),yt) and mul-

tiplicatively updates the distribution weight per expert:

∀h ∈ H, pt+1(h) =
pt(h)βL(h(xt),yt)∑

h′∈H pt(h′)βL(h′(xt),yt)
, (2)

where β ∈ (0, 1) is some fixed parameter. The number
of paths is exponentially large in p and the cost of updat-
ing all paths is therefore prohibitive. However, since the
loss function is additive in the substructures, the updates
are multiplicative, and pt can be compactly represented and
updated by maintaining a potential value stored at each ver-
tex (Takimoto & Warmuth, 2003). The cost of the update
is then linear in the size of the graph.

The graph G we consider has a specific structure, thus, our
description of the algorithm can be further simplified by
maintaining at any round t ∈ [1, T], an edge weight wt,kj

for the jth edge, j ∈ [1, p], between vertices k − 1 and k.
This defines a matrix Wt = (wt,kj)kj ∈ Rl×p with the
following properties:

1. for any path expert h defined by hj11, . . . , hjll,
pt(h) =

∏l
k=1 wt,kjk

;

2. the weights of outgoing edges sum to one at any vertex
k ∈ [0, l − 1]:

∑p
j=1 wt,kj = 1.

This clearly ensures that
∑

h∈H pt(h) = 1 with the update
rule (2) replaced by the following equivalent and more ef-
ficient edge weight update:

wt+1,kj =
wt,kjβ

`k(hk
j (xt),yt)∑p

j=1 wt,kjβ
`k(hk

j (xt),yt)
. (3)

Algorithm 1 gives the pseudocode of WMWP.

3.3. On-line-to-batch conversion

The WMWP algorithm does not produce a sequence of
path experts, rather, it produces a sequence of distributions
p1, . . . , pT over path experts, or equivalently a sequence
of matrices W1, . . . ,WT . Thus, the on-line-to-batch con-
version techniques described in (Littlestone, 1989; Cesa-
Bianchi et al., 2004; Dekel & Singer, 2005) do not readily
apply. Instead, we propose a generalization of the tech-
niques of Dekel & Singer (2005). The conversion consists
of two steps: first extract a good collection of distributions
P ⊆ {p1, . . . , pT }; next use P to define an accurate hy-
pothesis for prediction. For a subset P ⊆ {p1, . . . , pT }, we
define

Γ(P)=
1
|P|

∑
pt∈P

∑
h∈H

pt(h)L(h(xt),yt)+M

√
log 1

δ

|P|
(4)

=
1
|P|

∑
pt∈P

l∑
k=1

p∑
j=1

wt,kj`k(hk
j (xt), yk

t)+M

√
log 1

δ

|P|
,

where δ > 0 is a fixed parameter. The second equality in
(4) is a straightforward consequence of the identity pt(h) =∏l

k=1 wt,kjk
and the additive decomposition of L in terms

of lks (see Lemma 6 in the appendix). With this definition,
we choose Pδ as a minimizer of Γ(P) over some collection
P of subsets of {p1, . . . , pT }: Pδ ∈ argminP∈P Γ(P). The
choice of P is restricted by computational considerations.
One natural option is to let P be the union of the suffix
sets {pt, . . . , pT }, t = 1, . . . , T . We will assume in what
follows that P includes the set {p1, . . . , pT }.

Next we define a randomized algorithm based on Pδ . Given
an input x, the algorithm consists of randomly selecting a
path h according to

p(h) =
1
|Pδ|

∑
pt∈Pδ

pt(h). (5)

and returning the prediction h(x). Note that computing and
storing p directly is not efficient. To sample from p, we
first choose pt ∈ Pδ uniformly at random and then sample
a path h according to that pt. Observe that for any fixed
k ∈ [1, l],

∑l
j=1 wt,kj = 1, thus the non-negative weights

wt,kj define a distribution over the edges leaving vertex k
that we denote by wt,k·. Thus, to sample h from pt we can
simply draw an edge from each of the l distributions wt,k·
(the probability mass of a path is the product of the prob-
ability masses of its edges). Note that once an input x is
received, the distribution p over the path experts h induces
a probability distribution px over the output space Y . It is
not hard to see that sampling a prediction y according to
px is statistically equivalent to first sampling h according
to p and then predicting h(x). We will denote by HRand the
randomized hypothesis thereby generated.

