
Estimating Diffusion Network Structures

A. Proof of Lemma 9
Lemma 9 Given log-concave survival functions and con-
cave hazard functions in the parameter(s) of the pairwise
transmission likelihoods, then, a sufficient condition for the
Hessian matrixQn to be positive definite is that the hazard
matrix Xn(α) is non-singular.

Proof Using Eq. 5, the Hessian matrix can be expressed
as a sum of two matrices, Dn(α) and Xn(α)Xn(α)>.
The matrix Dn(α) is trivially positive semidefinite by
log-concavity of the survival functions and concavity of the
hazard functions. The matrix Xn(α)Xn(α)> is positive
definite matrix since Xn(α) is full rank by assumption.
Then, the Hessian matrix is positive definite since it is a
sum a positive semidefinite matrix and a positive definite
matrix.

B. Proof of Lemma 10
Lemma 10 If the source probability P(s) is strictly posi-
tive for all s ∈ R, then, for an arbitrarily large number
of cascades n → ∞, there exists an ordering of the nodes
and cascades within the cascade set such that the hazard
matrixXn(α) is non-singular.

Proof In this proof, we find a labeling of the nodes (row
indices in Xn(α)) and ordering of the cascades (column
indices in Xn(α)), such that, for an arbitrary large number
of cascades, we can express the matrix Xn(α) as [T B],
where T ∈ Rp×p is an upper triangular with nonzero diag-
onal elements and B ∈ Rp×n−p. And, therefore, Xn(α)
has full rank (rank p). We proceed first by sorting nodes in
R and then continue by sorting nodes in U :

• Nodes in R: For each node u ∈ R, consider the set
of cascades Cu in which u was a source and i got in-
fected. Then, rank each node u according to the ear-
liest position in which node i got infected across all
cascades in Cu in decreasing order, breaking ties at
random. For example, if a node u was, at least once,
the source of a cascade in which node i got infected
just after the source, but in contrast, node v was never
the source of a cascade in which node i got infected
the second, then node u will have a lower index than
node v. Then, assign row k in the matrix Xn(α) to
node in position k and assign the first d columns to
the corresponding cascades in which node i got in-
fected earlier. In such ordering, Xn(α)mk = 0 for all
m < k and Xn(α)kk 6= 0.

• Nodes in U : Similarly as in the first step, and assign
them the rows d + 1 to p. Moreover, we assign the
columns d + 1 to p to the corresponding cascades in

which node i got infected earlier. Again, this order-
ing satisfies that Xn(α)mk = 0 for all m < k and
Xn(α)kk 6= 0. Finally, the remaining columns n − p
can be assigned to the remaining cascades at random.

This ordering leads to the desired structure [T B], and thus
it is non-singular.

C. Proof of Eq 7.
If the Hazard vector X(tc;α) is Lipschitz continuous in
the domain {α : αS ≥ α∗min

2 },
‖X(tc;β)−X(tc;α)‖2 ≤ k1‖β −α‖2,

where k1 is some positive constant. Then, we can bound
the spectral norm of the difference, 1√

n
(Xn(β)−Xn(α)),

in the domain {α : αS ≥ α∗min

2 } as follows:

|‖ 1√
n

(
Xn(β)−Xn(α)

)
‖|2

= max
‖u‖2=1

1√
n
‖u
(
Xn(β)−Xn(α)

)
‖2

= max
‖u‖2=1

1√
n

√√√√ n∑
c=1

〈u,X(tc;β)−X(tc;α)〉2

≤ 1√
n

√
k21n‖u‖22‖β −α‖22

≤ k1‖β −α‖2.

D. Proof of Lemma 3
By Lagrangian duality, the regularized network inference
problem defined in Eq. 4 is equivalent to the following con-
strained optimization problem:

minimizeαi `n(αi)
subject to αji ≥ 0, j = 1, . . . , N, i 6= j,

||αi||1 ≤ C(λn)
(20)

whereC(λn) <∞ is a positive constant. In this alternative
formulation, λn is the Lagrange multiplier for the second
constraint. Since λn is strictly positive, the constraint is
active at any optimal solution, and thus ||αi||1 is constant
across all optimal solutions.

