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Abstract

Empirical evaluation of trust and manipulation

in large-scale collective intelligence processes is

challenging. The datasets involved are too large

for thorough manual study, and current auto-

mated options are limited. We introduce a sta-

tistical framework which classifies point of view

based on user interactions. The framework works

on Web-scale datasets and is applicable to a wide

variety of collective intelligence processes. It en-

ables principled study of such issues as manipu-

lation, trustworthiness of information, and poten-

tial bias. We demonstrate the model’s effective-

ness in determining point of view on both syn-

thetic data and a dataset of Wikipedia user inter-

actions. We build a combined model of topics

and points-of-view on the entire history of En-

glish Wikipedia, and show how it can be used to

find potentially biased articles and visualize user

interactions at a high level.

1. Introduction

The Web has enabled an unprecedented democratization of

information. We increasingly rely on decentralized sources

such as blogs, social news, and wikis to stay informed.

While this transition has many benefits, it also creates op-

portunities for individuals and groups to shape available in-

formation and thereby influence public perception. As a re-

sult, reliability has been a primary concern since the early

days of knowledge-sharing platforms such as Wikipedia.

While there has been some work on systematically

identifying manipulation and bias in purely quantita-

tive collective intelligence venues like rating systems

(Mobasher et al., 2007), work on venues with free-form

information (like Wikipedia) has been less thorough and
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more anecdotal. In order to move towards a principled,

quantitative methodology for evaluating bias and trustwor-

thiness in such venues, in this paper we introduce a genera-

tive model of users’ points of view. Our method is based on

Latent Dirichlet Allocation (LDA), a popular topic model

(Blei et al., 2003). By observing the pages a user chooses

to edit and her interactions with other users on those pages,

we are able to infer both topics and points of view simulta-

neously. While we focus on Wikipedia as a case study, our

technique is general and can be used to study issues of bias

and trust in many collective intelligence processes.

Two issues make identifying point of view a particularly

hard—and, in our view, understudied—problem: subjec-

tivity and scale. Point of view is notoriously difficult to

quantify, even for humans considering single documents.

There is little concrete information on which to base infer-

ences about bias, and none of it is structured. The problem

is exacerbated by an adversarial effect, whereby authors at-

tempt to appear objective (Das et al., 2013). While the size

and scale of the web are what makes sites like Wikipedia

influential, this scale makes identifying point of view more

difficult and human supervision problematic. The problem

calls out for an efficient and accurate automated approach.

We pose the novel problem of identifying points of

view in a large collective intelligence environment (e.g.

Wikipedia). While point of view is fundamentally entan-

gled with human communication, we posit that it also has

observable characteristics in collective intelligence which

do not involve natural language. In this paper, we show

how to use data on user interactions to quantitatively study

bias and point of view both in aggregate and on the level of

individual users and documents.

Contributions We introduce a generative model of topics

and points of view based on user interactions, and give an

efficient inference algorithm based on Gibbs sampling. We

study the performance of the model in inferring topics and

points of view from synthetic data, finding that both are

recoverable from the model’s observed variables. Using a

complete Wikipedia dataset, we perform model selection
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(a) Graphical depiction of the model using plate no-
tation, where plates (boxes) represent repeated vari-
ables. Nodes in the first row are beta or Dirichlet dis-
tributions, nodes in the second row are categorical or
Bernoulli. The shaded nodes are observed.

Beta, Bernoulli distributions

ψ, ξk, j,i Revert probability between POVs i 6= j

γ, ηk,λk Different topic (ηk), same POV (λk) revert

Dirichlet, categorical distributions

β, φk Pages associated with each topic

α, θm Topic and POV preferences for a user

(z,v)m,n Topic and point of view (categorical)

Observed variables

pm,n The page an edit is on (categorical)

om,n Parent edit (ordering; not modeled)

dm,n Whether edit disagrees with parent

Counts, parameters

M Number of users

Nm Number of edits by user m.

K Number of topics

Vk Number of points of view for topic k

P Number of pages
(b) Notation: random variables, distributions, and model pa-
rameters.