Ensemble Learning for Structured Prediction

An inherent drawback of randomized solutions such as the
one just described is that for the same input x the user can
receive different predictions over time. Randomized solu-
tions are also typically more costly to store. A collection
of distributions P can, however, also be used to define a
deterministic prediction rule based on the scoring function
approach. The majority vote scoring function is defined by

h̃MVote(x,y) =
l∏

k=1

(1
|Pδ|

∑
pt∈Pδ

p∑
j=1

wt,kj1hk
j (x)=yk

)
. (6)

The majority vote algorithm denoted by HMVote is then de-
fined by HMVote(x) = argmaxy∈Y h̃MVote(x,y),x ∈ X . In
the case of the graph G, the maximizer of h̃MVote is found
efficiently by choosing y such that yk has the maximum
weight in position k.

In the next section, we present learning guarantees for
HRand and HMVote. We also briefly discuss alternative pre-
diction rules in Appendix E.

3.4. Batch learning guarantees

We first present learning bounds for the randomized predic-
tion rule HRand. Next, we upper bound the generalization
error of HMVote in terms of that of HRand.
Proposition 1. For any δ > 0, with probability at least 1−
δ over the choice of the sample ((x1,y1), . . . , (xT ,yT))
drawn i.i.d. according toD, the following inequality holds:

E[L(HRand(x),y)] ≤ 1
T

T∑
t=1

Lt + M

√
log 1

δ

T
,

where Lt = Eh∼pt
[L(h(xt),yt)].

Proof. Let P = {pt1 , . . . , pt|P|}. Observe that

E[L(HRand(x),y)]− 1
|P|

|P|∑
s=1

Lts

=
|P|∑
s=1

∑
h∈H

pts(h)
|P|

(E[L(h(x),y)]− L(h(x)ts ,yts)).

We denote the inner summand by As and observe that As

forms a martingale difference with respect to the filtration
Gs = Fts associated with the process (xt,yt), i.e. Ft is a
σ-algebra generated by (x1,y1), . . . , (xt,yt). Indeed,

E[As|Gs−1] =
1
|P|

∑
h

E[pts
(h) E[L(h(x),y)]|Gs−1]

− E[pts(h)L(h(xts),yts)|Gs−1].

Since pt is determined by Ft−1 and (xt,yt) is independent
of Ft−1, we can write

E[pts
(h)L(h(xts

),yts
)|Gs−1]

= E
1:ts−1

[E
ts

[pts(h)L(h(xts),yts)]|Gs−1]

= E
1:ts−1

[pts
(h) E

ts

[L(h(xts
),yts

)]|Gs−1]

where E1:q indicates that the expectation is taken with
respect to (x1,y1), . . . , (xq,yq). This shows that
E[As|Gs−1] = 0, which implies that As is a martingale
difference sequence. Since |As| ≤ M/|P|, it follows from
Azuma’s inequality that the probability of the event{

E[L(HRand(x),y)]− 1
|P|

|P|∑
s=1

Lts > M

√
log 1

δ

|P|

}
is at most δ. Since Pδ is a minimizer of 1

|P|
∑|P|

s=1 Lts +

M
√

log 1
δ

|P| overP andP contains {p1, . . . , pT }, the desired
conclusion follows.

The next step consists of relating the expected loss of HRand
to the regret RT of the WMWP algorithm:

RT =
T∑

t=1

E
h∼pt

[L(h(xt),yt)]− inf
h∈H

T∑
t=1

L(h(xt),yt). (7)

Theorem 2. For any δ > 0, with probability at least 1− δ
over the choice of the sample ((x1,y1), . . . , (xT ,yT))
drawn i.i.d. according to D, the following inequalities
hold:

E[L(HRand(x),y)]≤ inf
h∈H

E[L(h(x),y)]+
RT

T
+2M

√
log 2

δ

T

E[L(HRand(x),y)]≤ inf
h∈H

E[L(h(x),y)]+2M

√
l log p

T

+2M

√
log 2

δ

T
.

See Appendix B for a proof of this result. We now up-
per bound the generalization error of the majority-vote al-
gorithm HMVote in terms of that of the randomized algo-
rithm HRand, which, combined with Theorem 2, immedi-
ately yields generalization bounds for the majority-vote al-
gorithm HMVote. The first proposition, which admits a sim-
ple proof, relates the expected loss of the majority vote al-
gorithm to that of a randomized algorithm in the case of the
normalized Hamming loss.
Proposition 3. The following inequality relates the gener-
alization error of the majority-vote algorithm to that of the
randomized one:

E[LHam(HMVote(x),y)] ≤ 2 E[LHam(HRand(x),y)],

where the expectations are taken over (x,y)∼D and h∼p.

