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Abstract

In this paper we consider online learning in fi-
nite Markov decision processes (MDPs) with
changing cost sequences under full and bandit-
information. We propose to view this prob-
lem as an instance of online linear optimiza-
tion. We propose two methods for this problem:
MD? (mirror descent with approximate projec-
tions) and the continuous exponential weights al-
gorithm with Dikin walks. We provide a rigorous
complexity analysis of these techniques, while
providing near-optimal regret-bounds (in particu-
lar, we take into account the computational costs
of performing approximate projections in MD?).
In the case of full-information feedback, our re-
sults complement existing ones. In the case of
bandit-information feedback we consider the on-
line stochastic shortest path problem, a special
case of the above MDP problems, and man-
age to improve the existing results by removing
the previous restrictive assumption that the state-
visitation probabilities are uniformly bounded
away from zero under all policies.

1. Introduction

We consider the problem of online learning in discrete-
time finite Markov decision processes (MDPs) with arbi-
trarily changing cost functions. It is assumed that a learner
moves in a finite state space X'. Occupying a state z; at time
instant ¢, the learner takes an action a; € A(xy), where
A(z;) denotes the finite set of actions available at state
x;. Then the agent moves to some new random state 1,
where the distribution of x4y, given z; and a; is deter-
mined by a Markov transition kernel P(-|z¢, a;). Simulta-
neously, the agent receives some immediate cost ¢y (¢, at),
where the cost function ¢; : &4/ — R is assumed to be
bounded (in fact, we will assume that the costs lie in [0, 1])
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and U = {(z,a) : x € X,a € A(x)}. The goal of the
learner, who is assumed to know P before the interaction
starts but not {¢;}, is to minimize its total cost. We as-
sume here that the cost function ¢; can change in an arbi-
trary manner between time instants. The performance of
the learner is measured against the best stationary policy in
hindsight, giving rise to the expected regret:
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Here, for a given stationary policy 7 (i.e., 7 is such that
m(x,-) is a probability distribution over A(z) for any = €
X), (zT,al) denotes the state-action pair that policy
would visit in time step ¢ if this policy was used from ¢ = 1
(we may assume that 27 = z;). Note that a sublinear
regret-growth, Ry = o(T') (T' — o0) means that the av-
erage cost collected by the learning agent approaches that
of the best (stationary) policy in hindsight. Naturally, a
smaller growth-rate is more desirable.

Motivated by the desire to design robust learning algo-
rithms, this problem has been studied under various condi-
tions by numerous authors (see, e.g., Even-Dar et al., 2009;
Yu et al., 2009; Neu et al., 2010; 2011; 2013) and the reader
can consult these papers for examples and extra motivation.

We consider two variants of the above model with re-
spect to what observations are available to the learner. In
both models the learner can observe its actual state, x;. In
the full information feedback model, the learner can ob-
serve the full cost function ¢; at the end of time instant ¢,
while in the bandit feedback model the learner only ob-
serves the cost £y (¢, a;) it receives.

Treating the online MDP problem as a huge but standard
online learning problem, it is not hard to obtain algorithms
that enjoy good regret bounds but whose computational
complexity is huge. Therefore, earlier work in the litera-
ture concentrated on obtaining computationally efficient al-
gorithms that also achieve near-optimal regret rates. These
results either concern the (stochastic) shortest path prob-
lem (SSP, an episodic MDP), or uniformly ergodic MDPs.
Several methods achieve near-optimal regret rates by run-
ning an independent expert algorithm for each z € X, see
Even-Dar et al. (2005; 2009); Neu et al. (2013) for the full
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information case and Neu et al. (2010; 2011; 2013) for the
bandit case. Yu et al. (2009) gave other low-complexity
methods with inferior performance guarantees.

The disadvantage of these methods is that, although they
achieve optimal O(v/T) regret rate in terms of the time
horizon 7', they often scale suboptimally in other problem
parameters, such as the mixing time in the uniformly er-
godic case or the length of the paths in the SSP case. Fur-
thermore, the optimal-order bounds in the literature for the
bandit setting require all states in X" to be visited with pos-
itive probability under any deterministic policy, and the
inverse of this, potentially very small probability appears
in the regret bounds. In this paper we alleviate this prob-
lem and obtain optimal-order bounds that do not deteriorate
with the minimum visitation probability.

To achieve this, we treat the MDP problem as an on-
line linear optimization problem and show that the result-
ing methods can be implemented efficiently (we note that
the same idea was applied successfully to the determinis-
tic shortest path problem (Gyorgy et al., 2007), where the
minimum visitation probability can also be zero). We rig-
orously analyze the regret and the computational complex-
ity of our online linear optimization methods, which are
approximate versions of the mirror descent and the con-
tinuous exponential weights algorithms; we believe that
these results are also of independent interest. The mirror
descent algorithm (see, e.g., Beck & Teboulle 2003) has
a usually computationally expensive projection step which
we perform approximately using another mirror descent al-
gorithm, while our results for the continuous exponential
weights algorithm are based on the Dikin-walk approxima-
tion of Narayanan & Rakhlin (2011).

