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Abstract

Can we learn the influence of a set of people
in a social network from cascades of informa-
tion diffusion? This question is often addressed
by a two-stage approach: first learn a diffusion
model, and then calculate the influence based on
the learned model. Thus, the success of this ap-
proach relies heavily on the correctness of the
diffusion model which is hard to verify for real
world data. In this paper, we exploit the in-
sight that the influence functions in many diffu-
sion models are coverage functions, and propose
a novel parameterization of such functions us-
ing a convex combination of random basis func-
tions. Moreover, we propose an efficient max-
imum likelihood based algorithm to learn such
functions directly from cascade data, and hence
bypass the need to specify a particular diffusion
model in advance. We provide both theoretical
and empirical analysis for our approach, showing
that the proposed approach can provably learn
the influence function with low sample complex-
ity, be robust to the unknown diffusion models,
and significantly outperform existing approaches
in both synthetic and real world data.

1. Introduction

Social networks are important in information diffusion,
which has motivated the influence maximization problem:
find a set of nodes whose initial adoptions of an idea can
trigger the largest number of follow-ups. This problem has
been studied extensively in literature from both modeling
and algorithmic point of view (Kempe et al., 2003; Chen
et al., 2010; Borgs et al., 2012; Rodriguez & Scholkopf,
2012; Du et al., 2013b). Essential to the influence maxi-
mization problem is the influence function of a set of nodes,
which is an estimate of the expected number of triggered
follow-ups from these nodes.
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In practice, the influence function is not given to us, and we
only observe the information diffusion traces, or cascades,
originating from these nodes. In order to model the cas-
cade data, many information diffusion models have been
proposed in the literature, such as the discrete-time inde-
pendent cascade model and linear threshold model (Kempe
et al., 2003), and more recently the continuous-time inde-
pendent cascade model (Gomez Rodriguez et al., 2011; Du
et al., 2013b). To estimate the influence, we can employ
a two-stage method: a particular diffusion model is first
learned from cascade data, and then the influence function
is evaluated or approximated from such learned model.

However, there still remain many challenges in these tradi-
tional two-stage approaches. First, real world information
diffusion is complicated, and it is not easy to determine the
most suitable diffusion model in practice. A chosen dif-
fusion model may be misspecified compared to real world
data and lead to large model bias. Second, the diffusion
network structure can be also hidden from us, so we need
to learn not only the parameters in the diffusion model,
but also the diffusion network structure. This often leads
to under-determined high dimensional estimation problem
where specialized methods need to be designed (Du et al.,
2012; 2013a). Third, calculating the influence based on
learned diffusion models often leads to difficult graphical
model inference problem where extra approximation algo-
rithms need to be carefully designed (Du et al., 2013b).

If the sole purpose is to estimate the influence, can we
avoid the challenging diffusion model learning and influ-
ence computation problem? In this paper, we provide a
positive answer to the question and propose an approach
which estimates the influence function directly from cas-
cade data. Our approach will exploit the observation that
the influence functions in many diffusion models are cov-
erage functions. Instead of learning a particular diffusion
model, we will aim to learn a coverage function instead,
which will then naturally subsume many diffusion models
as special cases. Furthermore, in the information diffusion
context, we show that the coverage function can be rep-
resented as a sum of simpler functions, each of which is
an expectation over random binary functions. Based on
these structures of the problem, we propose a maximum-
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likelihood based approach to learn the influence function
directly from cascade data. More precisely,

Direct and robust approach. Our algorithm does not rely
on the assumption of a particular diffusion model, and can
be more robust to model misspecification than two-stage
approaches. Furthermore, directly learning the coverage
function also allows us to avoid the difficulty involved in
diffusion model estimation and influence computation.

Novel Parameterization. We propose a parametrization
of the coverage function using a convex combination of
random basis function. Similar parameterization has been
used in classification and kernel methods setting (Rahimi
& Recht, 2008), but its usage in the information diffusion
and coverage function estimation context is novel.

Approximation guarantee. We show that our parameter-
ization using K random basis functions generates a rich
enough family of functions which can approximate the true
influence function within an error of O(\/%) This allows
us to work with a small number of parameters without cre-
ating too much bias at the same time.

Efficient algorithm. We propose a maximum likeli-
hood based convex formulation to estimate the parameters,
which allows us to leverage existing convex optimization
techniques (Kivinen & Warmuth, 1997) to solve the prob-
lem efficiently. The time required to evaluate each gradient
is O(dmK), linear in the number of nodes d, the number
of cascades m, and the number of basis functions /& .

Sample complexity. We prove that to learn the influence
function to an € error, we only need O(f—;) cascades where
d is the number of nodes in the diffusion networks. This is
no obvious since the number possible source configurations
can be exponential in the number of nodes in the network.
Our approach is able to make use of the structure of the
coverage function and be able to generalize only after see-
ing a polynomial number of cascades.

Superior performance. We evaluate our algorithms using
large-scale datasets, and show that it achieves significantly
better performance in both the synthetic cases where there
is known model misspecification, and in real world data
where the true model is completely unknown in advance.

2. Diffusion Models and Influence Function
Several commonly used models exist for information dif-
fusion over networks. Interestingly, although these models
are very different in nature, the derived influence functions
belong to the same type of combinatorial functions — cov-
erage functions. Such commonality allows us later to ap-
proach the problem of learning influence functions directly
without assuming a particular diffusion model.

More specifically, a diffusion model is often associated

with a directed graph G = (V,£), and a cascade from a
model is just a set of influenced nodes according to the
model given a set of source nodes S C V. In general, we
have the following typical types of diffusion models :

Discrete-time independent cascade model (Kempe et al.,
2003). Each edge is associated with a weight in [0, 1].
When a cascade is being generated from the source nodes
S, independently for each edge according to the edge
weight, a binary random variable is sampled, indicating
whether the edge is included in a “live edge graph” or not.
The influenced nodes are those reachable from at least one
of the source nodes in the resulting “live edge graph”.

Discrete-time linear threshold model (Kempe et al.,
2003). Each edge is again associated with a weight in [0, 1],
but the sum of the incoming edge weights for each node
is smaller or equal to 1. When a cascade is being gener-
ated from the source nodes S, each node first independently
sample one of its incoming edges with probability propor-
tional to the edge weight. The chosen edges are then used
to form the “live edge graph”. The influenced nodes are
those reachable from at least one of the source nodes.

Continuous-time independent cascade model (Du et al.,
2013b). Being different from the discrete-time models, this
model associates each edge (j, ) with a transmission func-
tion, fji(Tji), a density over time. The source nodes are
assumed to be initially influenced at time zero. Then a dif-
fusion time is sampled independently for each edge accord-
ing to the transmission function and is viewed as the length
of the edge. The influenced nodes are those within shortest
distance T from at least one of the source nodes.

Being common to these diffusion models, the influence
function, o(S) : 2¥ + R, of a set of nodes S, is defined
as the expected number of influenced nodes with respect to
the generative process of each model. This influence func-
tion is a combinatorial function which maps a subset S of
V to a nonnegative number.

Although these diffusion models are very different in na-
ture, their corresponding influence functions belong to the
same type of functions — coverage functions, and share
very interesting combinatorial structures (Kempe et al.,
2003; Rodriguez & Scholkopf, 2012). This means that the
influence function can be written as

oS =D e a0 (1)

with three sets of objects :

(i) a ground set &/ which may be different from the set V
of nodes in the diffusion network,
(i) a set of nonnegative weights {a.}, .
ated with an item in the ground set U/,
(iii) and a collection of subsets {A, : A; CU}, .y, one
for each source node in diffusion network.

each associ-
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Essentially, each source node s € S covers a set A of
items from I/, and the function value o(S) is the weighted
sum over the union of items covered by all nodes in S.

The combinatorial structures of coverage functions allow
them to be potentially learned directly from cascades.
However, the problem of learning coverage functions is
very challenging for several reasons. First, there are an ex-
ponential number of different S from the power set of V),
while one typically only observes a small number of cas-
cades polynomial in the number of nodes, d = |V|, in the
network. Second, both the ground set U/, the weights {a,}
and the subsets {A;} are unknown, and one has to esti-
mate a very large set of parameters if one wants to use the
definition in (1) directly.

In fact, learning such combinatorial functions in general
settings has attracted many recent research efforts (Balcan
& Harvey, 2011; Badanidiyuru et al., 2012; Feldman &
Kothari, 2013; Feldman & Vondrak, 2013), many of which
show that coverage functions can be learned from just poly-
nomial number of samples. However, existing algorithms
are mostly of theoretical interest and impractical for real
world problem yet. To tackle this challenge, we will ex-
ploit additional structure of the coverage function in the in-
formation diffusion context which allows us to derive com-
pact parameterization of the function, and design a simple
and efficient algorithm with provable guarantees.

3. Structure of the Influence Function

Besides being coverage functions, the influence functions,
o(S), in the diffusion models discussed in Section 2 share
additional structures. In all models, a random graph ¢ is
first sampled from the distribution induced by a particular
diffusion model; and then a function is defined for com-
puting node reachability in the sampled graph; finally the
influence is the expectation of this function with respect to
the distribution of the random graphs.

3.1. Random reachability function
We represent each sampled random graph ¢ as a binary
reachability matrix R € {0,1}** with (s, )-th entry

1, j isreachable from source s,
R, = ) (2)
0, otherwise.

Essentially, the s-th row of R, denoted as R., records the
information that if s is the source, which node is reachable
given sampled graph ¢. Furthermore, the j-th column of
R, denoted as R.;, records the information that whether j
is reachable from each of the other nodes. Then given a
set S of sources, we can calculate whether a node j will
be influenced or not in graph ¢ through a simple nonlinear
function ¢ defined below.

First, we represent the set S as an indicator vector ys €

{0,1}%, with its i-th entry

1 S
Xs(s) ::{ P IEo 3)

0, otherwise.

Then the inner product XER: j € Zy will give us an indi-
cation whether a target node j is reachable from any of the
sources in S. More specifically, XgR:j > 1 if the target
node j is reachable, and 0 otherwise. Finally, using a con-
cave function ¢(u) = min {u,1} : Z; — {0,1}, we can
transform x g IR, .; into a blnary functlon of xs

¢ (xs R.j) Vi {0,1}. “)
We note that ¢ (Xg R. j) itself is a coverage function where
(i) the ground set{ contains a single item u;, (ii) the weight

on u; is 1, (iii) and the collection of subset is either A, =
{u;} if Rs; = 1 and otherwise A = 0 if R,; = 0.

Then the influence of S in graph ¢ is the number of target
nodes reachable from the source set S

#SIR) =3 o

#(S|R) is also a coverage function where (i) the ground
set U contains d items w1, . .., uq, (if) the weight on each
uj is 1, (iif) and Ay = {u; | Rs; = 1}. Since the graph ¢
and the associated R are random quantities, the ¢ function
is a random function.

R;). ®)

3.2. Expectation of random functions

Each diffusion model will induce a distribution over ran-
dom graph ¢ and hence a distribution pgr over the ran-
dom binary matrix R. Then the overall influence of a
source set S in a diffusion model is the expected value of
#(S|R), i.e.,

0(8) = Ernpg [#(SIR)], (6)

which is also a coverage function, since non-negative com-
binations of coverage functions are still coverage functions
(See Appendix A).

Next we will manipulate expression (6) to expose its struc-
ture as a sum over a set of conditional probabilities

Erpr [#(S|R)] (7

d
=ERpr {Zj_l ¢ (XE R:j):l (by definition (5))
d T
= Z =1 ERr~pr ¢ (Xs R:j)] (sum < expectation)
- Z Pr{¢ (x§ R;) =1|xs} (¢()isbinary),
=f;(xs)

where f;(xs) is the conditional probability of ¢ (x&
being 1 given the set indicator xs.

R;)

Strategy for learning: The form of the influence function
as a sum over conditional probabilities suggests a simple
strategy for learning the influence function:
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1. welearn each f;(xs) separately,
2. and then sum them together,

which we will elaborate in subsequent sections.

4. Random Basis Function Approximation

In this section, we will provide a novel parameterization of
function f;(xs) using random basis functions. Recall from
the derivation in (7) that

Fi(xs) = Erp, ) [#(x57)] @®)
where 7 := R.; and p;(r) is the marginal distribution of
column j of R induced by pgr. Since f;(xs) is an ex-
pectation w.r.t. a distribution p;(r) over the binary vec-
tors {0,1}%, we will use a convex combination of random
basis functions to parameterize f;(xs). A similar idea,
called random kitchen sinks (Rahimi & Recht, 2008), has
appeared in the classification and kernel methods context.
Our use of such parameterization is novel in the informa-
tion diffusion and coverage function learning context, and
our analysis is also different.

Specifically, consider drawing a set of K random binary
vectors (random features) {r1,r2, ..., 7k } from some dis-
tribution ¢(r) on {0, 1}", and build functions of the form

Fos) =3 wndlxdn) =w dlxs),  ©)

K
subject to Zk_l w =1, wg >0 (10)

where w = (wq,... ,wK)T are parameters to be

learned, 7, is the sampled random feature, and ¢(xs) :=
(d(x&r1), ..., 0(xirk))". Since each random basis
function ¢(x & 7% takes value either 0 or 1, the above com-
bination of such functions will qualify as a probability in
[0,1]. We will denote the class of functions defined by

equations (9) and (10) as Fu.

How well can the random basis function f*(ys) approxi-
mate the original function f;(xs)? We can show that there
exists some w such that f*(xs) approximates f;(x.s) well
when K is sufficiently large. More specifically, let C be
the minimum value such that

p;i(r) < Cq;(r), Vjel[d], Vre{0,1}".

Intuitively, C' measures how far away the sampling distri-
bution g;(r) is from the true distribution p; (r).

Lemma 1. Let p,(xs) be a distribution of xs. If K =
O(%,2 log &) and r1,...,rx are drawn iid. from q;(r),
then with probability at least 1—90, there exists an f* € Fv
such that By g p [(fi(xs) — fw(XS))Q] <€

Alternatively, the lemma can also be interpreted as the ap-
proximation error € scales as O( \/%) Note that we require

that w lie in a simplex, i.e., w, > 0 and 2211 wy, = 1, and
it is slightly different from that in Rahimi & Recht (2008).

5. Efficient Learning Algorithm

After generating the random features, we can learn the
weights w = (wy,...,wk) by fitting f*(xs) to training
data. Since the target function f;(xs) is a conditional prob-
ability, [y or [; error metric may not be suitable loss func-
tions to optimize. A natural approach is maximum con-
ditional likelihood estimation. We use an efficient expo-
nentiated gradient algorithm for performing the estimation
for the weights in f*. Here, we describe the algorithm, and
then present the sample complexity analysis in the next sec-
tion.

Suppose we observe a dataset of m i.i.d. cascades
D™ ={(81,71),. ., (Sm,Tm)}, (11)

where each cascade is a pair of observation of the source set
S; and the corresponding set Z; of influenced nodes. Each
cascade (S;,Z;) in the dataset is obtained by first sampling
a source set S; from a distribution p, (xs) (e.g., power
law), then sampling a random reachability matrix R from
pr, and finally calculating 7; := {j o) (x} R:j) = 1}.
We note that R is an intermediate quantity which is not ob-
served in the dataset. In our setting, we let S; C Z; which
means the nodes in the source set are also considered as
influenced nodes.

For a particular cascade (S;,Z;) and a particular target
node j, we can define a binary variable indicating whether
the target node j is influenced in this cascade, y;; =
I{j € Z;}. Then the conditional likelihood of the status of
node j (influenced or not) can be expressed using f;(xs)

Fi(xs)¥ (1= fi(xs)' ™" (12)
So in the following, we will focus on learning individual
function f* which is an approximation of f;(xs).

5.1. Maximum conditional likelihood estimation

In a way very similar to logistic regression and conditional
random fields by Lafferty et al. (2001), we will maximize
the conditional log-likelihood the y;; given the xs,. In con-
trast to logistic regression and conditional random fields
where the models usually take the exponential family form,
we will use a form of a convex combination of random ba-
sis function (f*). The additional challenge for this param-
eterization is that the conditional probability may be zero
for some S. To address this challenge, we will use a trun-
cated or Winsorized version of the function f*

FoM(xs) = (1=20) " (xs) + 2 (13)
which squashes the function output to the range of [\, 1 —
A]. We will denote this new class of functions as FuwA Al
though this transformation introduces additional bias to the
function class, we show in later analysis that it is fine if we
choose A to be about the same level as the approximation
error. In practice, A is selected via cross-validation.
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Then the log-likelihood of the data D™ can be written as
Gi(w) =) wiglog [ (xs)) (14)

+ (1= yig) log(1 — [ (xs,)s
and we can find w by maximizing the log-likelihood

W := argmax {;(w) (15)

K
subject to Zk—l

One can easily show that the optimization problem in (15)
is a convex optimization problem over a probability
simplex. Hence we can leverage existing techniques
from convex optimization by Kivinen & Warmuth (1997)
and Schmidt et al. (2009) to find w efficiently.

5.2. Exponentiated gradient algorithm

We describe a simple exponentiated gradient (EG) algo-
rithm, originally introduced by Kivinen & Warmuth (1997)
in the online learning context. The EG updates involve the
following simple multiplicative modification

Wi :1,U}k 20

1
with = ﬁwz exp (—n Vi(w")) (16)
where Zt = Zle wt exp (=1 Vi (w')) is the normaliza-
tion constant, the parameter 17 > 0 is the learning rate, and
the gradient V(w') is given by

- L —yij
V(w) =(1-2}) Z (1 —A—(1=2NwT(xs,)

=1
Yij
- 2A§ww<x$i>)¢’(“’i) {1

Algorithm 1 summarizes algorithm for learning the in-
fluence function. We first generate K random fea-
tures {r1,...,7x} from the given distribution g;(r).
Then, we precompute m feature vectors ¢(xs,) =
(p(x&,m1),- - d(xs,ri)) . Because xs, is usually very
sparse, this preprocessing costs O(K >, |S;|), where
|S;| is the cardinality of the set S;. Then we use the ex-
ponentiated gradient algorithm to find the weight w that
maximizes the log-likelihood of the training data. Accord-
ing to Kivinen & Warmuth (1997), to get within € of the
optimum, we need O(%) iterations, where the main work
of each iteration is evaluating the gradient with complex-
ity O(dmK). The final estimate &(S) is the sum of all the
functions learned for each node. The learning task for each
node is independent of those for the other nodes (except
that we use the same set of training data), so the algorithm
can be easily parallelized. We refer to our algorithm as IN-
FLULEARNER.

5.3. How to choose random basis function
By our analysis in Lemma 1, the number of random fea-
tures needed for node j depends on the sampling distribu-

Algorithm 1 INFLULEARNER
input training data {(S;,Z;)}1%;, A € (0, 1)
for each node j € [d] do
sample K random features {rq,...,rx } from g;(r);
compute ¢ (xs,) = (¢(x§,71),- - d(X,7K)), