Appendix

1 Basic convexity inequalities

The following inequalities are classical. See Nesterov 1998 for proofs. They hold for all z & y, when f € Ssli
(B1) f(y) < f(x) +(f'(x),y —a) + 5 ||96—y||2
(B2) J) > f(@)+ ('(@).y —) + 5 /(@) = f W)
(B3) f(y) > f@)+ (f'(@),y—a)+ 5]z —y||”
(B4) (f'(z) = f'(y),z—y) > %Hf’(l“) — '
(B5) (f'(x) = ['(y),x—y) > sz —y|

We also use variants of B2 and B3 that are summed over each f;, with z = ¢; and y = w:

2 000+ 00w 60+ g SIS~ £ Gl

Zfz i) + Z<f<¢z>w i) + Zuw éill?

These are used in the following negated and rearranged form:

Sf@) =Ty = =)+ 3 3 F(00)+ 5 6w 6

i

(B6) . —fw)-Tp < —5-3[w-a
(B7) —fw)-Ty < 2LnZHf :))1*.

2 Lyapunov term bounds

Simplifying each Lyapunov term is fairly straight forward. We use extensively that ¢ (k1) — = w, and that (b (k1) — i
for i # j. Note also that

(B8) W) —w =~ (w— ;) + — [£1(6)) — fi(w)].

as
Lemma 6. Between steps k and k + 1, the Ty = f(¢) term changes as follows:

B -1 < (@) w - 8) + 232||w ol

n

Proof. First we use the standard Lipschitz upper bound (B1):

Fl) < @)+ {7 @)y —) + 2 e — .

We can apply this using y = ¢+t = ¢ + %(w —¢;j) and x = é:

FEED) < F@) b (F @) w5+ g I — 5.

We now take expectations over j, giving:

o 1
E[f(@*)] = f(9) < —(f'(@)w =) + 55 Z lw = il
O
Lemma 7. Between steps k and k + 1, the Ty = == 3. fi(¢:) — + 32, (f/(¢:),w — ¢;) term changes as follows:
kil 1 1
B[V -1, < _HT2 - ﬁf(w)
1 B, 1 / / 2
e Z THOOREACH]
1 -
+ E <¢ - w, ’I’L3 Z W — ¢z> .
Proof. We introduce the notation Tp; = —= Z fi(¢;) and Ty = fg . (fi(di), w — ¢;). We simplify the change
. . (k+1)
in T» first using ¢; = w:
1 1
THTY -1y = —— Z (e) + = Z fi(:)
= —foz) + f](@) Zfz)
= Efj(éf’j) - Efj(w)
Now we simplify the change in T5o:
T2(5+1) Tyy = —— Z< k+1 wF D o w — ¢ (k+1) > Ty
1
T2(§“ _ 1 Z< ¢(k+1) _ ¢§k+1)> Ty — - Z <f2((¢l(k+1))7w(k+1) _ w>_ (1)
. (k+1) _ .
We now simplying the first two terms using ¢; = w:

,,Z< F(FTY, 7¢ng+1)>fT22 = Tmf%(f;(¢j),wf¢j>+%<fj’v(w),w7w>fT22

= (o) 6.

The last term of Equation 1 expands further:

3 (O) —) —<Zfz 0i) = 15(65) + f(w),w <k+1>—w>

= —n<Zf{(</>i)»w(’“+”—w>—i<f§(w)—f§(%) B4 —w). (@)

The second inner product term in 2 simplifies further using B8:

() = et —w) = L (i)~ o) ¢]>+1[f<<¢j>—f;<w>}>

n n asn

1 / ! / / /
) <fj(w)_fj(¢j)aw—¢j> <f] fj(¢j),f](¢])_f](w)>

an2

2

We simplify the second term:

1
asn?

(Fi(w) = £i(5), £i(5) = fj(w)) [FAOESACH]

asn?

Grouping all remaining terms gives:

T2(k+1) -7, < f (¢;) + <f (¢5);w — ¢J>_*fg

+ ﬁllfﬂw)—fjwll —$<f;(w>—fj<¢>j>7w—¢j>

B % <Z fl{(¢i)’w(k+l) - w> .

We now take expectations of each remaining term. For the bottom inner product we use Lemma 1:

:L<Zfi’<¢f>vw<’“+”W> - <Zf;<¢i>,f’<w>>

= (G- fw).