Recently, Zimin & Neu (2013) have independently ob-
tained similar reductions for the SSP case, using the mirror
descent algorithm, achieving essentially the same bounds.
However, they do not consider the implementation issues of
the projection step of the mirror descent algorithm (i.e., the
computational complexity of obtaining sufficiently good
approximate projections and the effect of this approxima-
tion in their final bound).

The rest of the paper is organized as follows. Section 2
introduces the classes of OMDPs we study and reduces
them to online linear optimization problems. Section 3 pro-
vides the analysis of the impact of approximation errors on
the mirror descent and the continuous exponential weights
algorithms. In Section 4 we obtain our algorithms for the
OMDP problems by applying the methods of Section 3 to
the online linear optimization problems from Section 2.

2. Online Markov Decision Processes as
Online Linear Optimization Problems

In this section we give a formal description of online
Markov decision processes (OMDPs) and show that two

classes of OMDPs can be reduced to online linear op-
timization. The idea behind the reduction, which goes
back to Manne (1960) (for a modern account, see Borkar
(2002)), is to represent policies by their stationary (occu-
pation) measures over the set of state-action pairs. Under
this representation, the map from policies to their expected
cost turns out to be (approximately) linear. Further, when
the transition model of the environment is known, it is easy
to convert between policies and their stationary occupation
measures.

First, let us introduce some notation. Let Ag denote the
set of probability measures over S.! Note that for S finite,
we can also view Ag as the unit simplex in RISl: Ag =
{velo,1]5: leill v; = 1}. The standard inner product
of Euclidean spaces will be denoted by (-,-). Forp > 1,
the p-norm of vector v is denoted by [|v]|,,.

The structure of an online MDP is given by a finite state
space X, finite action spaces A(x),x € X, with Y =
{(z,a) : x € X,a € A(x)}, and probability transition ker-
nel P : U x X — [0, 1] satisfying >~ _ . P(x|u) = 1 for
all u € U where P(z|u) £ P(u,z). The learner’s starting
state, x1, is distributed according to some distribution g
over X. At each time instant ¢ = 1,2, .. ., based on its pre-
vious observation, state, and action sequences, the learner
chooses an action a; € A(z;), possibly in a random man-
ner. Extending this notion, we can think of a learning agent
as if it chose a (randomized) Markov policy 7, : U — [0, 1],
> ac A(x) Tt(z, @) = 1so that a; is chosen according to the
distribution 7 (x4, -). If m; = 7 independently of ¢, we say
that the agent’s strategy is stationary and we identify such a
control strategy with 7. The set of such stationary Markov
policies will be denoted by II.

2.1. Online Linear Optimization

In the following subsections we reduce two special
classes of OMDPs to online linear optimization, which we
briefly review now. Let K be a convex and compact sub-
set of a Hilbert space V. In most cases, we take V' = R
equipped with the standard inner product. In online linear
optimization, an adversary selects a sequence of loss vec-
tors {1, ...,¢r € F C V and the learner’s goal is to choose
a sequence of vectors w; € K so as to keep the regret
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small. Naturally, the choice of w; should only depend on
the history of earlier choices and losses. As with OMDPs,
we say that there is full-information feedback if the learner
observes the entire vector /; and bandit-information feed-
back if only the actual loss (¢;,w;) is observed. In the

"We assume that S is equipped with the necessary o-algebra,
and will not discuss similar trivial measurability issues in the pa-
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semi-bandit case, the situation most related to our OMDP
problems, V' = R? and only those components of ¢; are ob-
served for which the corresponding components of w; are
non-zero.

2.2. Loop-Free Stochastic Shortest Path (LF-SSP)
Problems

Here we assume that X has a layered structure, that is,
X can be partitioned into disjunct sets Xy, ..., X (L > 1)
such that if P(z'|z,a) > O then x € A} and 2’ € X4,
forsomel! = 1,...,L — 1, orx € X, 2’ € X, and
P(2'|z,a) = po(2’) for any a € A(z). This assumption
means that starting in X7 (uo is concentrated on A7), the
learner moves through X5, X5, . .. to reach X', after which
the whole process returns to X and is restarted (we assume
without loss of generality that each € & is achievable
by following a suitable policy). The sequence of transi-
tions from a state in X’} back to some other state in X is
an episode of the MDP, and in this case ¢ will index the
episodes in the process. Since each episode starts from
the same distribution, the episodes are memoryless, and
any policy 7 introduces an “occupation measure” ™ over
U, such that for any stage index [, 3, o, 1" (v) = 1,
where U = {(z,a) : = € AXj,a € A(z)}. Further-
more, for any € X1, 3¢ 4y K™ (2, @) = po(z). With
this we can view K = {u™ : m € II} as a subset of
xFE Ay, C xF RUI = RUI Letd = |U|. Note that K
is a convex polytope in R?, since it can be described by a
set of linear constraints:

K = {,u e o, 1

Z w(z',a') = Z p(u)P(x'|u), " € X}.

a’'€A(x’) ueU

These constraints guarantee that the probability “flowing
into” each state is equal to the probability “flowing out”
of it. It is unnecessary to explicitly require the probability
assigned to each layer to sum to one, thanks to the assump-
tion that the transition probability kernel P agrees with 1
on the first layer.

