
Direct Learning of Influence Function

A. Proofs for Structure of the Influence Function
To prove that the influence function σ(S) is a coverage function, the key is that non-negative combinations of coverage
functions are still coverage functions. We state and prove the property for the case of combining two coverage functions,
while for the general case we can simply repeat the argument.
Lemma 4. Suppose c(1) and c(2) are two coverage functions mapping from 2V to R+. If α(1) ≥ 0 and α(2) ≥ 0, then∑2
`=1 α

(`)c(`) is also a coverage function mapping from 2V to R+.

Proof. By definition, for ` = 1, 2, there exists a universe U (`), a set of weights
{
a

(`)
u

}
u∈U(`)
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v : A(`)
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}
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(`)
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a(`)
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Define a new universe U =
⋃2
`=1 U (`), where elements in U (`)(` = 1, 2) are treated as different elements. Define

the corresponding weights au for u ∈ U as follows: if u ∈ U (`), then au = α(`)a
(`)
u . Define a family of subsets

{Av : Av ⊆ U}v∈V where Av =
⋃2
`=1A

(`)
v . Then the corresponding coverage function is
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v∈S Av
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=
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α(`)
∑

u∈
⋃
v∈S A

(`)
v

a(`)
u =

2∑
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α(`)c(`)(S).

Therefore, c(S) =
∑2
`=1 α

(`)c(`) is a coverage function.

Since Φ(S|R) is a coverage function for any fixedR, and the influence

σ(S) = ER∼pR [Φ(S|R)]

is a convex combination of Φ(S|R), we have the following corollary.
Corollary 5. The influence function σ(S) is a coverage function.

Note If we naively construct the universe for the influence function as in the proof of Lemma 4, this will lead to a universe
of size 2dd, which is exponential in d. It seems to imply that the function is difficult to learn. However, as shown
in (Badanidiyuru et al., 2012), there exists a coverage function that is a (1 + ε) multiplicative approximation to σ, and is
defined on a universe of size O

(
d2

ε2

)
. This suggests that there are structures in a coverage function that make learning

tractable, even if it is defined on an exponentially large universe. On the other hand, the proof in (Badanidiyuru et al., 2012)
does not immediately lead to an efficient learning algorithm, since the construction explicitly makes use of the weights of
the elements in the universe defining σ.

B. Proofs for Random Basis Function Approximation
In this section, we fix a node j and fj(χS) = Er∼pj(r)

[
φ(χ>S r)

]
. Suppose a set of K random features {rj1, . . . , rjK}

is drawn from the distribution qj(r) over {0, 1}n. We show that given sufficiently many random features, there exists a
convex combination of the random basis functions that approximates the truth fj .

The number of random features needed depends on how close the sample distribution qj is to the true distribution pj . The
“distance” between the two is formalized in the following definition.
Definition 6. Let C be the minimum value such that

pj(r) ≤ Cqj(r) for all j ∈ [d], r ∈ {0, 1}n .

We first introduce an intermediate class F̃w that depends on C, and show that there exists a function in F̃w that is close to
fj . We then utilize the structure of our problem to show that the same is true for a class F̂w that does not depend on C. In
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particular, define

F̃w :=

{
fw(χS) =

K∑
k=1

wkφ(χ>S rjk)

∣∣∣∣0 ≤ wk ≤ C

K

}
, (19)

F̂w :=

{
fw(χS) =

K∑
k=1

wkφ(χ>S rjk)

∣∣∣∣wk ≥ 0,

K∑
k=1

wk ≤ 1

}
. (20)

Lemma 7. Let pχ be any distribution of χS . If rj1, . . . , rjK are drawn i.i.d. from qj(r), then with probability at least 1−δ
over rj1, . . . , rjK , there exists f̃ ∈ F̃w such that

Pr
χS∼pχ

[∣∣∣f̃(χS)− fj(χS)
∣∣∣ ≥ ε] ≥ ε2/C

when K = O(C
2

ε2 log C
εδ ). Consequently,

EχS∼pχ

[(
fj(χS)− f̃(χS)

)2] ≤ 3ε2.