Figure 1. High level overview of the model.

and validate the approach by finding pairs of users with

antagonistic relationships. Our approach, jointly modeling

topics and points of view, significantly outperforms a social

roles model, a model that fixes topics before considering

points of view, and a non-Bayesian graph-based approach.

Finally, we study the topics and points of view inferred

from the entire history of English Wikipedia. This allows

us to visualize shifts in point of view, revealing the evolu-

tion of the encyclopedia and its users over time, and provide

insights into how Wikipedia functions. The model also pro-

vides a wealth of information about the process by which

individual pages were created: as one example, we find

pages on otherwise controversial topics which nonetheless

are dominated by a single point of view.

1.1. Related work

Discovery of community structure in collective intelligence

is a well studied problem. Kittur et al. (2007) use reverts

to create a small-scale clustering of users while studying

conflict and coordination on Wikipedia. Bogdanov et al.

(2010) find communities on Wikipedia by comparing users

based on multi-topic agreements and disagreements and

then performing clustering, using LDA to inform the topic

of text added or removed from a page. Pathak et al. (2008)

propose a generative model for community extraction,

modeling communication content. Sachan et al. (2011)

find communities based on user-to-user links in a social

network using a generative model, also considering inter-

action types. We are the first to exploit an explicit synergy

between user interests (topics) and interactions (governed

by points of view within a topic) in community discovery.

Another line of literature uses topical structure to model

human communications. Rosen-Zvi et al. (2004) model

documents from multiple authors, where authors have a

distribution over topics, and words in a document are gen-

erated by first choosing an author, then a topic from that

author’s distribution, and finally choosing a word from that

topic. McCallum et al. (2007) model directed messages,

where both the sender and recipient are significant. We

show that points of view within a topic can be used to ef-

fectively model the sentiment of communications.

Several models have been proposed to extract points of

view or related concepts from natural language. For exam-

ple, Paul & Girju (2010) study a multi-faceted topic model

which can be used to find viewpoints in text. Lin & He

(2009) model words in movie reviews as having both senti-

ment and topical components. Fang et al. (2012) find con-

trasting opinions in collections of text written from differ-

ent perspectives: press releases from U.S. politicians and

articles from major Chinese, Indian, and U.S. news sources.

Their model exploits the often disparate language used

when framing an issue from different perspectives (e.g.

“life” and “choice” when debating abortion). However, this

line of work (1) relies on clean sources of ideologically-

relevant material, and (2) operates on a much smaller scale

than the large collective intelligence processes we target.

We address the former issue in part by modeling point

of view in a user-centric way, which provides the statisti-

cal strength necessary to differentiate between hundreds of

points of view across different topics (where previous work
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assumes two or three total). The latter issue is addressed by

using higher level observations: focusing on what users do

rather than the specifics of what they say.

To summarize, we address three main challenges which

prevent previous work on point of view modeling from ap-

plying to collective intelligence. (1) Very low signal to

noise ratio: most Wikipedia revisions are not related to

point of view. (2) Data on a completely different scale, with

approximately four orders of magnitude more documents

and words than previous work. (3) A lack of overarching

ideologies across topics, which previous work takes advan-

tage of in more specialized corpora. We present a novel

model of point of view in collective intelligence based on

user interactions, along with an efficient inference algo-

rithm, which together address these challenges.

2. Model

We begin with a topic model much like Latent Dirichlet

Allocation (LDA) (Blei et al., 2003). LDA is often used

to model a set of documents, where documents are as-

sumed to be generated by first selecting a topic from a

document-specific distribution, and then selecting a single

word from a topic-specific distribution, repeating this pro-

cess for every word in each document. Instead of words

we have pages, and instead of documents we have users:

each user makes a collection of edits to different pages. As

in LDA, each user (document) has a preference (probabil-

ity distribution) over topics, and each topic has a distribu-

tion over pages (words). Each time a user makes an edit,

they draw a topic from their personal topic distribution, and

they then select a page to edit from that topic’s distribution

over pages. So far the only observable is the set of pages

that each user chooses to edit, and edits are exchangeable

within that set. This is exactly equivalent to LDA, where

only the words in each document are observed.