Furthermore, with an immediate cost function ¢ : U —
[0,1], the expected total cost of policy 7 in an episode
can be written as (¢, ™). Note that with this the prob-
lem of finding the stationary policy with the smallest per
episode expected cost can be written as the linear opti-
mization problem of argmin,cx (¢, ): Once the solu-
tion of this problem is found, a Markov policy 7, is ex-
tracted from the optimizing measure ;o by m,(x,a) =
(@, a)/ 3 qe () 1(x,a). Then, by construction, p™ =
.

The above description implies that all paths from the
starting layer &) back to itself are of the same length. This
assumption is not restrictive, though, as any layered MDP
can be modified without loss of generality to satisfy this

assumption at the price of moderately increasing the state
space (see Gyorgy et al., 2007). For convenience, for on-
line learning with changing costs in LF-SSPs we redefine
the regret to be the regret of the first T" episodes and use ¢;
to be the cost function effective in episode ¢. With this,

T T
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where m; € IIis the Markov policy used in the tth episode.
The problem of keeping the regret low is thus viewed as an
instance of online linear optimization over the convex set
K. Note that when 7, is a deterministic function of the past
then the expectation can be removed.

2.3. Uniformly Ergodic MDPs

Without loss of generality, we assume that X =
{1,...,]X|}. Here, following previous works, we as-
sume the so-called uniform mixing condition: There ex-
ists a number 7 > 0 such that under any policy 7 and any
pair of distributions v and p’ over X, ||(n — p')P™||; <
e /7 |\ — 1'||,, where we use the convention of view-
ing distributions over X as row vectors of RI*! and P™ ¢
RI¥IXI¥] s the transition probability matrix underlying
T (PM)aw = Y aeaw) T(@ a)P(2'|z,a). As Even-Dar
et al. (2009), we call the smallest 7 satisfying this assump-
tion the mixing time of the transition probability kernel P,
and call a resulting MDP problem uniformly ergodic. This
assumption is not unrestrictive, but relaxing it would fur-
ther complicate the paper and hence we leave this for fu-
ture work. As for LF-SSPs, for a Markov policy 7, let ™
be its stationary distribution over /. Under the assump-
tion of 7 < oo, p” is uniquely determined. Introduce
K = {y™ : 7 € II} C Ay. Again, K is a convex poly-
tope in RIYI, since it can be described by a set of linear
constraints:

K= {u 10,1 = S pu(u)
ueU
Z Z w(u)P('|u), 2’ € X}.
a'€A(z") ueld

Again, we will take d = |U| as the “dimension” of the
problem. In this case, we are concerned with finding a se-
quence of policies whose expected total cost up to time 7T’
is not much larger than that of the best policy in hindsight.
Similarly to Neu et al. (2011; 2013), we can bound this
expected additional cost as shown in the following result:?

Lemma 1. Consider a uniformly ergodic OMDP with mix-
ing time T < oo and losses {; € [0,1]%. Then the regret
of an agent following policies 7, . .., T through the tra-
Jectory (xy, ay )y relative to a fixed policy m can be bounded

The proof of this result can be found in the appendix along
with several other proofs omitted from the main text.
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forany k > E[|p™ — p™-1||, t=2,...,T.

Since we can recover a policy from a stationary distribu-
tion (as in the LF-SSP case), it is enough to find a slowly
changing sequence 1, . .., u7r € K such that the first term
of the bound is small. This is again an online linear opti-
mization problem.

We have now mapped online learning in MDPs, under
both sets of assumptions, to online linear optimization,
which is a well-studied problem in online learning (Cesa-
Bianchi & Lugosi, 2006; Shalev-Shwartz, 2012). In the
next section, we discuss two general algorithms designed
to attack this problem and how they apply to our case.

3. Online Linear Optimization

In this section we consider the challenges of implement-
ing two standard algorithms for online linear optimiza-
tion: mirror descent (MD) and the continuous exponen-
tial weights algorithm (CEWA). When the feasible set K
is complicated, some operations from both algorithms have
no closed form and need to be approximated iteratively. We
analyze the impact of the approximation errors on the re-
gret analysis for both methods. With an understanding of
how the regret scales with the approximation errors, we are
able to determine the necessary precision, which will lead
to bounds on the computational complexity of the approxi-
mate versions of these methods.

Recall that the goal of online linear optimization is to
choose a sequence of vectors w; € K C V in order to keep
the regret Ry = Zf:l (0, wy) — mingex Zthl (b, w)
small, no matter how the sequence of loss vectors ¢, € F
is chosen.

3.1. Mirror Descent with Approximate Projections

Mirror descent is a well-known strategy for achieving
low regret in online linear optimization problems. It has
two parameters: a step size 7 > 0 and a Legendre function®
R : A — R, called a regularizer. We assume that A is
a superset of K. Starting from w; € K, MD makes a
sequence of predictions w; defined by

wyy1 = argminn (U, w) + Dr(w, wy),
weK
where Dg(u,v) = R(u)— R(v)—(VR(v),u — v) denotes
the Bregman divergence induced by R. As is well known,

>R : A — Ris Legendre if A # () is convex, R is strictly
convex on its interior A° where VR exists, and | VR(w)|| — oo
as w approaches the boundary of A from inside A.

w41 can be obtained in the following two-step process:

Bys1 = argming (6, w) + Dp(w, w;)
weA

wit1 = Hp(Wi41),

where IIp (W) = argmin,cx Dr(w, @) : A — K de-
notes the Bregman projection associated with R. Often
w41 can be expressed in closed form and computed in
constant time; then the main challenge of applying MD is
in computing the Bregman projection.

Unless the set K is very simple, there is no closed form
for the Bregman projection and we must use inexact iter-
ative techniques. Hence, the next iterate w;, will be dif-
ferent from IIg(w:1). The following theorem analyzes
the regret of MD with c-approximate projections when
w1 — Mp(we)]] < e

Theorem 2. Let R be convex and K be a convex set such
that V R is A-Lipschitz on K with respect to (wrt) ||-||. Let
D = sup, ,ck ||[u — ||, be the diameter of K wrt the dual
norm of ||-||. Then the regret of MD, with c-approximate
projections, step size 1, and regularizer R satisfies

Dgr(w,w1) cADT

T T
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for any w € K and losses {{,}1_,, where {; can depend
on {(wg,0,)}Zh. When ¢ = 0, the result remains true
even when \ and/or D are unbounded, in which case we

interpret cAD = 0.

When the regularizer R is o-strongly convex wrt the
norm |||, i.e., if R(w) > R(w') + (VR(w'),w —w’) +
Z llw — w'||* for any w, w’ € A, we can use the following
lemma to bound the sum >, (¢;, w; — Ws41) from Theo-
rem 2.

Lemma 3. Let R : A — R be a o-strongly convex Leg-
endre function wrt the norm ||-||, n > 0, w € A, ¢ € RY,
and define W € A to be the unconstrained MD update:
W = argmin, ¢ 4 1 (¢, u) + Dr(u,w). Then ({,w — W) <

1 1€]|%, where ||-||, denotes the dual norm of ||-||.

3.1.1. MD?: EFFICIENT ONLINE LINEAR
OPTIMIZATION FOR SUBSETS OF [, 1]%.

In this section we present a particular implementation of
MD with approximate projections that is of interest for the
optimization problems presented in Section 2. When the

* The results and their proofs in this and the next section
are folklore in the online learning literature. We have learned
the proof techniques mostly from Cesa-Bianchi & Lugosi (2006);
Rakhlin (2009); Shalev-Shwartz (2012), though some of our proof
steps might be different. The reader can consult Gyorgy et al.
(2013) for the proofs of “general” online learning results whose
proofs are omitted.

)
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constraint set K is a subset of the unit cube [0,1]¢ C RY,
to obtain a regret bound that scales with the logarithm of
the dimension d, we use MD with the unnormalized negen-
tropy regularizer R(w) = ), wyIn(w,) — w,. Unfor-
tunately, VR(w) = (In(wy),...,In(wg))" is unbounded
when any component of w approaches zero. Thus R vi-
olates the condition of Theorem 2 that requires VR to be
Lipschitz continuous and makes it challenging to design ef-
ficient methods for computing c-approximate projections.
Therefore, for the rest of this section we assume that the el-
ements of K have components that are uniformly bounded
away from zero by 8 > 0. In other words, we assume that
K cC [B,1]% c RY,

In order to apply MD, we need to provide a method for

computing c-approximate projections onto the set K. We
propose to use a second instance of MD with the squared
2-norm regularizer R'(w) = 1 ||w|\§ The motivation for
this choice of regularizer is that the induced Bregman di-
vergence equal to the Euclidean distance and the associ-
ated Bregman projection is the Euclidean projection. Then
the inner instance of MD will also use approximate pro-
jections, but they can be calculated as the solutions to
quadratic programming problems, which can be solved ef-
ficiently by interior point methods. We call this algorithm
MD?2, since it has two instances of MD running. The regret
of MD? can be bounded as follows:
Corollary 4. Let 3 > 0 and K C [3,1]% Let
wi,...,wr € K be the sequence of predictions made
by MD? on K with losses {1,...,{r € [0,00)%, c-
approximate projections where accuracy is measured by
II-||;, step size n > 0, and the unnormalized negentropy
regularizer R. Then, for any w € K, we have

T
Z <€f,7 wy —
t=1

where w41 is defined component-wise by Wit1, =
wtue*”[“". Let e = c/\/a The per-step complexity is

0 (\73 (2 In (i) +In(Wy + 2e)> + d) :

where Wa = sup,, ,rcr |lw —w'|ly, H is the cost of the

projection step used in the inner MD instance when com-
. 1

puted with an accuracy of ¢ = +/Be wrt ||-||,.