Proof. Here we prove the first statement, which is stronger and implies the second one. Let fk(χS) =
p(rjk)
q(rjk)φ(χ>S rjk)

for k = 1, . . . ,K. Then Erjk∼qj(r)[fk] = fj . Let f̃(χS) = 1
K

∑K
i=1

p(rjk)
q(rjk)φ(χ>S rjk) be the sample average of these

functions. Then f̃ ∈ F̃w since 0 ≤ 1
K
p(rjk)
q(rjk) ≤

C
K .

By Hoeffding’s inequality, when K = O(C
2

ε2 log C
δε ), for any fixed S we have

Pr
r

[∣∣∣f̃(χS)− fj(χS)
∣∣∣ ≥ ε] ≤ δε2/C

where Prr is over the random sample of rj1, . . . , rjK . This leads to

Pr
χS∼pχ

Pr
r

[∣∣∣f̃(χS)− fj(χS)
∣∣∣ ≥ ε] ≤ δε2/C.

Exchanging PrχS∼pχ and Prr by Fubini’s theorem, and then by Markov’s inequality, we have

Pr
r

{
Pr

χS∼pχ

[∣∣∣f̃(χS)− fj(χS)
∣∣∣ ≥ ε] ≥ ε2/C} ≤ δ.

This means with probability at least 1− δ over the random sample of rj1, . . . , rjK , on at least 1− ε2/C probability mass
of the distribution of S, [f̃(χS)− fj(χS)]2 ≤ ε2. Since |f̃(χS)| ≤ C and |fj(χS)| ≤ 1,

EχS∼pχ

[(
fj(χS)− f̃(χS)

)2] ≤ ε2(1− ε2) + (C + 1)ε2/C < 3ε2.

Note that for learning over F̃w, the parameter C needs to be determined. However, there are additional structures in our
problem that can be utilized to further restrict F̃w and get rid of the dependence on C.

Lemma 1. Let pχ be any distribution of χS . If K = O(C
2

ε2 log C
εδ ) and rj1, . . . , rjK are drawn iid from qj(r), then with

probability at least 1− δ over rj1, . . . , rjK , there exists f̂ ∈ F̂w such that

EχS∼pχ

[(
fj(χS)− f̂(χS)

)2] ≤ ε2.
Proof. Construct a distribution ∆1 that assigns probability 1 to χS = 1 and probability 0 to all other source sets. Note that
the definition of f̃ is independent of the distribution of χS , so that we can apply Lemma 7 for f̃ on both ∆1 and pχ.

Without loss of generality, assume rjk 6= 0 for any k, since otherwise we can remove rjk without changing f̃ . Then
1>rjk > 0 and thus f̃(1) =

∑K
k=1 wk. By Lemma 7 on ∆1, with probability 1− δ/2 we have√

EχS∼∆1

[(
fj(χS)− f̃(χS)

)2]
= |fj(1)− f̃(1)| =

∣∣∣∣∣fj(1)−
K∑
k=1

wk

∣∣∣∣∣ ≤ ε

2
.
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Then
∑K
k=1 wk ≤ fj(1) + ε

2 ≤ 1 + ε
2 . Define f̂ = f̃/(1 + ε/2). Then f̂ ∈ F̂w and

|f̂(χS)− f̃(χS)| = ε/2

1 + ε/2
f̃(χS) ≤ ε/2

1 + ε/2

K∑
k=1

wk ≤
ε

2
.

By Lemma 7 on pχ, with probability 1− δ/2 we have

EχS∼pχ

[(
fj(χS)− f̃(χS)

)2] ≤ ε2

4
.

Then we have

EχS∼pχ

[(
fj(χS)− f̂(χS)

)2] ≤ 2EχS∼pχ

[(
fj(χS)− f̃(χS)

)2
+
(
f̃(χS)− f̂(χS)

)2] ≤ 2
( ε

2

)2

+
2ε2

4
= ε2

which completes the proof.

C. Proofs for Sample Complexity
In this section, we provide the complete proof for the sample complexity of learning the weights of the random basis
functions by maximum likelihood estimation (MLE). We are not aware of any previous work providing the analysis of
MLE for the hypothesis class in our problem (the weighted sum of the random basis functions). Therefore, we adopt the
general framework in (Birgé & Massart, 1998), which analyzes the sample complexity based on a particular dimension
notion for the hypothesis class. Then we bound the dimension of our hypothesis class, which then leads to our sample
bound. The techniques used in bounding the dimension can be extended to other hypothesis classes, and thus may be of
independent interest.