Now suppose that each topic has a small number of points

of view (POVs) a user editing on it can take, and each edit

has one of these POVs associated with it in addition to its

topic. Then each user has a distribution of preferences over

(topic, POV) pairs rather than over topics alone. The cho-

sen page for each edit still depends only on the topic of that

edit, but POV determines interactions with other users on

that page. We model this as a two-stage process: first every

user chooses a topic, POV, and page for each of their edits,

then interactions between users take place. These interac-

tions are simple: for each edit, the user decides to disagree

with its parent edit or not. Each edit’s parent is observed

but is not modeled: edits, except those at the beginning

of a page, have an externally specified parent denoted om,n

in the model. There are three cases: (1) the parent edit

is on a different topic; (2) the parent edit is on the same

topic and the same POV; (3) the parent edit is on the same

for topic k = 1 → K do

ηk,λk ∼ Beta(γ) // Non-POV revert probabilities

φk ∼ Dirichlet(β) // Page distribution

for POV j = 1 →Vk do

for POV i = 1 →Vk excluding j do

ξk, j,i ∼ Beta(ψ) // Probability POV j reverts i

for user m = 1 → M do

θm ∼ Dirichlet(α) // Topic and POV preferences

for edit n = 1 → Nm do

(z,v)m,n ∼ Categorical(θm) // Edit’s topic and POV

pm,n ∼ Categorical(φz) // Edit’s page

for user m = 1 → M do

for edit n = 1 → Nm do

if zom,n = zm,n then

if vom,n = vm,n then

dm,n ∼ Bernoulli(λk) // Disagree? Same POV

else

dm,n ∼ Bernoulli(ξk,vm,n,POV(om,n)) // Diff. POV

else

dm,n ∼ Bernoulli(ηk) // Different topic

Figure 2. Generative model pseudo-code. x ∼ D(y) indicates a

random variable x drawn from distribution D parameterized by y.

topic and a different POV. Disagreements in cases (1) and

(2) might be mundane and unrelated to POV: style or for-

matting, for example. The probability of a disagreement in

these cases is determined by the topic of the latter editor,

and we would expect such disagreements to be unlikely.

In case (3), however, the probability of a disagreement is

determined by the relationship between the two POVs in-

volved: some might have a very antagonistic relationship,

others less so, but we would expect more disagreements

here than in cases (1) and (2) as a fraction of the opportuni-

ties for disagreement. We refer to disagreements in case (3)

as POV disagreements, and to others as non-POV disagree-

ments. The model does not interpret every Wikipedia revert

as being a disagreement relevant to POV. Although we ex-

pect more reverts in case (3) as a fraction of opportunities

for disagreement than we do in (1) or (2), the preponder-

ance of cases (1) and (2) means that we would expect them

to produce a significant fraction of all reverts.

Figure 1(a) depicts this model graphically, and Figure 1(b)

summarizes the notation. Figure 2 provides a rigorous

pseudo-code description of the model.

Simplifying assumptions We use symmetric Dirichlet

distributions, with a single parameter (α and β for pages

and (topic, POV) pairs, respectively). We set β = 0.1 and

α = 5/(VK) where K is the number of topics and V is the

number of POVs per topic: we expect users to be focused

on a small number of (topic, POV) pairs (and as we add

more topics or POVs, we expect them to become increas-

ingly specialized). These choices are similar to those of
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Griffiths & Steyvers (2004) for the equivalent LDA param-

eters. For the remainder of the paper, V = Vk: every topic

has the same number V of points of view. For the beta dis-

tributions, we set ψα = 0.8, ψβ = 0.2 and γα = 5, γβ = 95:

for example, ηk ∼ Beta(α = 5,β = 95). This encodes the

belief that disagreement probabilities will be low for non-

POV interactions, and may be higher for POV interactions.

For an edit B which has an opportunity to disagree with

edit A, we refer to A as B’s parent. If an edit C has an op-

portunity to disagree with B, then C is B’s child. All refer-

ences are between edits on the same page. We assume that

each edit references (has the opportunity to disagree with)

at most one other edit (its parent), and is itself referenced

by at most one edit (its child). As in Kittur et al. (2007), an

edit’s parent is the immediately preceding edit, and a dis-

agreement (if any) is only with that edit. This disregards

complexities which can arise when an edit reverts multiple

prior edits, or when a single edit makes a complex contri-

bution and subsequent edits disagree with different parts of

it, but simplifies while being correct in most situations.

2.1. Inference

Griffiths & Steyvers (2004) introduce a collapsed Gibbs

sampler for inferring LDA’s latent variables, integrating

out the real-valued categorical distributions associated with

documents and topics. A single Gibbs iteration samples

each latent variable once according to its full conditional

distribution (conditioning on the values of all other latent

variables). For LDA, this means that each topic assignment

is re-sampled taking into account the most recent topic as-

signments for all other words (edits in our case). The al-

gorithm eventually converges to a stationary distribution,

where topic assignments are drawn from their posterior dis-

tributions given the observed data.

We use a parallel approximation to collapsed Gibbs sam-

pling for inferring the topic and POV of each edit. The

collapsed Gibbs sampler is similar to that of LDA, with

both topic and POV repeatedly re-sampled rather than the

topic only. We use a tightly-coupled parallel approx-

imation to Gibbs sampling—similar to the GPU infer-

ence of Yan et al. (2009) and Approximate Distributed

LDA (Newman et al., 2008)—where each thread starting a

(topic, POV) re-sample takes into account all previously

recorded assignments, then is itself recorded before going

on to the next edit (maintaining consistency). This tight

coupling increases communication between threads (using

shared memory extensively), but comes as close as possible

to true Gibbs sampling (where sampling is serial).

Re-sampling is according to the full conditional probability

of a (topic, POV) pair for a single edit, conditioning on the

assignments of all other edits. As in LDA, this depends on

the probability of the user selecting a given (topic, POV)

pair, and the probability of selecting the observed page

given that choice. Additionally, it depends on the proba-

bility of a disagreement between the edit and its parent (if

any), and its child (if any). This full conditional distribution

can be written as:

p((z,v)m,n = (k, j) | (z,v)−(m,n),p,d,o)

∝
(

n
(m)
−n,(k, j)+α

) n
(p(m,n))

−(m,n),(k, j)+β

n
(p)
−(m,n),(k, j)+Pβ

p(dm,n | (z,v)m,n = (k, j),(z,v)−(m,n),p,d,o)

p(dchild(m,n) | (z,v)m,n = (k, j),(z,v)−(m,n),p,d,o)

Where n
(A)
−B,C denotes a count across object(s) A excluding

the assignment of B on topic C. Bold variables denote a

vector of all the associated values (see Figure 1(b)), ex-

cept (z,v)−(m,n), which excludes the nth edit by user m (the

edit currently being re-sampled). For edits lacking a par-

ent or a child, the corresponding disagreement probability

is omitted. We omit the normalizing constant on the fac-

tor n
(m)
−n,(k, j) +α (the probability of the user selecting this

(topic, POV)), as the normalizing constant does not depend

on the (topic, POV) being considered. The probability of

observing a disagreement depends on the topic and POV

assignments of the edit r and its parent or:

p(dr | (z,v)r = (k, j),(z,v)or = (k′, j′),(z,v)−(m,n),p,d,o)

=







































k = k′, j = j′
n
(z=z′ ,v=v′ ,d)
−(m,n),k

+γα

n
(z=z′ ,v=v′)
−(m,n),k

+γα+γβ

k 6= k′
n
(z6=z′ ,d)
−(m,n),k

+γα

n
(z6=z′)
−(m,n),k

+γα+γβ

k = k′, j 6= j′
n
(z=z′ ,v= j,v′= j′ ,d)
−(m,n),k

+ψα

n
(z=z′ ,v= j,v′= j′)
−(m,n),k

+ψα+ψβ

In the above counts, we ignore disagreements between the

edit under consideration and its parent and child (as those

depend on the edit’s previous (topic, POV) assignment).

The variable n
(A)
−B,C again denotes easily computable counts

based on the topic and POV assignments of other edits and

whether those edits disagree or not.

Inference then consists of repeatedly drawing new (topic,

POV) pairs with probability proportional to the full con-

ditional distribution specified above. An iteration of Gibbs

sampling consists of re-sampling the topic and POV of each

edit once. To initialize, we randomize each assignment.

Computation We use 64 threads in parallel on a single

machine (64 cores) for inference. Sampling with 200 top-

ics and 4 POVs takes approximately 6000 CPU hours for

200 burn-in iterations and 400 additional samples (we save

every fifth). However, this sampling need only be done
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Figure 3. Negative log likelihood with the number of points of

view fixed at 3. Error bars: twenty times standard error.

once: the 80 saved assignments and one high-probability

assignment of topics and POVs to revisions are all that is

required to produce the results we present (aside from syn-

thetic data and model selection), and these samples can be

reused to compute new page and user statistics on the fly.

The time complexity of each Gibbs sampling iteration is

O(KVN) where N = ∑m Nm is the total number of edits.

3. Data and model selection

Dataset We use the complete edit history of English

Wikipedia as of November 2012, with 31583222 users,

9806233 pages, and 341026287 total edits. For anonymous

users, we treat all edits from the same IP address as be-

longing to one user. Reverts are modeled as disagreements,

either when the hash of a page matches the hash of a previ-

ous version of that page, or when “revert” or “rv” is men-

tioned in the edit comment. Wikipedia edits have a parent

defined where applicable, which we honor except in rare

cases where more than one edit has the same parent or the

parent is on a different page (in the case of merged/split

pages); in these cases, we treat the edit as not having a par-

ent. We only use edits to pages in namespace 0 (the article

namespace), ignoring talk and administrative pages.

Selecting a topic and POV count We perform model se-

lection by estimating p(p,d|K,V,γ,ψ,α,β): the probability

of the observed variables given the model, with the topic

and POV assignments integrated out. We use an estima-

tor due to Murray & Salakhutdinov (2009), which exploits

forward and backward transition operators of the Markov

chain and is easily implemented on top of a Gibbs sampler.

For a comparison, see Wallach et al. (2009).

Fixing the number of POVs V at 3, we find that the data is

most likely under a model with K = 200 topics; see Fig-
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Figure 4. Synthetic performance, clustering edits according to

their (topic, POV). Also shows performance when POV is ignored

(Topic only), and when POV is randomized within a topic (Ran-

dom POV). Error bars show the standard error of the mean.

ure 3. The number of topics and the number of POVs per

topic are not interchangeable: fixing the product KV = 600

and trying V ∈ {1, . . . ,6}, V = 3 and K = 200 again as-

signs the highest probability to the data. We then optimize

the number of POV V , fixing K = 200, and find that V = 4

maximizes the probability of the data, although the differ-

ence is smaller than for the number of topics. We now fix

V = 4 and K = 200 unless otherwise noted.

While we do assume a fixed number of points of view,

there is flexibility built into the model. Points of view are

not necessarily antagonistic (the relevant prior, ψ, is very

weak). If there are only two points of view A and B on

a topic, the model is free to create points of view A1, A2,

B1, and B2 such that A1 and A2 have a positive relationship

to each other and a negative relationship to the B points of

view. We can model any small number of “true” points of

view in this way (below 5 if V = 4). We now turn to valida-

tion of the model assumptions, using real user relationships

to test the inferred relationships between points of view.

4. Experimental validation

4.1. Synthetic experiments

Topic modeling can be viewed as a clustering problem,

where words are assigned to topical clusters. In our case,

we wish to assign edits to (topic, POV) clusters. In or-

der to test the success of this method, we first generate

the data directly from the model, and then perform infer-

ence and check the “correctness” of the inference. A per-

fectly “correct” clustering is unlikely – topics overlap, and

there is limited additional information when there are mul-

tiple edits by the same user on the same page (although our
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model does leverage additional information in the form of

disagreements). However, given the success of LDA in the

past decade, we can compare our method with the baseline

of simply using a topic model, ignoring points of view.

In order to do so, we generate data with 5000 users, 1547

pages (roughly keeping the ratio of users:pages the same

as the Wikipedia data), and an upper truncated Pareto dis-

tribution for the number of edits per user (Ortega, 2009)

with an upper truncation of 147696 and a slope of 0.8,

roughly matching the Wikipedia distribution. The param-

eters α = 5/(VK), β = 0.1, ψα = 0.8, ψβ = 0.2, γα = 5,

γβ = 95, V = 4, and K are the same for generation and in-

ference. We evaluate a high probability assignment of top-

ics and POVs found through iterative maximization after

100 iterations of Gibbs sampling, comparing the resulting

clustering to the true assignments from the synthetic data.

Figure 4 varies the number of topics K, measuring cluster-

ing performance using the adjusted Rand index, which is

corrected for chance (its values are between -1 and 1, with

0 being the expectation of a random assignment and 1 be-

ing a perfectly correct assignment). The algorithm is able

to effectively infer points of view in addition to topics, on

par with how well LDA infers topics. Small values of K

make the topic assignment problem easier (consider a triv-

ial example with a single topic), while a fixed number of

POVs per topic keep the (topic, POV) assignment problem

challenging even when considering very few topics.

4.2. Rule violation reports, reverts, and baselines

We turn now to validating our model on real data.

We collect a dataset of rule violation reports, where

one Wikipedia user reports that another has violated

Wikipedia’s Three Revert Rule (3RR): a user may not per-

form more than three reverts on a single page in a 24-hour

period (subject to an administrator’s interpretation and con-

ditions on what constitutes a revert for 3RR purposes). The

act of reporting another user implies a significant disagree-

ment: reporting a user who shares your point of view, while

a noble concept, is understandably unlikely in practice.

This gives us 7179 unique pairs of antagonistic users,

where one has reported the other for a 3RR violation.

Along with negative examples, they form comparisons:

RRP Randomly permuted reporting pairs provide negative

examples, generating 7179 random pairings. Disputes

are on specific topics, so random pairs with significant

disagreements should be unlikely.

NR RRP with pairs of users who have reverted each other

removed, leaving 986 reporting pairs.

WP With page information. Positive examples are where

a reporting pair has edited consecutively on the same

page, negative examples are from consecutive random

edits by users who have never reverted each other (re-

spectively 19683 positive and negative examples).

SP WP restricted to the set of pages that have both pos-

itive and negative examples, to eliminate any effects

from choosing more controversial pages (4252 posi-

tive, 4536 negative examples).

For the datasets without page information (RRP and NR),

we consider a thought experiment, placing edits by a pair of

users next to each other on the same page, each edit serv-

ing as the parent with probability 0.5. We can then com-

pute the expected probability of a POV disagreement over

the possible assignments of topic and POV to the two edits,

taking into account the topic and POV preferences of the

users and the relationships between each POV. This POV

disagreement probability measures the level of antagonism

between users as inferred by the model. Viewing RRP as

a ranking task, area under the ROC curve (AUC) is 0.85:

a randomly selected true report pair will have a higher dis-

agreement probability than a randomly selected non-report

pair 85% of the time (0.5 is random guessing). Removing

pairs who have reverted each other at least once (NR), the

model is still quite discriminative, with an AUC of 0.72 on

this more difficult task. How much of this performance is

due to topical—rather than point of view—disparities be-

tween users in the permuted pairs? We address this ques-

tion using the datasets WP and SP, which restrict examples

to the same pages, and hence mostly to the same topic, and

find that the model still performs well (Table 1). Comput-

ing the model’s probability of any revert, rather than the

probability of a POV revert specifically, yields significantly

worse performance on all of these datasets: the model is not

predicting reverts, it is predicting POV disagreements.

Why does the model work well, and are there alternative,

simpler models that may be as powerful? We consider two

alternatives. One hypothesis is that there are roughly four

social roles on Wikipedia, and that users can be described

just as well by these four groups as by many groups split

across topics (i.e. disputes are not topical). In order to test

this hypothesis, we consider a baseline model with a single

topic and four points of view, using the same methodol-

ogy as for the full model when ranking pairs of users. This

model nets an AUC of 0.57 on the full permuted user inter-

actions dataset, but loses its discriminative power when we

remove pairs who reverted each other (AUC 0.48). It does

much better when non-reporting pairs are chosen to have

edited consecutively on the same page (WP, 0.69), and bet-

ter still when the reporting and non-reporting pairs are on

the same set of pages (SP, 0.75). Social roles seem to play

a role in animosity, but fail in cross-topic comparisons.