T

N Dgr(w,w cT
) < 3 (b wy — i) 28 00) | €T
t=1

n Bn

When K C [3,1]% is a polytope in the positive quad-
rant described by m < d linear equality constraints,
interior point methods can be used to achieve H =
O(d®®In(d/c’)) = O(d*®In(d/(cB))) (e.g., Section 2.4.2
of den Hertog 1994, or Section 4.3.2 of Nesterov 2004).
Finally, we note in passing that instead of using mirror-
descent to implement the approximate projection, one
could also use an interior point algorithm for this purpose.
Building on the results of Potra & Ye (1993), it appears

possible to compute an e-approximate projection to K as
above in time O(d3®(1 + In(1/8) + Inln(d/¢))), result-
ing in a modest improvement of the total complexity. Fang
et al. (1997) discuss more methods, but with no complexity
analysis.

3.2. Continuous Exponential Weights Algorithm with
Dikin Walks
Consider an online linear optimization problem over a
convex closed set K C R?. Let the sequence of loss vec-
tors be £, ..., 07 and let p1 be some positive density over
K (ie., p1 > 0 and [} pi(x)dz = 1). Then, the con-
tinuous exponential weights algonthm (CEWA) (see, e.g.,
Narayanan & Rakhlin, 2011) at time ¢ 4 1 predicts X1,
where X; 11 ~ pi+1(+) and py11 is a density over K pro-
portional to p1(z) exp(—n SL_; (Ls, x)), where (f, g) =
[, f(x)g(x) dz. Here 17 > 0 is the learning rate of the al-
gorlthm
When p; € L*(K) (ie, [pi(z)dz < o0),
continuous exponentlal weights algorlthm can be inter-
preted as an instance of mirror descent With the unnor-
malized negentropy regularizer R(p) = [ p(x x)) —
p(z) dz. Indeed, it is easy to see that in this case pt+1 =
arg min,ep (k) {1 (¢4, p) + Dr(p, pe)} for t > 1, where
D(K) is the set of densities over K (D(K) = {p :
K — [0,00)] [ p(x)dz = 1}), €i(u) = (€, u) for
any u € K, the inner product over D(K) is defined as
where (¢',p) = [, i ¢'(u)p(u)du, and Dk (p,p') =
S p(@) In(p(x)/p'(z))dx is the Kullback-Leibler diver-
gence between p,p’ € D(K), which is also the Bregman
divergence induced by R. As such, with a straightfor-
ward generalization of Theorem 2 with ¢ = 0, we get that

the expected regret Ry = E {Zle 0, Xy —U >} against

any random variable U with density py supported on K is
bounded by

D ;
(. Dt — Qra1) + KL(ZUPI) 3)

HM’%

where g;11(z) = pt(x)efnzt(x)-

The advantage of CEWA is that it avoids the usual pro-
jection step associated with MD (or similar algorithms,
like “Follow the Regularized Leader” ). The complexity is
pushed to sampling from p; 1, which, as we will see, leads
to a different tradeoff. The question of how to efficiently
sample from p,;;, or a distribution sufficiently close to
Dt+1, was addressed by Narayanan & Rakhlin (2011). They
proposed a Markov Chain Monte-Carlo (MCMC) method
to implement sampling. The stationary distribution of the
Markov chain they design at time step ¢ + 1 is p;y1. How-
ever, since the chain is only run for finitely many steps, the
distribution that X;,; follows may differ from p;1;. In
fact, in their paper they proposed to make only one step
with the Markov chain, that is, to use X; 1 = Pry1 (| X¢),
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where P11 (+|z) is the Markov kernel underlying the chain
they designed. They argue that this is sufficient, since p; is
close to p;11. Indeed, they prove a regret bound that shows
the usual /7" behavior, but the price of making only one
step with the Markov chain is that the regret blows up by
a factor that is proportional to d°. Since we wish to avoid
this increase of the regret, we propose to run the chain for
more time steps. By following the analysis of (Narayanan
& Rakhlin, 2011), we get the following result:

Proposition 5. Assume that for any t > 1, v € K,
the losses satisfy ({;,x) € [0,B]. Let Piy1(-|x) be the
Markov kernel underlying the “Dikin walk” of Narayanan
& Rakhlin (2011) at time step t + 1. Assume that nB < 1
and fix an arbitrary parameter 0 < r < 1. If X| ~ p;° and
fort = 1,2 ... intime stept +1, X441 = Zt(i)l, where
20 P (129, i = 1,2, with Z5), = X, then
ifk > Cv2d®In((1 +n(e — 1)B)? + 2n(e — 1) B/r) then
[Phis — peilly = S 1phas(@) — pesn@lda < 7. where
Py 1 is the distribution of X1, C > 0 is a universal con-
stant and v = O(d) is a parameter that depends on the
shape of K.

The main work in making a move with the Markov chain
is to sample from a Gaussian random variable. Note that
the covariance of this distribution depends on the current
state. Thus, the cost of one step is dominated by the O(d?)
cost of computing the Cholesky factorization of this covari-
ance matrix once the matrix is computed. Hence, the total
cost of sampling at one time step is O(d® In(1 + nB/r),
where we assumed that computing the covariance matrix
can also be done in O(d?) step.

Finally note that if ||p; —p:||; < 7 in each time step
t then the additional regret due to the “imprecise” imple-
mentation up to time 7 is bounded by rT'B. Consider now
the case when B is constant (i.e., independent of T"). Then,
setting 7 = 1/4/T we see that the increase of the regret is
bounded by Bv/T. Now, remember that to get a /T regret
one should use 7 = O(1/v/T) (e.g., see the bound of The-
orem 2). Hence, in this case the cost of sampling per time
step can be kept constant independently of the time horizon
with essentially no increase of the regret.

3.3. Bandit Information

The purpose of this section is to briefly consider bandit
online linear optimization. The difference between bandit
online linear optimization and the setting considered above
is that at the end of time step ¢ the only information received
is the scalar loss of the vector chosen in that time step, that
is (€4, W), while ¢, is not revealed to the learner. For a re-
cent survey of the literature see the review paper by Bubeck
& Cesa-Bianchi (2012). The approach followed by existing
algorithms is to construct an estimate ¢; (usually unbiased)

3This assumption is not necessary, just simplifies the analysis.

of ¢, and use this in place of ¢; in a “full-information algo-
rithm”, like MD of the previous section. The question then
is how to construct E and how to control the regret. Our
main tool in this latter respect is going to be Theorem 2.
Indeed, if MD is run with Zt,l in place of ¢;_1, then from
Theorem 2 we see that, as far as the expected regret is con-

cerned, it suffices to control £ Klz,l, Wy — wt,lﬂ. For
this, we have the following result extracted from Abernethy
et al. (2008):°

Lemma 6. Let w, ! € V =R and define w,, = w,e """
forallu=1,...,d Then ({,w —w) <n w,l2.

Note that the lemma continues to be true even if V' =
L?(K), is the space of square-integrable functions over K,
in which case the sum should be replaced by an integral
over K wrt the Lebesgue measure.

4. Learning in Online Markov Decision
Processes

In this section, we consider online learning in MDPs in
the so-called full-information setting. In the case of LF-
SSPs this means that /; is observed at the end of episode
t, while in the case of ergodic MDPs /; is observed at the
end of each time step. We only consider full-information
algorithms based on MD?; solutions using CEWA are only
provided for the bandit case (to save space).

Consider first LF-SSP problems. In order to apply MD?,
we need the components of the (occupation) measures to be
bounded away from zero. This will not be the case gener-
ally, since policies may choose actions with arbitrarily low
probabilities. Without loss of generality we can assume
that there exists a > 0 and a policy 7¢z;, such that the
corresponding (occupation) measure flex, = (4" *? satisfies
pexp(z,a) > B for all (x,a) € U. By the convexity of
K, pus = (1 —0)pt + dptexp € K forany 0 < § < 1 and
€ K (i.e., there exists a policy inducing ps), and for any
loss function ¢ we have

| (€, s} — (€ ) | = 6] (€, preap — 1) |- 4)
Therefore, we do not loose much if we use MD? with
Ksg={pe€ K : p(z,a) > g forall z,a}

instead of K, since p15 € Ksg.
First we consider the simple case of the LF-SSP prob-
lem. By (4) and since ¢ (u) € [0,1] for all u € U,
T T
D (s u) =Y (b, ps)| < LT, (5)
t=1 t=1
(Recall that L is the number of layers in the state space.)
Now let us run MD? on K43 with the unnormalized neg-
ative entropy regularizer R(u) = Zf;ol R;(p;), where

%The proof can be found in (Gyérgy et al., 2013).
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= (po,...,pur—1), g € [0,00)4 and R; is the unnor-
malized negative entropy regularizer over [0, 00). Since
it follows from Pinsker’s inequality that R is 1/L strongly
convex wrt the || - ||;-norm (see also Example 2.5 of Shalev-
Shwartz 2012), combining Corollary 4, with Lemma 3 and
(5), we obtain the following result:

Theorem 7 (MD? on LF-SSP, full information). Let 7
be any policy, 11 € K, 6 € (0,1] and Dpax >

SUPLercsy Dr(K, pi1). Run MD? with parameters ¢ = %

and n = 4/ % on Kz with the sequence of loss func-

tions Uy, ..., lp. Let i be the output of MD? on round t
and define my = 7, (i.e., the state-conditional action prob-
abilities). Then the regret of the agent that follows policy
Ty at time t relative to policy m can be bounded as

Ry < 2\/LTDyax + VT + L4T,

and the per-time-step computational cost is bounded by

a33L
O( L+ 1In(L 4+ Dpax ),whereﬁ—lndTL.
Lo ) (422)

The proof follows from the arguments preceding the the-
orem combined with Corollary 4 and the remark after it.
Also, the next theorem has an almost identical proof, hence
we decided to omit this proof.

Note that Dy = O (Lln ﬂ—lo), where 1, =

min(, o)y Tewp(2,a) (notice that meyp(2z,a) > B since
Hexp(z,a) > B). If, for example, meqp(x,-) is selected
to be the uniform distribution over A(x), then 5 > 0
and myp = 1/max, |.A(z)|, making the regret scale with
O(L+/T In(max, [A(x)])) when § = 1/v/T. Also, this
makes the computational cost O(d®>®T"/*/\/B), where
O(-) hides log-factors. Neu et al. (2010) gave an algorithm
that achieves O(L? /T In(max, [A(z)|)) regret with O(d)
computational complexity per time-step. Thus, our regret
bound scales better in the problem parameters than that of
Neu et al. (2010), at the price of increasing the computa-
tional complexity. It is an interesting (and probably chal-
lenging) problem to achieve the best of the two results.

Consider now the case of uniformly ergodic MDPs. In
order to apply MD?2, we need to obtain a regret bound for
online linear optimization on the corresponding set K and
show that the sequence of policies does not change too
quickly. By (4) and because ¢; € [0, 1]¢, we have

T T
{ (

T
Z Etnu> *Z gtaﬂ5> < 6Z|<€tvﬂewp*/u>| < dT.
t=1

t=1 t=1

(6)
Therefore, running MD? on K55 with the negentropy reg-
ularizer R(pu) = Rg4(u) gives the following result:

Theorem 8 (MD? on Ergodic MDPs, full information).
Let 7 be any policy, 1 € K, 6 € (0,1] and Dyax >

SUPLercsy Dr(K pi1). Run MD? with parameters ¢ = %

andn =,/ T@%jg) on Ksg with the sequence of loss func-

tions Uy, ...,0r. Let ju; be the output of MD? on round t,
and define m; = m,,. Then the regret of the agent that fol-
lows policy Ty at time t relative to policy m can be bounded
as

Ry < 21/(27 + 3)T Dppax + VT + 0T + 47 + 4,

and the per-time-step computational cost is bounded by

d35L ITr
O (\/575 (L+ 1n(Dmax))) , £=max(1,In(55755)) -

As far as the dependence on 7 is concerned, by choos-
ing § = 1/v/T, we can thus improve the previous
state-of-the-art bound (Neu et al., 2013) that scales as
O(73/2,/Tn|A]) to O(\/TT In]AJ). The update cost of
the algorithm of Neu et al. (2013) is O(|X|® + |X|2|A|),
while here the cost of the MD? is O(T/4d%5 /\/B).

5. Learning under Bandit Information in
LF-SSP

The purpose of this section is to consider online learn-
ing in the LF-SSP problem under bandit feedback, that is,
when at time ¢, the only information received is ¢y (¢, at),
the cost of the current transition. Based on the previous
sections, we see that to control the regret, an MDP learning
algorithm has to control the regret in an online linear bandit
problem with decision set K.

According to Bubeck et al. (2012), for online bandit
linear optimization over a compact action set K C RY,
it is possible to obtain a regret of order O(d+/T logT)
regardless the shape of the decision set K, which, in
our case would translate into a regret bound of order
O(|U|/TlogT). Whether the algorithm proposed in this
paper can be implemented efficiently depends, however, on
the particular properties of K: Designing the exploration
distribution needed by this algorithm requires the compu-
tation of the minimum volume ellipsoid containing K and
this problem is in general NP-hard even when considering
a constant factor approximation (Nemirovski, 2007).

In this section, focussing on LF-SSPs, we design compu-
tationally efficient bandit algorithms based on MD and the
continuous exponential weights algorithm. In both cases,
the immediate costs will be estimated in the same manner:

~ ]I{:Egl) =, agl) =a}

pre(x, a)

l(x,a). @)

Note that in each stage [, /;(x,a) is nonzero only for the
state-action pair visited in ;; hence, Zt is available to the
learner. It is easy to see that as long as (B) u™(z,a) is
bounded away from zero for each state-action pair (z,a),



Online Learning in MDPs with Changing Cost Sequences

the above estimate is unbiased. In particular, denoting by
F: the o-algebra generated by the history up to the begin-
ning of episode ¢, E P”vt (x, a)|]—'t} = {;(z, a) holds for all
(z,a) € U.