Using that `n(αi) is a differentiable convex function by
assumption and {α : αji ≥ 0, ||αi||1 ≤ C(λn)} is a
convex set, we have that ∇`n(αi) is constant across opti-
mal primal solutions (Mangasarian, 1988). Moreover, any
optimal primal-dual solution in the original problem must
satisfy the KKT conditions in the alternative formulation
defined by Eq. 20, in particular,

∇`n(αi) = −λnz + µ,

where µ ≥ 0 are the Lagrange multipliers associated to the
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non negativity constraints and z denotes the subgradient of
the `1-norm.

Consider the solution α̂ such that ||ẑSc ||∞ < 1 and thus
∇αSc `n(α̂i) = −λnẑSc + µ̂Sc . Now, assume there is an
optimal primal solution α̃ such that α̃ji > 0 for some j ∈
Sc, then, using that the gradient must be constant across
optimal solutions, it should hold that −λnẑj + µ̂j = −λn,
where µ̃ji = 0 by complementary slackness, which implies
µ̂j = −λn(1 − ẑj) < 0. Since µ̂j ≥ 0 by assumption,
this leads to a contradiction. Then, any primal solution α̃
must satisfy α̃Sc = 0 for the gradient to be constant across
optimal solutions.

Finally, since αSc = 0 for all optimal solutions, we can
consider the restricted optimization problem defined in
Eq. 17. If the Hessian sub-matrix [∇2L(α̂)]SS is strictly
positive definite, then this restricted optimization problem
is strictly convex and the optimal solution must be unique.

E. Proof of Lemma 4
To prove this lemma, we will first construct a function

G(uS) := `n(α∗
S + uS)− `n(α∗

S)

+ λn(‖α∗
S + uS‖1 − ‖α∗

S‖1).

whose domain is restricted to the convex set U = {uS :
α∗S + uS ≥ 0}. By construction, G(uS) has the following
properties

1. It is convex with respect to uS .
2. Its minimum is obtained at ûS := α̂S − α∗S . That is
G(ûS) ≤ G(uS), ∀uS 6= ûS .

3. G(ûS) ≤ G(0) = 0.

Based on property 1 and 3, we deduce that any point in the
segment, L := {ũS : ũS = tûS + (1− t)0, t ∈ [0, 1]},
connecting ûS and 0 has G(ũS) ≤ 0. That is

G(ũS) = G(tûS + (1− t)0)

≤ tG(ûS) + (1− t)G(0) ≤ 0.

Next, we will find a sphere centered at 0 with strictly po-
sitive radius B, S(B) := {uS : ‖uS‖2 = B}, such that
function G(uS) > 0 (strictly positive) on S(B). We note
that this sphere S(B) can not intersect with the segment
L since the two sets have strictly different function values.
Furthermore, the only possible configuration is that the seg-
ment is contained inside the sphere entirely, leading us to
conclude that the end point ûS := α̂S −α∗S is also within
the sphere. That is ‖α̂S −α∗S‖2 ≤ B.

In the following, we will provide details on finding such
a suitable B which will be a function of the regularization
parameter λn and the neighborhood size d. More specifica-
lly, we will start by applying a Taylor series expansion and

the mean value theorem,

G(uS) = ∇S`n(α∗S)>uS

+ u>S∇2
SS`

n(α∗S + buS)uS

+ λn(‖α∗S + uS‖1 − ‖α∗S‖1), (21)

where b ∈ [0, 1]. We will show that G(uS) > 0 by boun-
ding below each term of above equation separately.

We bound the absolute value of the first term using the
assumption on the gradient,∇S`(·),

|∇S`n(α∗S)>uS | ≤ ‖∇S`‖∞‖uS‖1
≤ ‖∇S`‖∞

√
d‖uS‖2
≤ 4−1λnB

√
d. (22)

We bound the absolute value of the last term using the re-
verse triangle inequality.

λn|‖α∗S + uS‖1 − ‖α∗S‖1| ≤ λn‖uS‖1 ≤ λn
√
d‖uS‖2.

(23)

Bounding the remaining middle term is more challenging.
We start by rewriting the Hessian as a sum of two matrices,
using Eq. 5,

q = min
uS

u>SDn
SS(α∗S + buS)uS

+ n−1u>SXn
S(α∗S + buS)Xn

S(α∗S + buS)>uS

= min
uS

u>SDn
SS(α∗S + buS)uS + ‖u>SXn

S(α∗S + buS)‖22.