In the following, we first review the framework and paraphrase their result for distributions over a discrete domain, since
this suffices for our purpose. We then apply the result to learning the conditional probability fj for an individual node j,
and finally prove the bound for the entire influence function.

C.1. Review of MLE for probability estimation

The MLE estimator is defined as follows. Suppose we observe m data points Z1, . . . , Zm independent identically dis-
tributed according to the true probability function p∗ over a discrete domainZ . The hypothesis classH is a set of functions,
each of which is the square root1 of a probability function. That is, for each h ∈ H, h =

√
ph where ph is a probability

over Z . The MLE estimator is ĥ = argmaxh∈H
∑m
i=1 log [h(Zi)]. More generally, an approximate MLE estimator is ĥ

such that
m∑
i=1

log
[
ĥ(Zi)

]
+ 1 ≥ sup

h∈H

m∑
i=1

log [h(Zi)] . (21)

The goal is to analyze how the difference between ĥ and the truth h∗ =
√
p∗ decreases with the sample size m.

Complexity of the hypothesis class To analyze the sample complexity, we need to introduce some metric over the hy-
potheses and some notion bounding the complexity of the hypothesis class based on the metric. Given h, h̃ that are the
square roots of two probabilities, the `2 distance is

d(h, h̃) := ‖h− h̃‖ =

√∑
Z∈Z

[h(Z)− h̃(Z)]2. (22)

Note that d(h, h̃)/
√

2 is just the Hellinger distance. Similar to the `2 distance, we can define `∞ distance:

d∞(h, h̃) := ‖h− h̃‖∞ = max
Z∈Z
|h(Z)− h̃(Z)|. (23)

Both the `2 and `∞ distances are bounded over all square roots of probabilities, so a hypothesis class with such metrics is
always a bounded metric space. To measure the complexity of such a metric space, a common notion is the following:

Definition 8. Given a set B equipped with metric d, and a real number ε > 0, T ⊆ B is an ε-covering of B if the following

1We will always talk about the square root of the probabilities. This is because the `2 distance over such hypotheses correspond to
the Hellinger distance, which plays a key role in the analysis of MLE and appears in the final bound.



Direct Learning of Influence Function

holds: for every h ∈ B there exists h̃ ∈ T such that d(h, h̃) < ε.

h̃

h
<ε

Figure 3. Illustration of ε-covering.

Intuitively, if we construct balls aroud points in T with radius ε, then these balls can cover all points in B. Note that the
dimension depends on the metric d. The result in (Birgé & Massart, 1998) actually depends on both the `2 and `∞ metrics
onH. More precisely, we introduce the following `2,∞ dimension2.

Definition 9 ((Birgé & Massart, 1998)). The `2,∞ dimension of H is the minimum D ≥ 1 such that there exist constants
c0 ≥ 1 and c1 ≥ 1 satisfying the following. For each ε > 0 and each ball B ⊆ H with radius R ≥ 5ε, one can find T with

|T | ≤ (c0R/ε)
D

that is an ε-covering of B for the `2 metric and a c1ε-covering for the `∞ metric.

The condition says that for any given distance threshold ε and any sufficiently large ball in H, we can find a finite O(ε)-
covering T that is simultaneously with respect to both the `2 metric and the `∞ metric, and the size of the covering depends
exponentially on the dimension D.

Sample complexity based on `2,∞ dimension The following result bounds the expected squred `2 distance between the
MLE estimator and the truth, by a constant times the best Kullback-Leibler divergence from the truth to any hypothesis,
plus a penalty term roughly Õ(D/m) where D is the dimension of H and m is the number of data points. The Kullback-
Leibler divergence between h, h̃ ∈ H is defined as

KL(h, h̃) := EZ∼ph(Z)

[
log

h2(Z)

h̃2(Z)

]
. (24)

Theorem 10 (Theorem 3 in (Birgé & Massart, 1998)). AssumeH has `2,∞ dimensionD ∈ [1,m]. Let ĥ be an approximate
MLE estimator, i.e., it satisfies (21). Then there is a constant c > 0 such that

EDm [d2(h∗, ĥ)] ≤ c inf
h∈H

KL(h∗, h) +
cD

m
(1 + log[c0(1 + c1)])

where EDm is with respect to the randomness in the data Z1, . . . , Zm generated from the true distribution (h∗)2.

