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Abstract

Despite widespread interest and practical use, the
theoretical properties of random forests are still
not well understood. In this paper we contribute
to this understanding in two ways. We present a
new theoretically tractable variant of random re-
gression forests and prove that our algorithm is
consistent. We also provide an empirical eval-
uation, comparing our algorithm and other the-
oretically tractable random forest models to the
random forest algorithm used in practice. Our
experiments provide insight into the relative im-
portance of different simplifications that theoreti-
cians have made to obtain tractable models for
analysis.

1. Introduction

Random forests are a type of ensemble method which
makes predictions by averaging over the predictions of sev-
eral independent base models. Since its introduction by
Breiman (2001) the random forests framework has been ex-
tremely successful as a general purpose classification and
regression method.

Despite their widespread use, a gap remains between the
theoretical understanding of random forests and their prac-
tical use. A variety of random forest algorithms have ap-
peared in the literature, with great practical success. How-
ever, these algorithms are difficult to analyze, and the basic
mathematical properties of even the original variant are still
not well understood (Biau, 2012).

This state of affairs has led to a polarization between theo-
retical and empirical contributions to the literature. Empir-

Proceedings of the 31°" International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

MISHA.DENIL @CS.0X.AC.UK
DAVIDM @ CS.UBC.CA
NANDO @CS.0X.AC.UK

ically focused papers describe elaborate extensions to the
basic random forest framework, adding domain specific re-
finements which push the state of the art in performance,
but come with no guarantees (Schroff et al., 2008; Shot-
ton et al., 2011; Montillo et al., 2011; Xiong et al., 2012;
Zikic et al., 2012). In contrast, theoretical papers focus on
simplifications of the standard framework where analysis is
more tractable. Notable contributions in this direction are
the recent papers of Biau et al. (2008) and Biau (2012).

In this paper we present a new variant of random regres-
sion forests with tractable theory, which relaxes two of the
key simplifying assumptions from previous works. We also
provide an empirical comparison between standard random
forests and several models which have been analyzed by the
theory community.

Our algorithm achieves the closest match between theoreti-
cally tractable models and practical algorithms to date, both
in terms of similarity of the algorithms and in empirical
performance.

Our empirical comparison of the theoretical models, some-
thing which has not previously appeared in the literature,
provides important insight into the relative importance of
the different simplifications made to the standard algorithm
to enable tractable analysis.

2. Related work

Random forests (Breiman, 2001) were originally conceived
as a method of combining several CART (Breiman et al.,
1984) style decision trees using bagging (Breiman, 1996).
Their early development was influenced by the random
subspace method of Ho (1998), the approach of random
split selection from Dietterich (2000) and the work of Amit
& Geman (1997) on feature selection. Several of the core
ideas used in random forests are also present in the early
work of Kwokt & Carter (1988) on ensembles of decision
trees.



Random Forests In Theory and In Practice

In the years since their introduction, random forests have
grown from a single algorithm to an entire framework of
models (Criminisi et al., 2011), and have been applied to
great effect in a wide variety of fields (Svetnik et al., 2003;
Prasad et al., 2006; Cutler et al., 2007; Shotton et al., 2011;
Criminisi & Shotton, 2013).

In spite of the extensive use of random forests in practice,
the mathematical forces underlying their success are not
well understood. The early theoretical work of Breiman
(2004) for example, is essentially based on intuition and
mathematical heuristics, and was not formalized rigorously
until quite recently (Biau, 2012).

There are two main properties of theoretical interest asso-
ciated with random forests. The first is consistency of es-
timators produced by the algorithm, which asks (roughly)
if we can guarantee convergence to an optimal estimator as
the data set grows infinitely large. Beyond consistency we
are also interested in rates of convergence; but in this paper
we focus on consistency, which, surprisingly, has not yet
been established even for Breiman’s original algorithm.

Theoretical papers typically focus on stylized versions of
the algorithms used in practice. An extreme example of this
is the work of Genuer (2010; 2012), which studies a model
of random forests in one dimension with completely ran-
dom splitting. In exchange for simplification researchers
acquire tractability, and the tact assumption is that theo-
rems proved for simplified models provide insight into the
properties of their more sophisticated counterparts, even if
the formal connections have not been established.

An important milestone in the theory of random forests
is the work of Biau et al. (2008), which proves the con-
sistency of several randomized ensemble classifiers. Two
models studied in Biau et al. (2008) are direct simplifica-
tions of the algorithm from Breiman (2001), and two are
simple randomized neighbourhood averaging rules, which
can be viewed as simplifications of random forests from the
perspective of Lin & Jeon (2006).

More recently Biau (2012) has analyzed a variant of ran-
dom forests originally introduced in Breiman (2004) which
is quite similar to the original algorithm. The main dif-
ferences between the model in Biau (2012) and that of
Breiman (2001) are in how candidate split points are se-
lected, and that the former requires a second independent
data set to fit the leaf predictors.

While the problem of consistency of Breiman’s algorithm
remains open, some special cases have proved tractable.
In particular, Meinshausen (2006) has shown that a model
of random forests for quantile regression is consistent and
Ishwaran & Kogalur (2010) have shown the consistency of
their survival forests model. Denil et al. (2013) have shown
the consistency of an online version of random forests.

3. Random Forests

In this section we briefly review the random forests frame-
work. For a more comprehensive review we refer the reader
to Breiman (2001) and Criminisi et al. (2011).

Random forests are built by combining the predictions of
several trees, each of which is trained in isolation. Unlike in
boosting (Schapire & Freund, 2012) where the base models
are trained and combined using a sophisticated weighting
scheme, typically the trees are trained independently and
the predictions of the trees are combined through averag-
ing.

There are three main choices to be made when constructing
a random tree. These are (1) the method for splitting the
leafs, (2) the type of predictor to use in each leaf, and (3)
the method for injecting randomness into the trees.

Specifying a method for splitting leafs requires selecting
the shapes of candidate splits as well as a method for eval-
uating the quality of each candidate. Typical choices here
are to use axis aligned splits, where data are routed to sub-
trees depending on whether or not they exceed a threshold
value in a chosen dimension; or linear splits, where a linear
combination of features are thresholded to make a decision.
The threshold value in either case can be chosen randomly
or by optimizing a function of the data in the leafs.

In order to split a leaf, a collection of candidate splits are
generated and a criterion is evaluated to choose between
them. A simple strategy is to choose among the candidates
uniformly at random, as in the models analyzed in Biau
et al. (2008). A more common approach is to choose the
candidate split which optimizes a purity function over the
leafs that would be created. A typical choice here is to
maximize the information gain (Hastie et al., 2013).

The most common choice for predictors in each leaf is to
use the average response over the training points which fall
in that leaf. Criminisi et al. (2011) explore the use of sev-
eral different leaf predictors for regression and other tasks,
but these generalizations are beyond the scope of this paper.
We consider only simple averaging predictors here.

Injecting randomness into the tree construction can happen
in many ways. The choice of which dimensions to use as
split candidates at each leaf can be randomized, as well
as the choice of coefficients for random combinations of
features. In either case, thresholds can be chosen either
randomly or by optimization over some or all of the data in
the leaf.

Another common method for introducing randomness is to
build each tree using a bootstrapped or sub-sampled data
set. In this way, each tree in the forest is trained on slightly
different data, which introduces differences between the
trees.
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4. Algorithm

In this section we describe the workings of our random for-
est algorithm. Each tree in the random regression forest is
constructed independently. Unlike the random forests of
Breiman (2001) we do not preform bootstrapping between
the different trees.

4.1. Tree construction

Each node of the tree corresponds to a rectangular subset
of RP, and at each step of the construction the cells associ-
ated with leafs of the tree form a partition of R”. The root
of the tree corresponds to all of R”. At each step of the
construction a leaf of the tree is selected for expansion.

In each tree we partition the data set randomly into two
parts, each of which plays a different role in the tree con-
struction. We refer to points assigned to the different parts
as structure and estimation points respectively.

Structure points are allowed to influence the shape of the
tree. They are used to determine split dimensions and split
points in each internal node of the tree. However, structure
points are not permitted to effect the predictions made in
the tree leafs.

Estimation points play the dual role. These points are used
to fit the estimators in each leaf of the tree, but have no
effect on the shape of the tree partition.

The data are randomly partitioned in each tree by assign-
ing each point to the structure or estimation part with equal
probability. This partition is required to ensure consistency;
however, there is no reason we cannot have additional parts.
For instance, we could assign some points to a third, ig-
nored part of the partition in order to fit each tree on a
subset of the data. However, we found that subsampling
generally hurts performance, so we do not pursue this idea
further.

The tree construction is parameterized by k,,, which gives
a minimum number of estimation points that must appear
in each leaf. The subscript n, which corresponds to the
size of the training set, indicates that the minimum leaf size
depends on the number of training data.

4.2. Leaf expansion

When a leaf is selected for expansion we select, at random,
min(14Poisson(A), D) distinct candidate dimensions. We
choose a split point for the leaf by searching over the can-
didate split points in each of the candidate dimensions.

A key difference between our algorithm and standard ran-
dom forests is how the set of candidate split points is gener-
ated. In a standard random forest, points are projected into
each candidate dimension and every possible split point is
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Range defined by m = 5 random points.

Figure 1. The search range in each candidate dimension is defined
by choosing m random structure points (indicated by arrows) and
searching only over the range defined by those points. Candidate
split points can only be selected in the region denoted by the solid
line; the dashed areas are not eligible for splitting.

evaluated as a candidate split point. In our algorithm we
restrict the range of the search by first selecting m of the
structure points in the leaf and evaluating candidate split
points only over the range defined by these points. Re-
stricting the range in this way forces the trees to be (ap-
proximately) balanced, and is depicted in Figure 1.

For each candidate split point S we compute the reduction
in squared error,

Err(A) = Nsl(A) Y%:A(Yj — Y42
Ij:s
I(S) = Err(A) — Err(A4") — Err(A”)

where A is the leaf to be split, and A’, A” are the two chil-
dren which would be created by splitting A at S. The nota-
tion Y4 denotes the empirical mean of the structure points
falling in the cell A and N*(A) counts the number of struc-
ture points in A. The variables I; € {e, s} are indicators
which denote whether the point (X;,Y}) is a structure or
estimation point.

The split point is chosen as the candidate which maximizes
I(.S) without creating any children with fewer than k,, esti-
mation points. If no such candidate is found then expansion
is stopped.

4.3. Prediction

Once the forest has been trained it can be used to make
predictions for new unlabeled data points. To make a pre-
diction for a query point z, each tree independently predicts

e D DIRC
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and the forest averages the predictions of each tree
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Here A,,(x) denotes the leaf containing x and N¢( A, (z))
denotes the number of estimation points it contains. Note
that the predictions made by each tree depend only on the
estimation points in that tree; however, since points are as-
signed to the structure and estimation parts independently
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in each tree, structure points in one tree have the opportu-
nity to contribute to the prediction as estimation points in
another tree.

5. Consistency

In this section we prove consistency of the random re-
gression forest model described in this paper. We denote
a tree partition created by our algorithm trained on data

={(X;,Y;)} as f,,. We use the variable Z to denote
the randomness in the tree construction, which includes the
selection of candidate dimensions as well as any other ran-
dom choices involved in the construction.

As n varies we obtain a sequence of classifiers and we are
interested in showing that the sequence { f,,} is consistent
as n — 00. More precisely,

Definition 1. A sequence of estimators { f,,} is consistent
Sor a given distribution on (X,Y) if the value of the risk
functional

R(fn) = EX,Z’Dn [lfn(X» Z, Dn) - f(X)|2}
converges to 0 as n — oo, where f(x)
the (unknown) regression function.

=E[Y|X =xa]is

In order to show that our random forest classifier is consis-
tent, we will take advantage of its structure as an empirical
averaging estimator.

Definition 2. A (randomized) empirical averaging estima-
tor is an estimator that averages a fixed number of (possibly
dependent) base estimators, i.e.

f(]\/[ (.’E Z(M) D

M
ZxZD

where ZM) = (Z1, ..., ZM) is composed of M (possibly
dependent) realizations of Z.

The first step of our construction is to show that the con-
sistency of the random regression forest is implied by the
consistency of the trees it is composed of. The following
proposition makes this assertion precise. A similar result
was shown by Biau et al. (2008) for binary classifiers and a
corresponding mutli-class generalization appears in Denil
et al. (2013). For regression, it is particularly straightfor-
ward.

Proposition 3. Suppose {f,} is a consistent sequence of
estimators. Then { f,gM) }, the sequence of empirical aver-
aging estimators obtained by averaging M copies of { fn}
with different randomizing variables is also consistent.

Proof. We must show that R( 7(LM)) — 0. Compute

R(F{M) =

Ex zon p,

1 M )
3f 2 (X, 20, Dy) = FO
j=1

by the tnangle inequality and the fact that (> . a;)* <
n Zz:l 7

IJVI

< M Z]EX,ZJ',Dn Ufn(Xa ZjaDn) - f(X)|2]

= R(fﬂ) —0

which is the desired result. O

Proposition 3 allows us to focus our attention on the con-
sistency of each of the trees in the regression forest. The
task of proving the tree estimators are consistent is greatly
simplified if we condition on the partition of the data into
structure and estimation points. Conditioned on the parti-
tion, the shape of the tree becomes independent of the esti-
mators in the leafs. The following proposition shows that,
under certain conditions, proving consistency conditioned
on the partitioning variables is sufficient.

Proposition 4. Suppose { [} is a sequence of estimators
which are conditionally consistent for some distribution on
(X,Y) based on the value of some auxiliary variable I.
That is,

nlLHolO]EX,Z,D71 [|fn(XaZv-[7Dn) - f(X)|2|I} =0

forall I € T and that P (I € T) = 1. Moreover, suppose
f(x) is bounded. If these conditions hold and each fy is
bounded with probability 1, then {f,} is unconditionally
consistent, i.e. R(f,) — 0.

Proof. Note that
R(fn) =Ex.z1p, [[fa(X,2,1,Dy) = fF(X)[?]
=E; [Ex,zp, [|[2(X,Z,1,D,) — f(X)]*|1]]
and
Ex, 20, [|[fa(X,2,1,Dn) — f(X)[’]
< Ex,zp, [|fa(X, Z,1,D,)]°] + Ex [If(X)?]
<supEzp, [|fu(z, Z,1,Dy)*] +sup |f(2)]?
x xT
Both of these terms are finite by the boundedness assump-

tions. This means we can apply the dominated convergence
theorem to obtain

lim R(f,) =

n—oo
By [ lim Exzp, [|fa(X,Z,D0) = f(X)|1]] =0

which is the desired result. O
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With these preliminary results in hand, we are equipped to
prove our main result.

Theorem 5. Suppose that X is supported on RP and has a
density which non-zero almost everywhere. Moreover, sup-
pose that f(z) is bounded and that E [Y?] < cc. Then the
random regression forest algorithm described in this paper
is consistent provided that k, — oo and k,/n — 0 as
n — oo.

Proof. Since the construction of the tree is monotone trans-
formation invariant we can assume without loss of general-
ity that X is supported on [0, 1]” with uniform marginals
(Devroye et al., 1996).

By Proposition 3 it is sufficient to show consistency of the
base estimator. Moreover, using I to denote an infinite se-
quence of partitioning variables, by Proposition 4 it is suffi-
cient to show consistency of the base estimator conditioned
on I. To this end, we appeal to Theorem 4.1 from Gyorfi
et al. (2002). According to this theorem {f,} is consis-
tent if both diam(A, (X)) — 0and N¢(A, (X)) — oo in
probability (recall A, (X) denotes the leaf containing X).

Consider a tree partition defined by the structure points
(fixed by conditioning on I) and the additional randomiz-
ing variable Z. That N¢(A4, (X)) — oo is trivial, since
N¢(A,(X)) > k,. To see that diam(A, (X)) — 0 in
probability, let V,,(x) be the size of the first dimension of
A, (). Tt suffices to show that E [V;,(x)] — 0 for all = in
the support of X.

Let X1,..., X ~ pla, (o) for some 1 < m' < m de-
note the structure points selected to determine the range
of the split points in the cell A, (z). Without loss of gen-
erality, we can assume that V,(z) = 1 and that m X; ~
Uniform]0, 1], where 7; is a projection onto the first coor-
dinate. Conditioned on the event that the first dimension is
cut, the largest possible size for the first dimension of the
child cells is bounded by

V= max(mngtlx mXi,1— mi{l mX;)
1= 1=
Recall that we choose min(1+Poisson(\), D) distinct can-
didate split dimensions, and define the following events
E; = {There is exactly one candidate dimension}
E5 = {The first dimension is a candidate }
Then, using V’ to denote the size of the first dimension of
the child cell,
E[V<E[I{(E1NEy)°} +1{ENE}V*]
=P (EY) + P (E3|E1) P (E1)
+ P (E:|E) P (E)E[VT]

=(1-eN)+ - p)e + 5 BV

By Lemma 6 in Appendix A,
e N e 2m+1
=1— — 4+ —
D D 2m+2
7 2D(m+1)

Iterating this argument we have that after K splits the ex-
pected size of the first dimension of the cell containing z is
upper bounded by

(12D<€r71A+1>)K :

so it suffices to have K — oo in probability. This is shown
to hold by Proposition 7 in Appendix A, which proves the
claim. O

6. Discussion

In this section we describe two different random forest
models which have been previous analyzed in the literature.
We discuss some of the differences between them and the
model in this paper, and the relationship of the three mod-
els to Breiman’s original algorithm. Both of the models
we discuss here were originally presented as classification
algorithms, but adapting them for regression is straightfor-
ward.

The first model we compare to our own is the scale invari-
ant random forest from Biau et al. (2008), which we refer
to as Biau08. The trees in this forest are constructed by
repeatedly expanding leaf nodes as follows: a leaf in the
tree is chosen uniformly at random for expansion. Within
this leaf a dimension is chosen uniformly at random and the
data are sorted according to their projection into the chosen
dimension. Finally, if there are N data points in the leaf
being expanded then a random index I is drawn from the
set {0,1,..., N} and the split point is chosen so that the [
smallest values fall into one of the children and the rest in
the other. Leaf expansion continues in this manner until a
specified number of terminal nodes has been reached.

The second model we compare to is the algorithm analyzed
in Biau (2012), which we refer to as Biaul2. The trees in
this forest assume the data is supported on [0, 1], so data
must first be scaled to lie in this range. Trees are grown
by expanding leafs in breadth first order until a specified
number of terminal nodes has been reached. Leafs in this
model are expanded by selecting a fixed number of random
candidate dimensions (with replacement). For each candi-
date dimension there is one candidate split point which lies
at the midpoint of the cell being expanded. To choose be-
tween the different candidate dimensions, the information
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Figure 2. Comparison between different algorithm permutations on several data sets. In each plot the y-axis shows mean squared error,
and different algorithms are shown along the x-axis. The algorithm in this paper is labelled Ours. Biau0O8 and Biaul2 are algorithms
from the literature, and are described in the main text. Breiman is the original random forest algorithm. A + sign is used to indicate
variants of an algorithm. +T and +F indicate that data splitting is performed at the tree or forest level respectively, and +S indicates that
no data splitting is used. Breiman+NB is the original random forest algorithm with no bootstrapping. In the CT slice figure the error of

Biau08 is not shown, since it is extremely large.

gain from each split is computed and the candidate split
point with the greatest information gain is selected.

An important feature of Biaul2 is that fitting the model re-
quires partitioning the data set into two parts. One of these
parts is used for determining the structure of the trees, and
the other part is used for fitting the estimators in the leafs.
The roles of the two parts of this partition are identical to
the structure and estimation points in our own algorithm.
The main difference between how Biaul2 partitions the
data and how we do so is that for Biaul2 the partition into
structure and estimation points is the same for all the trees
in the forest, whereas in our algorithm the partition is ran-
domly chosen independently for each tree.

Comparing our algorithm and the two from Biau to
Breiman’s original random forests algorithm we see there
are two key points of difference: (1) How candidate split
points are chosen, and (2) how data splitting happens (if at
all).

In our experiments we look at how different choices for
these two factors effect the performance of random forests
on several regression problems.

7. Experiments

In this section we empirically compare our algorithm to
Biau08 and Biaul2 (described in Section 6) and Breiman
(the original algorithm described in Breiman (2001)) on
several datasets.

Name No. data No. features
Diabetes 442 10

Wine Quality 6497 11
YearPredictionMSD 515345 90

CT slice 53500 384

Table 1. Summary of UCI datasets.

The purpose of these experiments is to provide insight into
the relative impact of the different simplifications that have
been used to obtain theoretical tractability. To this end we
have chosen to evaluate the different algorithms on several
realistic tasks, including and extremely challenging joint
prediction problem from computer vision.

Since the algorithms are each parameterized slightly differ-
ently it is not possible to use the same parameters for all of
them. Breiman and our own algorithm specify a minimum
leaf size, which we set to 5 following Breiman’s advice for
regression (Breiman, 2001).

Biau08 and Biaul2 are parameterized in terms of a target
number of leafs rather than a minimum leaf size. For these
algorithms we choose the target number of leafs to be n/5,
meaning the trees will be approximately the same size as
those grown by Breiman and our own algorithm.

Biaul2 requires the data to lie within the unit hypercube.
For this algorithm we pre-process the data by shifting and
scaling each feature into this range.

7.1. UCI datasets

For our first set of experiments we used four data sets from
the UCI repository: Diabetes, Wine Quality, YearPredic-
tionMSD and CT Slice. With the exception of diabetes,
these datasets were chosen for their relatively large number
of instances and features.

In all the experiments in this section we follow Breiman’s
rule of thumb of using one third of the total number of at-
tributes as candidate dimensions. All results in the this sec-
tion are the mean of five runs of five fold cross validation.

For our algorithm we choose m = 1000 structure points
for selecting the search range in the candidate dimensions.
We experimented with other settings for m but found our
results to be very insensitive to this parameter.

Figure 2 compares the performance of several different ran-
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Figure 3. Left: Performance comparison as a function of forest size for the different algorithms on the CT slice data set. Right:
Comparison between different methods of data splitting and split point selection on the CT slice dataset. In both plots the x-axis number
of trees and the y-axis is mean squared error. Error bars show one standard deviation computed over five runs. Biau08 does not appear
in either plot since its error in this dataset is very large. See the caption of Figure 2 for an explanation of the labels.

dom forest algorithm variants on the four UCI data sets.
The clear trend here is that Breiman’s algorithm outper-
forms our own, which in turn outperforms both algorithms
from Biau. Generally Biaul2 outperforms Biau08, except
in the wine quality data set where, strangely, the order is
reversed.

Figure 2 includes a variant of our algorithm which performs
data splitting at the forest level, and also a variant of Biaul2
which performs data splitting at the tree level. This differ-
ence appears to have relatively little effect when there is
sufficient data; however, for the Diabetes dataset, which is
comparatively small, splitting at the tree instead of the for-
est level significantly improves performance.

In all cases the gap between Biaul2 and our algorithm is
larger than the difference in performance from changing
how data splitting is done. This indicates that in a practical
sense it is the split selection strategy that accounts for most
of the improvement of our algorithm over Biaul2.

We also experimented with variants of Biaul2 and our own
algorithm with no data splitting. The most notable thing
here is that when data splitting is removed our algorithm
is very competitive with Breiman. This indicates that the
gap in performance between our algorithm and standard
random forests can be contributed almost entirely to data
splitting.

We performed all of these experiments using a range of
forest sizes. Figure 3 (left) shows performance as a func-
tion of forest size. In the interest of space we present this
figure only for the CT slice dataset, but the curves for the
other datasets tell a similar story. This figure shows that
the results from Figure 2 are consistent over a wide range
of forest sizes.

Figure 3 (right) more closely examines the effects of the

different data splitting and split point selection strategies.

7.2. Kinect Pose Estimation

In this section, we evaluate our random forest algorithm
on the challenging computer vision problem of predicting
the location of human joints from a depth image and corre-
sponding body part labels. See Figure 4 for an example.

Typically the first step in a joint location pipeline is to pre-
dict the body part labels of each pixel in the depth image
and the second step is to use the labelled pixels to predict
joint locations (Shotton et al., 2011). Further refinements to
this procedure can predict both the pixel label and joint lo-
cations simultaneously using a Hough forest as in Girshick
et al. (2011); however these refinements are well beyond
the scope of this paper.

Since our primary goal is to evaluate regression models
rather than to build an end product, we implement only the
second step in the basic pipeline. Using depth images with
ground truth body part labels for each pixel as training data,
we learn a regression model of the offset from a pixel to a
joint.

For each joint, we train a forest on the pixels of body parts
associated with that joint and predict the relative offset
from each pixel to the joint. Typically these errors would
be post-processed with mean shift to find a more accurate
final prediction for the joint location. We instead report the
regression error directly to avoid confounding factors in the
comparison between the forest models.

Each joint has its own model that predicts the offset from a
pixel to the location of the joint. An offset is predicted for
all pixels with body part labels associated with a joint.

To build our data set, we sample random poses from the
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Figure 4. Left: Depth image with a candidate feature specified
by the offsets u and v. Centre: Body part labels. Right: Left
hand joint predictions (green) made by the appropriate class pixels
(blue).

CMU mocap dataset and render a pair of 320x240 resolu-
tion depth and body part images along with the positions of
each joint in the skeleton. The 19 body parts and one back-
ground class are represented by 20 unique colour identifiers
in the body part image.

For this experiment we generate 2000 poses for training
and 500 poses for testing. To create the training set, we
sample 20 pixels without replacement from each body part
class in each pose. We then sample 40000 pixels without
replacement from the sampled pixels with the associated
body part labels across all poses. During testing we eval-
uate the MSE of the offsets of all pixels associated with a
joint. Figure 4 visualizes the raw depth image, ground truth
body part labels and the votes for the left hand made by all
pixels in the left arm.

The features associated with each pixel are depth differ-
ences between pairs of pixels at specified offsets from the
target. At training time, candidate pairs of offsets are sam-
pled from a 2-dimensional Gaussian distributions with vari-
ance 40.0 (chosen by cross validation). The offsets are
scaled by the depth of the target pixel to produce depth in-
variant features. Figure 4 (left) shows candidate feature
offsets u and v for the indicated pixel. The resulting fea-
ture value is the depth difference between the pixel at offset
u and the pixel at offset v. In this experiment we sample
1000 candidate offsets at each node.

Figure 5 shows the MSE and standard deviation for each
joint in pixel units. In the interest of space we only show
the joints for the left side of the body but we see similar
results for the right side. Just as with the UCI datasets,
the dominant ordering from largest to smallest test error is
Biau08, Biaul2, Ours and Breiman.

8. Conclusion

It is fascinating that an algorithm as simple and useful as
random forests has turned out to be so difficult to analyze.
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Figure 5. Mean squared error in pixel space for a forest of 50 trees
on the kinect joint prediction task. Each group of bars shows,
from left to right, the error of Biau08, Biaul2, Ours and Breiman.
The error bars show one standard deviation across 5 runs. We
only include errors on the left side of the body, but the results for
the right side are similar. In order to make the results legible the
y-axis is set so that in some cases the error of Biau0O8 extends
vertically off the figure.

Motivated by this, we set as our goal to narrow the gap
between the theory and practice of regression forests, and
we succeeded to a significant extent.

In this paper we were able to derive a new regression forest
algorithm, to prove that it is consistent, and to show that its
empirical performance is closer to Breiman’s model than
previous theoretical variants.

Our empirical study, which compares the algorithm widely
used in practice to recent theoretical variants for the first
time, also casts light on how different design choices and
theoretical simplifications impact performance.

We focused on consistency because this is still an impor-
tant open problem. We believe that our theoretical analysis
and empirical study clarify the state of understanding of
random forests and help set the stage for further research in
this area.

However, we believe that our theoretical analysis and em-
pirical study help in setting the arena for embarking on
other types of analyses, including finite sample size com-
plexity bounds, asymptotic convergence rates, and consis-
tency of random forests in machine learning problems be-
yond regression.
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