Taking expectations of the remaining terms is straight forward. We get:

. 1
BV -1 < ﬁZﬁ(@) - Z)
I 4 Ay — b
T Z I (w) = £ i) = fi01)w = 61
+ E<Q_5*w7f/(w)>~
0
Lemma 8. Between steps k and k+1, the Ty = —5- >, [|lw — <;$l||2 term changes as follows:
(k+1) _ 1,1
E|T T3 = —(1+—-)-T:
R e (1+ n)n 3
1 / 7 1 / / 2
b @0 =8) = g ST ~ S
Proof. We expand as:
(ht1) _ 8 H (k1) <k+1>H2
T = - — b
3 2712 w ¢’L
_ _5 (k+1) _ _ (k+1)H2
2n21:Hw w+w—¢; (3)
Sl ol P (k+1) _ (k1)
= —g|v wH Z Zl:<w w,w — @, > (4)
We expand the three terms on the right separately. For the first term:
] s1 1 2
2l | = S|+ (fj(éj) ~ fi(w))
s 2
= - 2n [w = ¢5|* Sazanz i (d5) = fi(w)l]
- omz <f](¢]) fj(w)vw_¢j>~ (5)

For the second term of Equation 4, using qS;kH) =w

(k+1) _ S 12 S 2
——ZH | = ~g 2 = 0 5 = o)

S 2
= Ty+ ol - gl

For the third term of Equation 4:

_%Z<w(k+1)_w,w—¢£—k“)> — _7Z< (k+1) —w7w—¢i>+%<w(’€+1)—w,w—¢j>
< (k+1) wwz¢1> < (k1) ap — ¢g> (6)

The second inner product term in Equation 6 becomes (using BS8):

n n

O[STL

(6 - fiw] w =)
= Sl gl (76) — F(w)w— 5)

Notice that the inner product term here cancels with the one in 5.
Now we can take expectations of each remaining term. Recall that E[w* V] —w = ——L f/(w), so the first
inner product term in 6 becomes:

—sFE

an

1 _
<)y w_z@ﬂ = L (pw)w-4d).
All other terms don’t simplify under expectations. So the result is:

BT -1y = (5 - an #ill”

- % ()= 6) = 5 S0 — fwl.

Lemma 9. Between steps k and k +1, the Ty = - >, ||gZ - ¢i||2 term changes as follows:
k
BT -1y = - ;|¢ ol + 5 116 - w| an oill*.
Proof. Note that ("1 — ¢ = L(w — ¢;), so
(1) _ S S _ 5 5 gD
T = %Z:"Qs ¢+ ¢ —9; H

= % (Hq_s(k+1) - (;_5"2 + HQE _ ¢Ek+l)"2 42 <q‘5(k+1) —3,8— ¢§k+1)>>

_ 5 1 * g g0, 2 rONCERY
- X[l wlle-et 4G e ene-et)).
Now using % > (q@ — ¢Ek+1)) ¢ — Pt = — (w ¢;) to simplify the inner product term:

S

B ﬁ||w_¢jH2+%ZHé_‘bng)HQJF%W—%% —w)

S
e |

=il o 3 6= 8 = 2 - 62

_ 2
= oo - g w0y
= g le—aill’ =g llo—aill” + 5 6 —wll® — 55 hw— a5l (7)
Taking expectations gives the result. O
Lemma 10. Let f € S5 1. Then we have:
S , 1 ’ , 2 sL 2 S / /
f(@) > fly) + (f (y)aw—y>+m||f($)—f(y)” +mlly—wll ‘*‘m(f ()= f'(y),y—).

Proof. Define the function g as g(x) = f(z) — 5 |z||>. Then the gradient is ¢’(z) = f'(x) — sz. ¢ has a lipschitz
gradient with with constant L — s. By convexity we have:

o) > 9(0) + (/W) 7~ 9) + 5 o' @) — S W)

Now replacing g with f:

@)= S el = £@) = 5 Iyl + (') = sy —9) + ﬁ 1/ (@) = sz = 1) + syl
Note that
1 / / 2 1 / / 2 S 2
m 1 (x) = sz — f'(y) + syl = 2(L—s) 1f"(z) = W)l +m ly — |
T @-rw-a),
SO:
2
f@) > f<y>+<f'<y>,x—y>+ﬁ|\f’<x>—f’(y)HHﬁny—xH?
3 el = S+ =5 @) = @)y =2 = sy =)
Now using:
S 2 S 2 S 2
Sl = s ¢y 2 = = Wl 5 llz — il
we get:
’ 1 / / 2 s? 2
f@) = Fly)+),z —y)+ YT £ (@) = f'W)lI”+ 3L —) = =yl
sl + 5 e ol + s ()~ W)y =)+)
Note the norm y terms cancel, and:
2 I — 2
Sle =yl + g le-olt = ey
_ sL 9
= m |z —yll

So:

= @~ PO + 57 Iy =l

O

Corollary 11. Take f(x) = %Zl fi(x), with the big data condition holding with constant 8. Then for any x and
¢; vectors:

f@) > lzfiasi lZ<f<¢>l> &) Qan (o)
le - 6il* + QZ 1), ¢ —) .