On the right hand side of the bound is the Kullback-Leibler divergence, instead of the the squared distance as on the left.
The following lemma is useful for connecting the two.

Lemma 11 (Eqn. (7.5) and (7.6) in Lemma 5 in (Birgé & Massart, 1998)). If h and h̃ are the square roots of two proba-
bilities and ‖h/h̃‖∞ < +∞, then

d2(h, h̃) ≤ KL(h, h̃) ≤ 2[1 + log ‖h/h̃‖∞]d2(h, h̃).

2The result (Birgé & Massart, 1998) actually depends on a covering property, which basically says that the `2,∞ dimension of H is
bounded by D. For our purpose, it is more convenient to introduce a definition of the dimension. Also note that in (Birgé & Massart,
1998), the covering property actually requires that T is simultaneously an ε-net of B for the `2 metric and a c1ε-net for the `∞ metric.
But in fact, this requirement can be relaxed to that T is a covering (instead of a net) as in our definition. See Assumption M ′

2,∞ and
Theorem 10 in their subsequent work (?).
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C.2. Estimation for individual node

Here we consider learning fj for a fixed node j. Assume that the event stated in Lemma 1 happens, and fix the set of random
features rj1, . . . , rjK . We first formalize our hypothesis class for learning fj , and then analyze the sample complexity.

Hypotheis class Recall that for learning fj , we get training data in the form Zi = (χSi , yij), where χSi ∈ {0, 1}
d is the

indicator vector of Si and yij ∈ {0, 1} indicates whether node j gets influenced by Si. Let p∗ denote the true distribution

p∗(χS , y) = pχ(χS)p(y|χ = χS)

where pχ is the distribution of χS , and p(y|χ = χS) is the conditional probability

p(y|χ = χS) = [fj(χS)]y[1− fj(χS)]1−y.

Similarly, given a function f , define the distribution induced as

p(χS , y|f) = pχ(χS)p(y|χ = χS , f) where p(y|χ = χS , f) = [f(χS)]y[1− f(χS)]1−y.

We could define our hypothesis class as the square roots of the probability distributions induced by functions in F̂w.
Unfortunately, there is some subtle technical difficulty: p(χS , y|f) can be arbitrarily close to 0, in which case our technique
for bounding the dimension of our hypothesis class fails (in particular, we cannot construct coverings for our hypotheses
based on coverings for the weights; see the proof of Lemma 15). Therefore, we add a small offset to functions in F̂w and
ensure that they are bounded away from 0. More precisely, define

F̂w,λ :=
{
fw,λ

∣∣ fw,λ = fw + λ, fw ∈ (1− 2λ)F̂w
}

(25)

where λ ∈ (0, 1) is a constant whose value will be determined later. For any fw,λ ∈ F̂w,λ, we have λ ≤ fw,λ(χS) ≤ 1−λ
for any χS . Then the probability p(χS , y|fw,λ) introduced by fw,λ satisfies that p(χS , y|fw,λ) ≥ λ for any χS and y,
which will allow us to use our technique.

Still, for F̂w,λ to be meaningful, we need to show there exists a function in F̂w,λ close to fj . The following lemma shows
that this is true as long as λ is small.

Lemma 12. Assume that the statement in Lemma 1 happens. Then there exists f̂w,λ ∈ F̂w,λ such that

EχS∼pχ

[(
fj(χS)− f̂w,λ(χS)

)2] ≤ 2ε2 + 2λ2.

Proof. Let f̂w ∈ F̂w be such that EχS∼pχ

[(
fj(χS)− f̂w(χS)

)2] ≤ ε2. Define f̂w,λ = (1 − 2λ)f̂w + λ. Then

|f̂w(χS)− f̂w,λ(χS)| = |λ− 2λf̂w(χS)| ≤ λ. The lemma then follows from

EχS∼pχ

[(
fj(χS)− f̂w,λ(χS)

)2] ≤ 2EχS∼pχ

[(
fj(χS)− f̂w(χS)

)2]
+ 2EχS∼pχ

[(
f̂w,λ(χS)− f̂w(χS)

)2]
.