Ensemble Learning for Structured Prediction

Proof. By definition of the majority vote, if HMVote makes
an error at position k on example (x,y), then, the total
weight of incorrect labels at that position must be at least
half of the total weight of labels in that position. In other
words, the following inequality holds for any k:

1Hk
MVote(x) 6=yk ≤ 2

1
|Pδ|

∑
pt∈Pδ

p∑
j=1

wt,kj1hk
j (x) 6=yk .

Summing up these inequalities over k and taking expecta-
tions yields the desired bound.

Proposition 3 suggests that the price to pay for derandom-
ization is a factor of 2. However, this may be too pes-
simistic. A more refined result presented in the following
proposition shows that often this price is lower.
Proposition 4. The following bound holds for any distri-
bution D over X × Y:

E[LHam(HMVote(x),y)] ≤ 2 E[LHam(HRand(x),y)]
− 2 E[γ(x,y)],

where γ(x,y) =
∑l

k=1 γk(x,y) with γk(x,y) =

max
(
0, 1

|Pδ|
∑

pt∈Pδ

∑p
j=1 wt,kj1hk

j (x) 6=yk − 1
2

)
.

The proof is a refinement of the proof of Proposition 3 and
can be found in Appendix B. Each γk in Proposition 4 can
be interpreted as the edge of incorrect labels and this result
implies that any additional edge of an incorrect hypothesis
(beyond 1

2) should not be included in the bound.

Our methods generalize the results of Dekel & Singer
(2005) where l = 1 and each pt is a probability point
mass at a hypothesis ht produced by an on-line algorithm
on the tth iteration. It is also possible to extend the cross-
validation approach of Cesa-Bianchi et al. (2004) to our set-
ting, but the learning guarantees for this algorithm end up
being less favorable than those just given (see Appendix C
for a full description and analysis). Our results and algo-
rithms can be extended to the case of other directed acyclic
graphs of path experts and other derandomization methods
(see Appendix E for a more detailed discussion).

4. Boosting approach
In this section, we devise a boosting-style algorithm for
our ensemble structured prediction problem. The variants
of AdaBoost for multi-class classification such as Ada-
Boost.MH or AdaBoost.MR (Freund & Schapire, 1997;
Schapire & Singer, 1999; 2000) cannot be readily applied
in this context. First, the number of classes to consider
here is quite large, as in all structured prediction problems,
since it is exponential in the number of substructures l. For
example, in the case of the pronunciation problem where
the number of phonemes for English is in the order of 50,

the number of classes is 50l. But, the objective function
for AdaBoost.MH or AdaBoost.MR as well as the main
steps of the algorithms include a sum over all possible la-
bels, whose computational cost in this context would be
prohibitive. Second, the loss function we consider is the
normalized Hamming loss over the substructures predic-
tions, which does not match the multi-class losses for the
variants of AdaBoost.2 Finally, the natural base hypotheses
for this problem admit a structure that can be exploited to
devise a more efficient solution, which of course was not
part of the original considerations for the design of these
variants of AdaBoost.

4.1. Hypothesis sets and loss function

The predictor HESPBoost returned by our boosting algorithm
is based on a scoring function h̃ : X × Y → R, which,
as for standard ensemble algorithms such as AdaBoost, is
a convex combination of base scoring functions h̃t: h̃ =∑T

t=1 αth̃t, with αt ≥ 0. The base scoring functions we
consider for our problem are derived from the path experts
in H. For each path expert ht ∈ H, we define a scoring
function h̃t as follows:

∀(x,y) ∈ X × Y, h̃t(x,y) =
l∑

k=1

1hk
t (x)=yk . (8)

Thus, the score assigned to y by the base scoring function
h̃t is the number of positions at which y matches the pre-
diction of path expert ht given input x. HESPBoost is defined
as follows in terms of h̃ or hts:

∀x ∈ X , HESPBoost(x) = argmax
y∈Y

h̃(x,y) (9)

= argmax
y∈Y

l∑
k=1

T∑
t=1

αt1hk
t (x)=yk .

4.2. ESPBoost algorithm

For any i ∈ [1,m] and k ∈ [1, l], we define the margin
of h̃k for point (xi,yi) by ρ(h̃k,xi,yi) = h̃k(xi, y

k
i) −

maxyk 6=yk
i

h̃k(xi, y
k).

Lemma 5. The following upper bound holds for the empir-
ical normalized Hamming loss of the hypothesis HESPBoost:

E
(x,y)∼S

[LHam(HESPBoost(x),y)]

≤ 1
ml

m∑
i=1

l∑
k=1

exp
(
−

T∑
t=1

αtρ(h̃k
t ,xi,yi)

)
.

2Schapire & Singer (1999) also present an algorithm using the
Hamming loss for multi-class classification, but that is a Ham-
ming loss over the set of classes and differs from the loss function
relevant to our problem. Additionally, the main steps of that algo-
rithm are also based on a sum over all classes.

Ensemble Learning for Structured Prediction

Algorithm 2 ESPBoost Algorithm.
Inputs: S = ((x1,y1), . . . , (xm,ym)); set of experts
{h1, . . . , hp}.
for i = 1 to m and k = 1 to l do
D1(i, k)← 1

ml
end for
for t = 1 to T do

ht ← argminh∈H E(i,k)∼Dt
[1hk(xi) 6=yk

i
]

εt ← E(i,k)∼Dt
[1hk

t (xi) 6=yk
i
]

αt ← 1
2 log 1−εt

εt

Zt ← 2
√

εt(1− εt)
for i = 1 to m and k = 1 to l do
Dt+1(i, k)← exp(−αtρ(ehk

t ,xi,yi))Dt(i,k)
Zt

end for
end for
Return h̃ =

∑T
t=1 αth̃t

In view of this upper bound, we consider the objective func-
tion F : RN → R defined for all α = (α1, . . . , αN) ∈ RN

by

F (α) =
1

ml

m∑
i=1

l∑
k=1

exp
(
−

N∑
j=1

αjρ(h̃k
j ,xi,yi)

)
, (10)

where h1, . . . , hN denote the set of all path experts in H.
F is a convex and differentiable function of α. Our algo-
rithm, ESPBoost (Ensemble Structured Prediction Boost-
ing), is defined by the application of coordinate descent to
the objective F . Algorithm 2 shows the pseudocode of the
ESPBoost (see Appendix G.2 for the details of the deriva-
tion of the coordinate descent algorithm).

Our weak learning assumption in this context is that there
exists γ > 0 such that at each round, εt verifies εt < 1

2 −γ.
For the graph G, at each round, the path expert ht with the
smallest error εt can be determined easily and efficiently by
first finding for each substructure k, the hk

t that is the best
with respect to the distribution weights Dt(i, k).

Observe that, while the steps of our algorithm are syntac-
tically close to those of AdaBoost and its multi-class vari-
ants, our algorithm is distinct and does not require sums
over the exponential number of all possible labelings of
the substructures and is quite efficient. We have derived
margin-based learning guarantees for ESPBoost which are
presented in detail and proven in Appendix G.3.

5. Experiments
We used a number of artificial and real-life data sets for
our experiments. For each data set, we performed 10-fold
cross-validation with disjoint training sets.3 We report the

3For the OCR data set, these subsets are predefined.

Table 1. Average Normalized Hamming Loss, ADS1 and ADS2.
βADS1 = 0.95, βADS2 = 0.95, TSLE = 100, δ = 0.05.

ADS1, m = 200 ADS2, m = 200
HMVote 0.0197 ± 0.00002 0.2172 ± 0.00983
HFPL 0.0228 ± 0.00947 0.2517 ± 0.05322
HCV 0.0197 ± 0.00002 0.2385 ± 0.00002
HFPL-CV 0.0741 ± 0.04087 0.4001 ± 0.00028
HESPBoost 0.0197 ± 0.00002 0.2267 ± 0.00834
HSLE 0.5641 ± 0.00044 0.2500 ± 0.05003
HRand 0.1112 ± 0.00540 0.4000 ± 0.00018
Best hj 0.5635 ± 0.00004 0.4000

Table 2. Average Normalized Hamming Loss, PDS1 and PDS2.
βPDS1 = 0.85, βPDS2 = 0.97, TSLE = 100, δ = 0.05.

PDS1, m = 130 PDS2, m = 400
HMVote 0.2225 ± 0.00301 0.2323 ± 0.00069
HFPL 0.2657 ± 0.07947 0.2337 ± 0.00229
HCV 0.2316 ± 0.00189 0.2364 ± 0.00080
HFPL-CV 0.4451 ± 0.02743 0.4090 ± 0.01388
HESPBoost 0.3625 ± 0.01054 0.3499 ± 0.00509
HSLE 0.3130 ± 0.05137 0.3308 ± 0.03182
HRand 0.4713 ± 0.00360 0.4607 ± 0.00131
Best hj 0.3449 ± 0.00368 0.3413 ± 0.00067

average test error for each task. In addition to the HMVote,
HRand and HESPBoost hypotheses, we experimented with
two algorithms discussed in more detail in the appendix: a
cross-validation on-line-to-batch conversion of the WMWP
algorithm, HCV, and a majority-vote on-line-to-batch con-
version with FPL, HFPL, and a cross-validation on-line-to-
batch conversion with FPL, HFPL-CV. Finally, we compare
with the HSLE algorithm of Nguyen & Guo (2007).

5.1. Artificial data sets

Our artificial data set, ADS1 and ADS2 simulate the sce-
narios described in Section 1. In ADS1 the kth expert has
a high accuracy on the kth position, in ADS2 an expert has
low accuracy in a fixed set of positions. More details on
the data set and the experimental parameters can be found
in Appendix H.1.

Table 1 reports the results of our experiments. In both cases
HMVote, our majority-vote algorithm based on our on-line-
to-batch conversion using the WMWP algorithm (together
with most of the other on-line based algorithms), yields a
significant improvement over the best expert. It also out-
performs HSLE, which in the case of ADS1 even fails to
outperform the best hj . After 100 iterations on ADS1,
the ensemble learned by HSLE consists of a single expert,
which is why it leads to such a poor performance.

It is also worth pointing out that HFPL-CV and HRand fail to
outperform the best model on ADS2 set. This is in total
agreement with our theoretical analysis since, in this case,
any path expert has exactly the same performance and the
error of the best path expert is an asymptotic upper bound
on the errors of these algorithms.

Ensemble Learning for Structured Prediction

5.2. Pronunciation data sets

We had access to two proprietary pronunciation data sets,
PDS1 and PDS2. In both sets each example is an English
word, typically a proper name. For each word, 20 pos-
sible phonemic sequences are available, ranked by some
pronunciation model. Since the true pronunciation was not
available, we set the top sequence to be the target label and
used the remaining as the predictions made by the experts.
The only difference between PDS1 and PDS2 is their size:
1,313 words for PDS1 and 6,354 for PDS2.

In both cases on-line based algorithms, specifically HMVote,
significantly outperformed the best model as well as HSLE,
see Table 2. The poor performance of HESPBoost is due to
the fact that the weak learning assumption is violated after
5-8 iterations and hence the algorithm terminates.

5.3. OCR data set

Rob Kassel’s OCR data set is available for download from
http://ai.stanford.edu/˜btaskar/ocr/. It con-
tains 6,877 word instances with a total of 52,152 charac-
ters. Each character is represented by 16× 8 = 128 binary
pixels. The task is to predict a word given its sequence
of pixel vectors. To generate experts we used several soft-
ware packages: CRFsuite (Okazaki, 2007) and SVMstruct,
SVMmulticlass (Joachims, 2008), and the Stanford Classi-
fier (Rafferty et al., 2014). We trained these algorithms on
each of the predefined folds of the data set and used the
resulting models to generate expert predictions.

The results reported in Table 7 in Appendix H show that
ensemble methods lead only to a small improvement in per-
formance over the best hj . This is because the best model
hj dominates all other experts and ensemble methods can-
not benefit from patching together different outputs.

5.4. Penn Treebank data set

The part-of-speech task (POS) consists of labeling each
word of a sentence with its correct part-of-speech tag. The
Penn Treebank 2 data set is available through LDC license
at http://www.cis.upenn.edu/˜treebank/ and con-
tains 251,854 sentences with a total of 6,080,493 tokens
and 45 different parts of speech.

For the first experiment (TR1), we used 4 disjoint train-
ing sets to produce 4 SVMmulticlass models and 4 maxi-
mum entropy models using the Stanford Classifier. We also
used the union of these training sets to devise one CRF-
suite model. For the second experiment (TR2) we trained
5 SVMstruct models. The same features were used for
both experiments. For the SVM algorithms, we generated
267,214 bag-of-word binary features. The Stanford Classi-
fier and CRFsuite packages use internal routines to gener-

Table 3. Average Normalized Hamming Loss, TR1 and TR2.
βTR1 = 0.95, βTR2 = 0.98, TSLE = 100, δ = 0.05.

TR1, m = 800 TR2, m = 1000
HMVote 0.0850 ± 0.00096 0.0746 ± 0.00014
HFPL 0.0859 ± 0.00110 0.0769 ± 0.00218
HCV 0.0843 ± 0.00006 0.0741 ± 0.00011
HFPL-CV 0.1093 ± 0.00129 0.1550 ± 0.00182
HESPBoost 0.1041 ± 0.00056 0.1414 ± 0.00233
HSLE 0.0778 ± 0.00934 0.0814 ± 0.02558
HRand 0.1128 ± 0.00048 0.1652 ± 0.00077
Best hj 0.1032 ± 0.00007 0.1415 ± 0.00005

ate their features. For more detail, see Appendix H.

The results of the experiments are summarized in Table 3.
For TR1, our on-line ensemble methods improve over the
best model. Note that HSLE has the best average loss over
10 runs for this experiment. This comes at a price of much
higher standard deviation which does not allow us to con-
clude that the difference in performance between our meth-
ods and HSLE is statistically significant. In fact, on two runs
HSLE chooses an ensemble consisting of a single expert and
fails to outperform the best model.

6. Conclusion
We presented a broad analysis of the problem of ensem-
ble structured prediction, including a series of algorithms
with learning guarantees and extensive experiments. Our
results show that our algorithms, most notably HMVote, can
result in significant benefits in several tasks, which can be
of a critical practical importance. In Appendix H, we also
report very favorable results for HMVote when used with
the edit-distance, which is the natural measure in many
applications. A natural extension of this work consists
of devising new algorithms and providing learning guar-
antees specific to other loss functions such as the edit-
distance.

The extension of our algorithms and solutions to other di-
rected graphs, as discussed in Appendix E, can further in-
crease the applicability of our methods and enhance perfor-
mance. While we aimed for an exhaustive study including
multiple on-learning algorithms, different conversions to
batch and derandomizations, we are aware that the problem
we studied is very rich and admits many more facets and
scenarios that we plan to investigate in the future.

Acknowledgments
We warmly thank our colleagues Francoise Beaufays and
Fuchun Peng for kindly extracting and making available to
us the pronunciation data sets used for our experiments and
Richard Sproat and Brian Roark for help with other data
sets. This work was partly funded by the NSF award IIS-
1117591 and the NSERC PGS D3 award.

http://ai.stanford.edu/~btaskar/ocr/
http://www.cis.upenn.edu/~treebank/

Ensemble Learning for Structured Prediction

References
Breiman, L. Bagging predictors. Machine Learning, 24:123–140,

1996.

Caruana, R., Niculescu-Mizil, A., Crew, G., and Ksikes, A. En-
semble selection from libraries of models. In Proceedings of
ICML, pp. 18–, 2004.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and games.
Cambridge University Press, 2006.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. On the generaliza-
tion ability of on-line learning algorithms. IEEE Transactions
on Information Theory, 50(9):2050–2057, 2004.

Collins, M. Discriminative training methods for hidden Markov
models: theory and experiments with perceptron algorithms.
In Proceedings of ACL, pp. 1–8, 2002.

Collins, M. and Koo, T. Discriminative reranking for natural lan-
guage parsing. Computational Linguistics, 31(1):25–70, 2005.

Cortes, C., Mohri, M., and Weston, J. A general regression
technique for learning transductions. In Proceedings of ICML
2005, pp. 153–160, 2005.

Dekel, O. and Singer, Y. Data-driven online to batch conversion.
In Advances in NIPS 18, pp. 1207–1216, 2005.

Fiscus, J. G. Post-processing system to yield reduced word error
rates: Recognizer output voting error reduction (ROVER). In
Proceedings of ASRU, pp. 347–354, 1997.

Freund, Y. and Schapire, R. A decision-theoretic generalization of
on-line learning and application to boosting. Journal of Com-
puter and System Sciences, 55(1):119–139, 1997.

Freund, Y., Mansour, Y., and Schapire, R. Generalization bounds
for averaged classifiers. Ann. Stat., 32:1698–1722, 2004.

Ghoshal, A., Jansche, M., Khudanpur, S., Riley, M., and Ulinski,
M. Web-derived pronunciations. In Proceedings of ICASSP,
pp. 4289–4292, 2009.

Joachims, T. Support vector machines for complex outputs,
2008. URL http://www.cs.cornell.edu/people/
tj/svm_light/svm_struct.html.

Kalai, A. and Vempala, S. Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):
291–307, 2005.

Kocev, D., Vens, C., Struyf, J., and Deroski, S. Tree ensembles
for predicting structured outputs. Pattern Recognition, 46(3):
817–833, March 2013.

Koltchinskii, V. and Panchenko, D. Empirical margin distribu-
tions and bounding the generalization error of combined clas-
sifiers. Ann. Stat., 30:1–50, 2002.

Lafferty, J., McCallum, A., and Pereira, F. Conditional random
fields: Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of ICML, pp. 282–289, 2001.

Littlestone, N. From on-line to batch learning. In Proceedings of
COLT 2, pp. 269–284, 1989.

Littlestone, N. and Warmuth, M. The weighted majority algo-
rithm. Information and Computation, 108(2):212–261, 1994.

MacKay, D. J. C. Bayesian methods for adaptive models. PhD
thesis, California Institute of Technology, 1991.

Mohri, M. Finite-state transducers in language and speech pro-
cessing. Computational Linguistics, 23(2):269–311, 1997.

Mohri, M. and Riley, M. An efficient algorithm for the n-best-
strings problem. In Interspeech, 2002.

Mohri, M., Pereira, F. C. N., and Riley, M. Speech recognition
with weighted finite-state transducers. In Handbook on Speech
Processing and Speech Communication, Part E: Speech recog-
nition. Springer-Verlag, 2008.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of
Machine Learning. The MIT Press, 2012.

Nguyen, N. and Guo, Y. Comparison of sequence labeling algo-
rithms and extensions. In Proc. of ICML, pp. 681–688, 2007.

Okazaki, N. CRFsuite: a fast implementation of conditional
random fields (crfs), 2007. URL http://www.chokkan.
org/software/crfsuite/.

Petrov, S. Products of random latent variable grammars. In HLT-
NAACL, pp. 19–27, 2010.

Rafferty, A., Kleeman, A., Finkel, J., and Manning, C. Stan-
ford classifer, 2014. URL http://nlp.stanford.edu/
downloads/classifier.shtml.

Sagae, K. and Lavie, A. Parser combination by reparsing. In
Proceedings of HLT/NAACL, pp. 129–132, 2006.

Schapire, R. and Singer, Y. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–
336, 1999.

Schapire, R. and Singer, Y. Boostexter: A boosting-based system
for text categorization. Machine Learning, 39:135–168, 2000.

Schapire, R., Freund, Y., Bartlett, P., and Lee, W. S. Boosting
the margin: A new explanation for the effectiveness of voting
methods. In ICML, pp. 322–330, 1997.

Smyth, P. and Wolpert, D. Linearly combining density estimators
via stacking. Machine Learning, 36:59–83, 1999.

Takimoto, E. and Warmuth, M. K. Path kernels and multiplicative
updates. JMLR, 4:773–818, 2003.

Taskar, B., Guestrin, C., and Koller, D. Max-margin Markov net-
works. In Advances in NIPS 16. MIT Press, 2004.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large
margin methods for structured and interdependent output vari-
ables. JMLR, 6:1453–1484, December 2005.

Vovk, V. G. Aggregating strategies. In COLT, pp. 371–386, 1990.

Wang, Q., Lin, D., and Schuurmans, D. Simple training of depen-
dency parsers via structured boosting. In Proceedings of IJCAI
20, pp. 1756–1762, 2007.

Zeman, D. and Žabokrtský, Z. Improving parsing accuracy by
combining diverse dependency parsers. In Proceedings of
IWPT 9, pp. 171–178, 2005.

Zhang, H., Zhang, M., Tan, C., and Li, H. K-best combination
of syntactic parsers. In Proceedings of EMNLP: Volume 3, pp.
1552–1560, 2009.

http://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html
http://www.chokkan.org/software/crfsuite/
http://www.chokkan.org/software/crfsuite/
http://nlp.stanford.edu/downloads/classifier.shtml
http://nlp.stanford.edu/downloads/classifier.shtml