A second idea is that disputes are entirely topical. Is there

any benefit to having a full model of topics and points
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of view over first determining topics and then clustering

within topics to find points of view? We evaluate a two-

level model which does the latter: first fixing 200 top-

ics (standard LDA, but a single high probability assign-

ment), then clustering revisions within those topics into

four points of view. This hierarchical baseline consistently

performs significantly worse than the simultaneous model.

Table 1 summarizes these model comparisons.

Table 1. Model comparisons (AUC). Pairwise differences within

each dataset are significant (p < 0.01) except for starred* pairs,

computed via empirical overlap across 104 bootstrapped datasets.

Bootstrapped 95% confidence intervals are ±.01 for RRP, ±.02

for NR, ±.01 for WP, and ±.02 for SP and Reverts.

Model RRP NR WP SP Reverts

Social roles .57 .48 .69 .75 .88

Hierarchical .80 .68 .71 .72 .80

Simultaneous .85* .72 .82 .80 .85

ApproxMaxCut .85* .57 .59 .62 .51*

RevedSamePage .88 .62 - - .50*

Table 1 includes results for revert prediction: given held-

out pairs of users with page information (794 reverts in

6835 edits, 654 pages), determine whether the latter edi-

tor reverts the former. The social roles model does very

well on this task. This is likely because most reverts are

not related to POV disputes, but instead are typical “main-

tenance” tasks on Wikipedia; simple revert prediction is not

our goal. The value of the simultaneous model is in domain

adaptation: trained on reverts, it not only predicts those,

but also more reliable indicators of user relationships, as

demonstrated by the other datasets. Even though the major-

ity of reverts are maintenance tasks, other reverts do con-

tain information about deeper topical disputes, which can

be harnessed by considering topics and points of view.

Also in Table 1 are results for two simple non-Bayesian

baselines. ApproxMaxCut first builds graphs of users, with

an edge if either user has reverted the other at least once

on a given page. It then partitions users on each page into

two groups via an approximate maximum cut, computed

by selecting the best of 50 greedily optimized random par-

titions. For the datasets with page information (WP and

SP), it predicts a positive label if the users are on oppo-

site sides of that page’s cut and negative otherwise. For the

datasets without page information (RRP and NR), its pre-

dicted scores are a zero-one average across pages the users

have edited in common (zero if they are on the same side of

a cut, one otherwise). The performance is generally poor,

with the exception of RRP. For RRP, memorizing pairs of

users who have any relationship at all is profitable, since

the permuted pairs are unlikely to have any pages in com-

mon while the reporting pairs almost certainly do. To illus-

trate this, RevedSamePage predicts a positive label when

Table 2. Selected topics, with the top pages by number of edits on

that topic (ignoring POV). From a high probability assignment.

Topic 61 Topic 68 Topic 23

Killer whale Anarchism 2006 Lebanon War

Tiger Race and IQ Muhammad

Lion Capitalism Gaza War

White shark Libertarianism Islam

Cougar Iraq War Israel

Giraffe Socialism Lebanon

Table 3. Active pages (more than 100 editors) which—as of

November 2012—had more than 60% of their edits on a single,

controversial POV of a controversial topic.

Page title POV%

Private finance initiative 64%

World War II casualties 67%

John Prendergast (activist) 65%

1948 Palestinian exodus from Lydda and Ramle 70%

Chilean presidential election, 2005–2006 69%

two users have reverts on at least one page in common, and

a negative label otherwise. The Bayesian models do not

memorize, instead summarizing relationships with a small

number of topics and points of view, yet still excel on RRP.

5. Model insights

What can points of view tell us about Wikipedia? Having

validated the model, we now explore some of its insights.

Unlike in traditional topic modeling, where documents are

mixtures of topics, we model users as such mixtures. This

leads to topics where pages are grouped semantically—as

we would expect from a traditional topic model on docu-

ments and words—only if user behavior is well explained

by those topics. Table 2 includes examples of such topics

that contain pages which are deeply semantically similar.