First, let us consider the application of MD? with the un-
normalized negentropy regularizer on K4 to this problem.
Note that the restriction to Kz is now used to ensure both
that the projection step can be implemented efficiently and
that estimates in (7) are well-defined. In particular, this im-
plies that (B) will be satisfied. Using Lemma 6 then gives
the following result:

Theorem 9 (MD? on Bandit LF-SSP). Let 7 be any policy,
p€ K, 6 € (0,1] and Duax 2 - ,c i, Dr(1t: p1). Run

MD? with parameters ¢ = % andn = ,/% on K;g
with the sequence of estimated loss functions Zl, . ,ZT,
defined in (7). Let yi; be the output of MD? on round t, and
define my = m,,. Then the regret of the agent that follows
policy m; at time t relative to policy m can be bounded as

Ry < 2\/dT Dpax + VT + L6T,

and the computational cost is bounded as in Theorem 7.

Selecting 7egp(z,-) to be the uniform distribution,
B > 0 and Dpax < Lln(max, |A(z)]), results in a
O(y/dLT In(max, |A(x)])) bound on the regret for § =
1/+/T, while the time-complexity of the algorithm is still
O(d?>T"/*/,/B) as in the full-information case. Neu et al.
(2010) considered the same problem under the assumption
that any policy 7 visits any state with probability at least «
for some av > 0, that is, inf ZaeA(I) u™(z,a) > a > 0.
They provided an algorithm with O(d) per round complex-
ity whose regret is O(L?/T max,(A(z) In(A(x)))/a).
Compared to their result, we managed to lift the assumption
o > 0, and also improved the dependence on the size of the
MDP, while paying a price in terms of increased computa-
tional complexity.

Let us now consider applying CEWA with the Dikin-
walk to the same problem. As in the MD? case, we
run the algorithm on Ksg with § > 0. As in the full
information case, we let £,(n) = (ly,pu), p € RY,

O(p) = <2Z,u>, where /; is obtained using (7). Let

i) = pr(p) exp(—n .23 £ (1)), while p, = py/ 2,
7y = wa pe(p)dp. Let p(= X;) € Ksp be the output
of the Dikin-walk at time step ¢ when the walk is run for k
steps and let m; = m,, be the corresponding policy. Since

each coordinate of p; € Ksg is bounded away from zero,
7, is well-defined and E [Ztm} — (, and E [Z;m} =0
Combining (3) with Proposition 5 and Lemma 6, we get the
following result:

Theorem 10 (CEWA on Bandit LF-SSP). Let § =

1/ %, and assume that 1, is obtained by running

the algorithm of Section 3.2 on Ksg with the estimated

losses {Zt}, started from the uniform distribution, and with
parameters v = 26, 1 = §3/L and k > Cd° In(BT/d) for
some universal constant C > 0. Then, for any T > 2d/ 8,
the regret against any p € K is bounded by

Ry <3 dL(L+1/2)TIn(BT/d)
g
while the per-step computational complexity is bounded by
O(d3k).

Notice that the regret bound is O(L+/dT In(T)/5),

while the per-step computational complexity (choosing the
smallest k) is O(d®InT). Thus, this algorithm does not
achieve the performance of MD?; the scaling of the re-
gret bound with 1/+/0 is especially not nice. On the other
hand, the computational cost of the algorithm is better in T’
than that of MD?. The regret bound of the algorithm could
be improved if in (7) we divided by [ p(z, a)p,(p)dp (in-
stead of u.), the probability of visiting the state-action pair
(z,a). However, we cannot compute this probability in a
closed form, and its estimation would require additional
sampling, further increasing the computational cost (see
Neu & Barték 2013 for a similar approach). We finally
note that based on the proof it is obvious that for the full-
information setting, CEWA would achieve a regret compet-
itive with MD?, and again, its cost would be lower in T, but
higher in d.

6. Conclusions

In this paper, viewing online learning in MDPs as online
linear optimization, we have proposed novel algorithms
based on variants of mirror-descent. We proposed efficient
solutions, based on approximate projections and MCMC
sampling, to overcome the computational difficulty of the
projection step in MD arising from the OMDP structure.
We rigorously analyzed the complexity of these algorithms.
Our results improve upon the state-of-the-art by improving
the regret bounds and lifting some restrictive assumptions
that were used earlier in the literature. The price we pay is a
somewhat increased computational complexity, though our
algorithms still enjoy polynomial computational complex-
ity in the problem parameters. It is an interesting (and prob-
ably challenging) problem to find out whether the trade-
off exposed is “real”. Extending our results to the bandit-
information feedback case for uniformly ergodic OMDPs
is also an important problem. One promising approach in
this direction is to combine our methods with the reward-
estimation technique of Neu et al. (2013).
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