Now, we introduce two additional quantities,

∆Dn
SS = Dn

SS(α∗S + buS)−Dn
SS(α∗S)

∆Xn
S = Xn

S(α∗S + buS)−Xn
S(α∗S),

and rewrite q as

q = min
uS

[
u>SDn

SS(α∗S)uS + n−1‖u>SXn
S(α∗S)‖22

+n−1‖u>S∆Xn
S‖22 + u>S∆Dn

SSuS

+2n−1〈u>SXn
S(α∗S),u>S∆Xn

S〉
]
.

Next, we use dependency condition,

q ≥ CminB
2 −max

uS

|u>S∆Dn
SSuS︸ ︷︷ ︸

T1

|

−max
uS

2|n−1〈u>SXn
S(α∗S),u>S∆Xn

S〉︸ ︷︷ ︸
T2

|,

and proceed to bound T1 and T2 separately. First, we bound
T1 using the Lipschitz condition,

|T1| = |
∑
k∈S

u2k[Dn
k (α∗S + buS)−Dn

k (α∗S)]|

≤
∑
k∈S

u2kk2‖buS‖2

≤ k2B3.



Estimating Diffusion Network Structures

Then, we use the dependency condition, the Lipschitz con-
dition and the Cauchy-Schwartz inequality to bound T2,

T2 ≤ 1√
n
‖u>SXn

S(α∗S)‖2
1√
n
‖u>S∆Xn

S‖2

≤
√
CmaxB

1√
n
‖u>S∆Xn

S‖2

≤
√
CmaxB‖uS‖2

1√
n
|‖∆Xn

S‖|2

≤
√
CmaxB

2k1‖buS‖2
≤ k1

√
CmaxB

3,

where we note that applying the Lipschitz condition im-
plies assuming B < αmin

2 . Next, we incorporate the
bounds of T1 and T2 to lower bound q,

q ≥ CminB
2 − (k2 + 2k1

√
Cmax)B3. (24)

Now, we set B = Kλn
√
d, where K is a constant that

we will set later in the proof, and select the regulariza-
tion parameter λn to satisfy λn

√
d ≤ 0.5Cmin/K(k2 +

2k1
√
Cmax). Then,

G(uS) ≥ −4−1λn
√
dB + 0.5CminB

2 − λn
√
dB

≥ B(0.5CminB − 1.25λn
√
d)

≥ B(0.5CminKλn
√
d− 1.25λn

√
d).

In the last step, we set the constant K = 3C−1min, and we
have

G(uS) ≥ 0.25λn
√
d > 0,

as long as
√
dλn ≤

C2
min

6(k2 + 2k1
√
Cmax)

α∗min ≥
6λn
√
d

Cmin
.

Finally, convexity of G(uS) yields

‖α̂S −α∗S‖2 ≤ 3λn
√
d/Cmin ≤

α∗min

2
.

F. Proof of Lemma 5
Define zcj = [∇g(tc;α∗)]j and zj = 1

n

∑
c z

c
j . Now,

using the KKT conditions and condition 4 (Boundedness),
we have that µ∗j = Ec{zcj} and |zcj | ≤ k3, respectively.
Thus, Hoeffding’s inequality yields

P (|zj − µ∗j | >
λnε

4(2− ε)
)

≤ 2 exp

(
− nλ2nε

2

32k23 (2− ε)2

)
,

and then,

P (‖z − µ∗‖∞ >
λnε

4(2− ε)
)

≤ 2 exp

(
− nλ2nε

2

32k23 (2− ε))2
+ log p

)
.

G. Proof of Lemma 6
We start by factorizing the Hessian matrix, using Eq. 5,

Rnj =
[
∇2`n(ᾱj)−∇2`n(α∗)

]>
j

(α̂−α∗) = ωnj + δnj ,

where,

ωnj =
[
Dn(ᾱj)−Dn(α∗)

]>
j

(α̂−α∗)

δnj =
1

n
V n
j (α̂−α∗)

V n
j = [Xn(ᾱj)]jX

n(ᾱj)
> − [Xn(α∗)]jX

n(α∗)>.