Proof. We apply Lemma 10 to each f; , but instead of using the actual constant L, we use % + s, which under the
big data assumption is larger than L:
BL

Fi(&) 2 Fi(00) + (71600 = 60+ 5o [1(2) ~ S+ S e = o1l + 2 (f1(a) = 7160, 65—).

Averaging over i gives the result. O

3 Lower complexity bounds

In this section we use the following technical assumption, as used in Nesterov (1998):
Assumption 1: An optimization method at step k may only invoke the oracle with a point %) that is of the

form:
2R = 50 4 Zaig(i)’

where g\ is the derivative returned by the oracle at step i, and a; € R.
This assumption prevents an optimization method from just guessing the correct solution without doing any
work. Virtually all optimization methods fall into under this assumption.

Simple (1 — 1)* bound

Any procedure that minimizes a sum of the form f(w) = £ 3", fi(w) by uniform random access of f; is restricted
by the requirement that it has to actually see each term at least once in order to find the minimum. This leads to a
(1 — %)k rate in expectation. We now formalize such an argument. We will work in R™, matching the dimensionality
of the problem to the number of terms in the summation.

Theorem 12. For any f € i

1n, o(R™), we have that a k step optimization procedure gives:

E[f(w)] - f(w") > (1 - jl)k (F®) = fw?))

Proof. We will exhibit a simple worst-case problem. Without loss of generality we assume that the first oracle
acess by the optimization procedure is at w = 0. In any other case, we shift our space in the following argument
approprately.

Let f(w) = 25, |2 (w; —)%+ 3 ||w|\2} Then clearly the solution is w; = 3 for each i, with minimum of
f(w*) = %. For w =0 we have f(0) = 4. Since the derivative of each f; is 0 on the ith component if we have not
yet seen f;, the value of each w; remains 0 unless term ¢ has been seen.

Let v*) be the number of unique terms we have not seen up to step k. Between steps k and k + 1, v decreases
by 1 with probably * and stays the same otherwise. So

So we may define the sequence X *) = (1 — %)_k v®) which is then martingale with respect to v, as

—k—1
ExGpey = (-1 B+ [p9)]
n
—k
_ (12 L)
n

= x®.

Now since k is chosen in advance, stopping time theory gives that E[X*)] = F[X()]. So

E[(l - 1> - v =n,

n
1\ F
s B = (1 —) n.
n
By Assumption 1, the function can be at most minimized over the dimensions seen up to step k. The seen

dimensions contribute a value of % and the unseen terms % to the function. So we have that:

Blf@®)] = fw) 2 7 (n—Ep®)) + B0 -

E[p®)]

—_

Il
N N R R
=
| |
S|—= 3|~
N~
o
~ 3

N———
=
=
S
2
\
S~
—~
g
*
[t

Minimization of non-strongly convex finite sums

It is known that the class of convex, continuous & differentiable problems, with L—Lipschitz continuous derivatives
F''(R™) | has the following lower complexity bound when k < m:
L[o® —a*|’

f(x(k)) _f(k)<x*) > w7

which is proved via explicit construction of a worst-case function where it holds with equality. Let this worst

case function be denoted h(¥) at step k.
We will show that the same bound applies for the finite-sum case, on a per pass equivalent basis, by a simple

construction.

Theorem 13. The following lower bound holds for k a multiple of n:

L|z© — o
Ry _ p) gy > 2 2
) 06 2

9

when f is a finite sum of n terms f(z) = + 3, fi(z), with each f; € F}'Y(R™), and with m > kn, under the
oracle model where the optimization method may choose the index 7 to access at each step.

Proof. Let h; be a copy of h*) redefined to be on the subset of dimensions i 4 jn, for j = 1...k, or in other words,
hgk) (z) = K™ ([24, Tijny - - Tijn, - --]). Then we will use:

9@ = - 3 hP @)

as a worst case function for step k.
Since the derivatives are orthogonal between h; and h; for i # j, by Assumption 1, the bound on hl(-k)(x(k)) —

hz(»k) (z*) depends only on the number of times the oracle has been invoked with index i, for each i. Let this be
denoted ¢;. Then we have that:

% 2
[H(z‘)

N L
f(x(k))*f(k)(x)= 72 (c; +1)2

~ 8n &

7

Where ||||?Z) is the norm on the dimensions ¢ + jn for j = 1...k. We can combine these norms into a regular
Euclidean norm:

Lz© — o 1
(B)y _ p(B) (p*
fa) =106 2 ===

%

Now notice that . m under the constraint) ¢; = k is minimized when each ¢; = % So we have:

Le® - 1
k)Y _ p(B) (%) >
P =06 2 S S
L H:E(O) —z*|?
8(E+1)2 7
which is the same lower bound as for k/n iterations of an optimization method on f directly. O