However, our model also reveals topics which have more to

do with user behavior than with the subject of edited pages:

for example, one topic deals exclusively with vandalism

and those who remove it from the encyclopedia. A user

may then be a mixture of not only several topics but also

several kinds of topics (e.g. animals and anti-vandalism).

Changes over time Labeling each revision with a point

of view allows us to visualize page dynamics. Has the

nature of a conflict changed over time? Were the current

points of view always well represented? Figure 5 shows

active topics and POVs over time on two popular pages.

Figure 5(a) shows a shift in the topics used to explain edit-

ing and edit conflicts: early Wikipedians were often—by

necessity, considering the number of editors—generalists.

With growth, editors became increasingly specialized. This
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(a) Specialization over time. Topic 15 encompasses many
disputes—terrorism, politics, and articles about Wikipedia itself—
and is used to explain many early edit conflicts. As Wikipedia ma-
tured, users specialized more: topic 78 can be described as “con-
temporary wars”, and better explains later conflicts on this page.
Topic 78, POV 0 is composed of casual editors (17 on-POV ed-
its/user), while POV 3 consists of “power editors” (269 edits/user).

2004
2005

2006
2007

2008
2009

2010
2011

2012

Date

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
ve

 e
d
it
 f
ra

c
ti
o
n

Same-sex marriage

Other

T55 POV1

T55 POV3

T126 POV0

T126 POV1

T126 POV2

T126 POV3

(b) Topic 126 covers issues related to human gender and sexuality,
with POV 0 generally taking a more socially conservative stance.
POV proportions on this page are relatively stable, after an ini-
tial increase in opposition (POV 0) as the encyclopedia became
more notable. Topic 55 explains the interactions between vandals
and those who remove vandalism, and shows up on many popular
pages.

Figure 5. Cumulative fraction of edits on the top 6 topics and POVs for two popular pages (War in Afghanistan and Same-Sex Marriage).

shift is reflected in the topics represented on the page, and

in the points of view used to explain the changing conflict.

Figure 5(b) shows a traditional topic—dealing with the

page’s subject matter—coexisting with a behavioral topic

explaining the interactions between vandals and anti-

vandals. Points of view show a similar duality: POVs in

Figure 5(a) deal as much with types of users (casual vs.

heavy editors) as with page content, whereas those in Fig-

ure 5(b) are more focused on subject matter disputes.

As an aside, some point of view disputes are not appar-

ent from natural language, e.g. the “modern wars” topic

includes a dispute over WWII casualty numbers. Many dis-

putes over figures have this property, and vandalism is an-

other case where actions are more informative than words.

Page and user statistics Modeling POV provides a rich

source of information about pages and users. Consider the

problem of finding pages which could benefit from contri-

butions by editors with a different POV: the model allows

us to not only find these pages, but also to find users on

different POVs who could be interested in the topic. For

example, Table 3 shows the five most controversial pages

that had more than 60% of their edits come from a single,

controversial POV of a controversial topic. Here we define

controversial topics as those with rare same-POV reverts

(< 3%) and more common different-topic reverts (≥ 6%),

and controversial POVs as those that have a high proba-

bility of reverting or being reverted by a different POV on

the same topic (≥ 30%). The model provides flexibility in

querying for specific patterns over topics and POVs.

6. Discussion

As we become increasingly reliant on collective social pro-

cesses to aggregate information, understanding these pro-

cesses is critical. In the presence of incentives for manip-

ulation, having information sources wear their biases “on

their sleeves” has enormous value both for users who must

evaluate information from multiple sources, and for infor-

mation sources themselves attempting to maintain credibil-

ity. We propose a scalable model which takes a first step

toward uncovering bias in collective intelligence processes,

and which can help aggregation venues police themselves.

This kind of modeling applies to a wide variety of collec-

tive intelligence and aggregation venues, and has the poten-

tial to make online information sharing more transparent.

By augmenting human judgment with machine inferences

from large datasets, we can ease the transition from tradi-

tional centralized information aggregation models, allow-

ing more reliable and more useful information sharing.
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