Next, we proceed to bound each term separately. Since
[ᾱj ]S = θjα̂S + (1 − θj)α

∗
S where θj ∈ [0, 1], and

‖α̂S − α∗S‖∞ ≤
α∗min

2 (Lemma 4), it holds that [ᾱj ]S ≥
α∗min

2 . Then, we can use condition 3 (Lipschitz Continuity)
to bound ωnj .

|ωnj | ≤ k1‖ᾱj −α∗‖2‖α̂−α∗‖2
≤ k1θj‖α̂−α∗‖22
≤ k1‖α̂−α∗‖22. (25)

However, bounding term δnj is more difficult. Let us start
by rewriting δnj as follows.

δnj = (Λ1 + Λ2 + Λ3) (α̂−α∗),

where,

Λ1 = [Xn(α∗)]j(X
n(ᾱj)

> −Xn(α∗)>)

Λ2 = {[Xn(ᾱj)]j − [Xn(α∗)]j}(Xn(ᾱj)
> −Xn(α∗)>)

Λ3 =
(
[Xn(ᾱj)]j − [Xn(α∗)]j

)
Xn(α∗)>.

Next, we bound each term separately. For the first term, we
first apply Cauchy inequality,

|Λ1(α̂−α∗)| ≤ ‖[Xn(α∗)]j‖2
× |‖Xn(ᾱj)

> −Xn(α∗)>‖|2‖α̂−α∗‖2,
and then use condition 3 (Lipschtiz Continuity) and 4
(Boundedness),

|Λ1(α̂−α∗)| ≤ nk4k1‖ᾱj −α∗‖2‖α̂−α∗‖2
≤ nk4k1‖α̂−α∗‖22.

For the second term, we also start by applying Cauchy in-



Estimating Diffusion Network Structures

0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

β

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 

 

P=16

P=32

P=64

P=128

P=256

(a) Chain (di = 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 

 

p=31

p=63

p=127

(b) Stars with different # of leaves (di = 1)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

β

S
u

c
e

s
s
 P

ro
b

a
b

ili
ty

 

 

p=39

p=120

p=363

(c) Tree (di = 3)

Figure 5. Success probability vs. # of cascades. Different super-neighborhood sizes pi.

equality,

|Λ2(α̂−α∗)| ≤ ‖[Xn(ᾱj)]j − [Xn(α∗)]j‖2
× |‖Xn(ᾱj)

> −Xn(α∗)>‖|2‖α̂−α∗‖2,
and then use condition 3 (Lipschtiz Continuity),

|Λ2(α̂−α∗)| ≤ nk21‖α̂−α∗‖22.

Last, for third term, once more we start by applying Cauchy
inequality,

|Λ3(α̂−α∗)| ≤ ‖[Xn(ᾱj)]j − [Xn(α∗)]j‖2
× |‖Xn(α∗)>‖|2‖α̂−α∗‖2,

and then apply condition 1 (Dependency Condition) and
condition 3 (Lipschitz Continuity),

|Λ3(α̂−α∗)| ≤ nk1
√
Cmax‖α̂−α∗‖22

Now, we combine the bounds,

‖Rn‖∞ ≤ K‖α̂−α∗‖22,
where

K = k1 + k4k1 + k21 + k1
√
Cmax.

Finally, using Lemma 4 and selecting the regularization pa-
rameter λn to satisfy λnd ≤ C2

min
ε

36K(2−ε) yields:

‖Rn‖∞/λn ≤ 3Kλnd/C
2
min

≤ ε

4(2− ε)

H. Proof of Lemma 7
We will first bound the difference in terms of nuclear
norm between the population Fisher information matrix
QSS and the sample mean cascade log-likelihood QnSS .
Define zcjk = [∇2g(tc;α∗) − ∇2`n(α∗)]jk and zjk =
1
n

∑n
c=1 z

c
jk. Then, we can express the difference between

the population Fisher information matrixQSS and the sam-

ple mean cascade log-likelihood QnSS as:

|‖QnSS(α∗)−Q∗SS(α∗)‖|2
≤ |‖QnSS(α∗)−Q∗SS(α∗)‖|F

=

√√√√ d∑
j=1

d∑
k=1

(zik)2.

