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A. Technical results
Lemma 6. If U1, . . . Um are iid Uniform[0, 1] random variables then
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Proof. Let Mi = max(Ui, 1− Ui), so Mi are iid Uniform[1/2, 1] with CDF given by

FMi(x) = 2x− 1

for 1/2 ≤ x ≤ 1. Moreover, if M = maxm
i=1Mi then FM (x) = (2x− 1)m since the Mi are iid. The density of M is then
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and its expected value is
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which proves the claim.

Proposition 7. For sufficiently large n, every cell of the tree will be cut infinitely often in probability. That is, if K is the distance from
the root of the tree to a leaf then P (K < t)→ 0 for all t as n→∞.

Proof. The splitting mechanism functions by choosing m structure points uniformly at random from the node to be split and searching
between their min and max. We will refer to the points selected by the splitting mechanism as active. Without loss of generality we can
assume the active points are uniformly distributed on [0, 1] and lower bound the number of estimation points in the smallest child.

Denote the active points U1, . . . , Um and let U = maxm
i=1(max(Ui, 1− Ui)). We know from the calculations in Lemma 6 that

P (U ≤ t) = (2t− 1)m

which means that the length of the smallest child is at least δ1/K < 1 with probability (2(1− δ1/K)− 1)m, i.e.

P
(
U ≤ 1− δ1/K

)
= (2(1− δ1/K)− 1)m

Repeating this argument K times we have that after K splits all sides of all children have length at least δ with probability at least
(2(1 − δ1/K) − 1)Km. This bound is derived by assuming that the same dimension is cut at each level of the tree. If different
dimensions are cut at different levels the probability that all sides have length at least δ is greater, so the bound holds in those cases also.

This argument shows that every cell at depthK contains a hypercube with sides of length δ with probability at least (2(1−δ1/K)−1)Km.
Thus for any K and ε1 > 0 we can pick δ such that

0 < δ1/K ≤ 1− 1

2
((1− ε1)1/Km + 1)

and know that every cell of depth K contains a hypercube with sides of length δ with probability at least 1 − ε1. Since the distribution
of X has a non-zero density, each of these hypercubes has positive measure with respect to µX . Define

p = min
L a leaf at depth K

µX(L) .

We know p > 0 since the minimum is over finitely many leafs and each leaf contains a set of positive measure.

It remains to show that we can choose n large enough so that any set A ⊂ [0, 1]D with µX(A) ≥ p contains at least kn estimation
points. To this end, fix an arbitrary A ⊂ [0, 1]D with µX(A) = p. In a data set of size n the number of points which fall in A is
Binomial(n, p). Each point is an estimation point with probability 1/2, meaning that the number of estimation points, En, in A is
Binomial(n, p/2).

Using Hoeffding’s inequality we can bound En as follows
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For this probability to be upper bounded by an arbitrary ε2 > 0 it is sufficient to have
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log(

1
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) .

The second term goes to zero as n → ∞ so for sufficiently large n the RHS is positive and since kn/n → 0 it is always possible to
choose n to satisfy this inequality.

In summary, we have shown that if a branch of the tree is grown to depth K then the leaf at the end of this branch contains a set of
positive measure with respect to µX with arbitrarily high probability. Moreover, we have shown that if n is sufficiently large this leaf
will contain at least kn estimation points.

The only condition which causes our algorithm to terminate leaf expansion is if it is not possible to create child leafs with at least kn
points. Since we can make the probability that any leaf at depth K contains at least this many points arbitrarily high, we conclude that
by making n large we can make the probability that all branches are actually grown to depth at least K by our algorithm arbitrarily high
as well. Since this argument holds for any K the claim is shown.