Therefore, our hypothesis class is defined as

HK :=

{√
p(χS , y|fw,λ)

∣∣ fw,λ ∈ F̂w,λ} . (26)

In other words, HK is the square roots of the probabilities induced by F̂w,λ. Let h∗ =
√
p∗(χS , y) denote the element

corresponding to the true distribution. Note that we do not assume h∗ is inHK .

Sample complexity To bound the dimension ofHK and apply Theorem 10, the key is to construct coverings forHK based
on those for the weights, since the feasible set of weights is a subset of RK which has nice structure. We first relate the
topology of HK to that of the weights w in Lemma 14, which makes the construction possible. We then bound on the
dimension in Lemma 15, and subsequently bound the sample complexity in Lemma 2.

To begin with, let ∆ := {w|w ≥ 0, ‖w‖1 ≤ 1− 2λ} denote the feasible set of the weights w of the functions in F̂w,λ, and
consider a mapping π : ∆→ HK as follows:

π(w) :=
√
p(·|fw,λ), where fw,λ(χS) =

K∑
k=1

wkφ(χ>S rk) + λ.
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Lemma 14 shows that the `2 distance between π(w) and π(w′) is approximately the `∞ distance between w and w′,
relating the topology ofHK to that of the weights w. The following quantity is useful in the process:

Definition 13. LetAj = ΣΦj where Σ is a 2n×2n diagonal matrix with entries ΣχS ,χS =
√
pχ(χS), and Φj is a 2n×K

matrix with entries ΦjχS ,k
= φ(χ>S rjk). Define

Λj := min
w 6=0

‖Ajw‖
‖w‖

, Λ = min
j∈[d]

Λj .

Intuitively, Λ reflects how the change in w affects Ajw, which subsequently affects the corresponding hypothesis in HK .
This quantity thus goes into the relation between the distance on the set of w and the distance on HK , as shown in
Lemma 14.

Lemma 14. For an w,w′ ∈ ∆,
Λ

2
‖w − w′‖∞ ≤ ‖π(w)− π(w′)‖ ≤ K√

2λ
‖w − w′‖∞.

Proof. For simplicity, let f be a shorthand of fw,λ(χS) and f ′ be a shorthand of fw
′,λ(χS) in the proof.

(1) By definition of the norm in (22), we have

‖π(w)− π(w′)‖2 =
∑

(χS ,y)

(
√
p(χS , y|f)−

√
p(χS , y|f ′))2

=
∑
χS

pχ(χS)
∑
y

(
√
p(y|χ = χS , f)−

√
p(y|χ = χS , f ′))

2

=
∑
χS

pχ(χS)
[
(
√
f −

√
f ′)2 + (

√
1− f −

√
1− f ′)2

]
= Epχ

[
(
√
f −

√
f ′)2 + (

√
1− f −

√
1− f ′)2

]
.

This leads to

‖π(w)− π(w′)‖2 ≥ Epχ
[
(
√
f −

√
f ′)2

]
≥ 1

4
Epχ

[
(f − f ′)2

]
=

1

4

∑
χS

pχ(χS)(f − f ′)2

where the second inequality follows from Lemma 16. The right hand side expands to

1

4

∑
χS

pχ(χS)(f − f ′)2 =
1

4

∑
χS

pχ(χS)

[
K∑
k=1

φ(χ>S rjk)(wk − w′k)

]2

=
1

4
‖Ajw −Ajw′‖2.

where the last step follows from the definition of Aj . So

‖π(w)− π(w′)‖2 ≥ 1

4
‖Ajw −Ajw′‖2 ≥ Λ2

4
‖w − w′‖2 ≥ Λ2

4
‖w − w′‖2∞

where the second inequality follows from the definition of Λ.
(2) By definition we have

|f(χS)− f ′(χS)| ≤ ‖w − w′‖1 ≤ K‖w − w′‖∞
for any χS . Then

‖π(w)− π(w′)‖2 = Epχ
[
(
√
f −

√
f ′)2 + (

√
1− f −

√
1− f ′)2

]
≤ Epχ

[
(f − f ′)2

4λ
+

((1− f)− (1− f ′))2

4λ

]
≤ K2

2λ
‖w − w′‖2∞

where the first inequality follows from Lemma 16.(2) and the fact that λ ≤ f ≤ 1− λ and λ ≤ f ′ ≤ 1− λ.

Lemma 15. The `2,∞ dimension ofHK is at most K.

Proof. To bound the dimension, the key is to construct coverings of small sizes. By Lemma 14, the `2 metric on HK
approximately corresponds to the `∞ metric on the set of weights. So based on coverings for the weights with respect to
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the `∞ metric, we can construct coverings forHK with respect to the `2 metric. We then show that they are also coverings
with respect to the `∞ metric. The bound on the dimension then follows from the sizes of these coverings.

More precisely, given ε > 0 and a ball B ⊆ HK with radius R > 5ε, we construct an ε-covering T as follows. Define
Bw = π−1(B). By Lemma 14, the radius of Bw is at most Rw = 2

ΛR (with respect to the `∞ metric). Now consider
finding an εw-covering for Bw with respect to the `∞ metric, where εw = ( K√

2λ
)−1ε. Since Bw ⊆ RK , by taking the grid

with length εw/2 on each dimension, we can get such a covering T w with

|T w| ≤
(

4Rw

εw

)K
≤
(

8K√
2λΛ

R

ε

)K
.

Let T = π(T w), and for any h ∈ B find h̃ as follows. Suppose wh ∈ Bw satisfies π(wh) = h and wh̃ is the nearest
neighbor of wh in T w, then we set h̃ = π(wh̃). See Figure 4 for an illustration.

wh̃

wh

<εw

h̃

h
<ε

π

Bw B

Figure 4. Illustration of the mapping.

First, we argue that T is an ε-covering w.r.t. the `2 metric, i.e., d(h, h̃) < ε for any h ∈ B. It follows from Lemma 14:

d(h, h̃) ≤ K√
2λ
‖wh − wh̃‖∞ <

K√
2λ
εw = ε.

Second, we argue that T is also an O(ε)-covering w.r.t. the `∞ metric, i.e., d∞(h, h̃) = ‖h− h̃‖∞ = O(ε) for any h ∈ B.
We have ‖h− h̃‖ < ε, then ‖wh − wh̃‖∞ < 2

Λε by Lemma 14. Let fh := fwh,λ and fh̃ := fwh̃,λ. Then

|fh(χS)− fh̃(χS)| ≤ ‖ws − wt‖1 ≤ K‖ws − wt‖∞ <
2K

Λ
ε

for any χS , and thus

‖π(ws)− π(wt)‖∞ = max
χS

max
{
|
√
fh −

√
fh̃|, |

√
1− fh −

√
1− fh̃|

}
≤ max

χS
|
√
fh −

√
fh̃| ≤ max

χS

|fh − fh̃|
2
√
λ

<
K

Λ
√
λ
ε

where the second inequality follows from Lemma 16.(2).

So the conditions in the definition of the dimension are satisfied with D = K and c0 = c1 = O
(

K
Λ
√
λ

)
, and thus the

dimension ofHK is at most K.

Lemma 2. Assume the statement in Lemma 1 happens. Let ĥ be an approximate MLE estimator, i.e., it satisfies (21). Let
f̂w,λj be the corresponding function in F̂w,λ. Then when m = O(Kε log K

λΛ ),

EDm
[
Epχ [(f̂(χS)− fj(χS))2]

]
≤ 8c

(
ε+

ε2 + λ2

λ

[
1 + log

1

λ

])
where c is the constant in Theorem 10.
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Proof. The lemma follows from Theorem 10 and Lemma 15. On the left hand side of that bound in Theorem 10, we have

d2(h∗, ĥ) = Epχ

[(√
f̂w,λj −

√
fj

)2

+

(√
1− f̂w,λj −

√
1− fj

)2
]

≥ Epχ

[(√
f̂w,λj −

√
fj

)2
]
≥ 1

4
Epχ

[(
f̂w,λj − fj

)2
]

where the last inequality follows from Lemma 16.(1).