Since |z(c)jk | ≤ 2k5 by condition 4, we can apply Hoeff-
ding’s inequality to each zjk,

P (|zjk| ≥ β) ≤ 2 exp

(
−β

2n

8k25

)
, (26)

and further,

P (|‖QnSS(α∗)−Q∗SS(α∗)‖|2 ≥ δ)

≤ 2 exp
(
−Kδ2n

d2
+ 2 log d

)
(27)

where β2 = δ2/d2. Now, we bound the maximum eigen-
value of QnSS as follows:

Λmax(QnSS) = max
‖x‖2=1

x>QnSSx

= max
‖x‖2=1

{x>Q∗SSx+ x>(QnSS −Q∗SS)x}

≤ y>Q∗SSy + y>(QnSS −Q∗SS)y,

where y is unit-norm maximal eigenvector of Q∗SS . There-
fore,

Λmax(QnSS) ≤ Λmax(Q∗SS) + |‖QnSS −Q∗SS‖|2,
and thus,

P
(
Λmax(QnSS) ≥ Cmax + δ

)
≤ exp

(
−Kδ2n

d2
+ 2 log d

)
.

Reasoning in a similar way, we bound the minimum eigen-
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degrees di.

value of QnSS :

P
(
Λmin(QnSS) ≤ Cmin − δ

)
≤ exp

(
−Kδ2n

d2
+ 2 log d

)

I. Proof of Lemma 8
We start by decomposing QnScS(α∗)(QnScS(α∗))−1 as fo-
llows:

QnScS(α∗)(QnScS(α∗))−1 = A1 +A2 +A3 +A4,

where,

A1 = Q∗ScS [(QnScS)−1 − (Q∗ScS)−1],

A2 = [QnScS −Q∗ScS ][(QnScS)−1 − (Q∗ScS)−1]

A3 = [QnScS −Q∗ScS ](Q∗SS)−1,

A4 = Q∗ScS(Q∗SS)−1,

Q∗ = Q∗(α∗) and Qn = Qn(α∗). Now, we bound
each term separately. The fourth term, A4, is the easiest
to bound, using simply the incoherence condition:

|‖A4‖|∞ ≤ 1− ε.

To bound the other terms, we need the following lemma:

Lemma 11 For any δ ≥ 0 and constants K and K ′, the
following bounds hold:

P [|‖QnScS −Q∗ScS‖|∞ ≥ δ]

≤ 2 exp

(
−Knδ2

d2
+ log d+ log(p− d)

)
(28)

P [|‖QnSS −Q∗SS‖|∞ ≥ δ]

≤ 2 exp

(
−Knδ2

d2
+ 2 log d

)
(29)

P [|‖(QnSS)−1 − (Q∗SS)−1‖|∞ ≥ δ]

≤ 4 exp

(
−Knδ

d3
−K ′ log d

)
(30)

Proof We start by proving the first confidence interval. By
definition of infinity norm of a matrix, we have:

P [|‖QnScS −Q∗ScS‖|∞ ≥ δ]

= P
[

max
j∈Sc

∑
k∈S

|zjk| ≥ δ
]

≤ (p− d)P
[∑
k∈S

|zjk| ≥ δ
]
,

where zjk = [Qn −Q∗]jk and, for the last inequality, we
used the union bound and the fact that |Sc| ≤ p − d. Fur-
thermore,

P
[∑

k∈S |zjk| ≥ δ
]
≤ P [∃k ∈ S||zjk| ≥ δ/d]

≤ dP [|zjk| ≥ δ/d].

Thus,

P [|‖QnScS −Q∗ScS‖|∞ ≥ δ] ≤ (p− d)dP [|zjk| ≥ δ/d].

At this point, we can obtain the first confidence bound by
using Eq. 26 with β = δ/d in the above equation. The
proof of the second confidence bound is very similar and
we omit it for brevity. To prove the last confidence bound,
we proceed as follows:

|‖(QnSS)−1 − (Q∗SS)−1‖|∞
= |‖(QnSS)−1[QnSS −Q∗SS ](Q∗SS)−1‖|∞
≤
√
d|‖(QnSS)−1[QnSS −Q∗SS ](Q∗SS)−1‖|2

≤
√
d|‖(QnSS)−1‖|2|‖QnSS −Q∗SS‖|2|‖(Q∗SS)−1‖|2

≤
√
d

Cmin
|‖QnSS −Q∗SS‖|2|‖(QnSS)−1‖|2.

Next, we bound each term of the final expression in the
above equation separately. The first term can be bounded
using Eq. 27:

P
[
|‖QnSS −Q∗SS‖|2 ≥ C2

minδ/2
√
d
]

≤ 2 exp
(
−Knδ2

d3
+ 2 log d

)
,

The second term can be bounded using Lemma 6:

P
[
|‖(QnSS)−1‖|2 ≥

2

Cmin

]
= P

[
Λmin(QnSS) ≤ Cmin

2

]
≤ exp

(
−K n

d2
+B log d

)
.

Then, the third confidence bound follows.

Control of A1. We start by rewriting the term A1 as

A1 = Q∗ScS(Q∗SS)−1[(Q∗SS)− (QnSS)](QnSS)−1,
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Figure 7. F1-score vs. # of cascades.

and further,

|‖A1‖|∞ ≤ |‖Q∗ScS(Q∗SS)−1‖|∞
× |‖(Q∗SS)− (QnSS)‖|∞|‖(QnSS)−1‖|∞.

Next, using the incoherence condition easily yields:

|‖A1‖|∞ ≤ (1− ε)|‖(Q∗SS)− (QnSS)‖|∞
×
√
d|‖(QnSS)−1‖|2

Now, we apply Lemma 6 with δ = Cmin/2 to have that
|‖(QnSS)−1‖|2 ≤ 2

Cmin
with probability greater than 1 −

exp(−Kn/d2 + K ′ log d), and then use Eq. 30 with δ =
εCmin

12
√
d

to conclude that

P
[
|‖A1‖|∞ ≥

ε

6

]
≤ 2 exp

(
−K n

d3
+K ′ log d

)
.

Control of A2. We rewrite the term A2 as

|‖A2‖|∞ ≤ |‖QnScS−Q∗ScS‖|∞|‖(QnSS)−1−(Q∗SS)−1‖|∞,
and then use Eqs. 28 and 29 with δ =

√
ε/6 to conclude

that

P
[
|‖A2‖|∞ ≥

ε

6

]
≤

4 exp
(
−K n

d3
+ log(p− d) +K ′ log p

)
.

Control of A3. We rewrite the term A3 as

|‖A3‖|∞ =
√
d|‖(Q∗SS)−1‖|2|‖QnScS −Q∗ScS‖|∞

≤
√
d

Cmin
|‖QnScS −Q∗ScS‖|∞.

We then apply Eq. 28 with δ = εCmin

6
√
d

to conclude that

P
[
|‖A3‖|∞ ≥

ε

6

]
≤ exp

(
−K n

d3
+ log(p− d)

)
,

and thus,

P
[
|‖QnScS(QnSS)−1‖|∞ ≥ 1− ε

2

]
= O

(
exp(−K n

d3
+ log p)

)
.

J. Additional experiments

Parameters (n, p, d). Figure 5 shows the success proba-
bility at inferring the incoming links of nodes on the same
type of canonical networks as depicted in Fig. 2. We choose
nodes the same in-degree but different super-neighboorhod
set sizes pi and experiment with different scalings β of the
number of cascades n = 10βd log p. We set the regula-
rization parameter λn as a constant factor of

√
log(p)/n

as suggested by Theorem 2 and, for each node, we used
cascades which contained at least one node in the super-
neighborhood of the node under study. We used an ex-
ponential transmission model and time window T = 10.
As predicted by Theorem 2, very different p values lead to
curves that line up with each other quite well.

Figure 6 shows the success probability at inferring the in-
coming links of nodes of a hierarchical Kronecker network
with equal super neighborhood size (pi = 70) but different
in-degree (di) under different scalings β of the number of
cascades n = 10βd log p and choose the regularization pa-
rameter λn as a constant factor of

√
log(p)/n as suggested

by Theorem 2. We used an exponential transmission model
and time window T = 5. As predicted by Theorem 2,
in this case, different d values lead to noticeably different
curves.

Comparison with NETRATE and First-Edge. Figure 7
compares the accuracy of our algorithm, NETRATE and
First-Edge against number of cascades for different type
of networks and transmission models. Our method typi-
cally outperforms both competitive methods. We find es-
pecially striking the competitive advantage with respect to
First-Edge, however, this may be explained by comparing
the sample complexity results for both methods: First-Edge
needs O(Nd logN) cascades to achieve a probability of
success approaching 1 in a rate polynomial in the num-
ber of cascades while our method needs O(d3 logN) to
achieve a probability of success approaching 1 in a rate ex-
ponential in the number of cascades.