On the right hand side of the bound, the number of points m is sufficiently large so that the penalty term is at most ε. So
it suffices to show that infh∈HK KL(h∗, h) ≤ 2[1 + log 1

λ ] ε
2+λ2

λ . By Lemma 12, there exists f̂w,λ ∈ F̂w,λ such that

Epχ [(fj − f̂w,λ)2] ≤ 2ε2 + 2λ2. Let ĥw,λ =

√
p(·|f̂w,λ) denote the element inHK corresponding to f̂w,λ. Then

KL(h∗, ĥw,λ) ≤ 2

[
1 + log

∥∥∥∥ h∗

ĥw,λ

∥∥∥∥
∞

]
d2(h∗, ĥw,λ) ≤ 2

[
1 + log

1

λ

]
d2(h∗, ĥw,λ)

where the first inequality follows from Lemma 11, and the second inequality follows from the definition of h∗ and ĥw,λ,
and the fact that p(χS , y|f̂w,λ) ≥ λ for any χS and y. The proof is completed by noting

d2(h∗, ĥw,λ) = Epχ

[(√
fj −

√
f̂w,λ

)2

+

(√
1− fj −

√
1− f̂w,λ

)2
]

≤
Epχ [(fj − f̂w,λ)2]

4λ
+

Epχ [((1− fj)− (1− f̂w,λ))2]

4λ
≤ ε2 + λ2

λ

where the first inequality follows from Lemma 16.(2), and the last inequality follows from the choice of f̂w,λ as in
Lemma 12.

Below are some technical facts that are used in the analysis.

Lemma 16. (1) If f1, f2 ∈ [0, 1], then 4(
√
f1 −

√
f2)2 ≥ (f1 − f2)2.

(2) If f1 ≥ λ > 0 and f2 ≥ λ, then |
√
f1 −

√
f2| ≤ |f1−f2|2

√
λ

.

Proof. Both claims follow from the fact that f1 − f2 = (
√
f1 −

√
f2)(
√
f1 +

√
f2).

C.3. Estimation of the entire influence function

We now combine the bounds for individual nodes to get the sample complexity for learning the entire influence function.

Theorem 3. Let ε ∈ (0, 1/4) and λ = ε
c′d log d

ε

where c′ > 0 is a sufficiently large constant. If K =

O(C
2d2

ε2 log2 d
ε [log Cd

δ + log d
ε ]),

m = O

(
C2d3

ε3
log3 d

ε

[
log

1

Λ
+ log

Cd

ε
+ log

d

δ

])
then with probability 1− δ over the drawing of the random features,

EDm

Epχ

 d∑
j=1

f̂w,λj (χS)− σ(S)

2

 ≤ ε

where EDm is with respect to the randomness of {(χSi ,yi)}
m
i=1. The running time of the algorithm is O(dmK).

Proof. Let λ = ε0 and ε0 = ε
c′d log d

ε

where c′ > 0 is a sufficiently large constant, so that 8c
(
ε0 +

ε20+λ2

λ

[
1 + log 1

λ

])
≤

ε
2d where c is the constant in Lemma 2.

Apply Lemma 1 with error rate ε0 and confidence parameter δ/d. Then when K = O(C
2

ε20
log Cd

εδ ), with probability at least
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Figure 5. Expected influence vs. #sources on the real hold-out testing data.

1− δ, for each node j ∈ [d] there exists f̂ ′j ∈ F̂w satisfying

Epχ
[
(f̂ ′j(χS)− fj(χS))2

]
≤ ε20.

Then by Lemma 2, when m = O
(
K
ε0

log K
λΛ

)
, for each node j ∈ [d] we find f̂w,λj satisfying

EDm
[
Epχ

[
(f̂w,λj (χS)− fj(χS))2

]]
≤ ε

2d
.

The theorem follows from the fact that Epχ [(
∑d
j=1 f̂

w,λ
j (χS)− σ(S))2] ≤ 2

∑d
j=1 Epχ [(f̂w,λj (χS)− fj(χS))2].

Runtime. The maximum likelihood estimation only needs to be solved approximately. In particular, it suffices to get ĥ
such that

m∑
i=1

log[ĥ(Zi)] + 1 ≥ sup
h∈HK

m∑
i=1

log[h(Zi)].

By the convergence rate of EG (see Section 4.4 in (Kivinen & Warmuth, 1997)), we only need O(1/η) iterations, where
the learning rate η can be viewed as a constant. Each iteration takes time O(mK), and we need to use EG for each of the
d nodes. Hence, the total time is O(dmK).

C.4. Additional experimental results

We report the additional experimental evaluations on the application of the learnt influence functions to the continuous-
time influence maximization problem on the rest six groups of hold-out real testing cascades datasets. Compared to DIC
and Linear regression, Figure 5 verifies that the performance of INFLULEARNER, Modified Logistic and CIC are better
and more consistent with each other.


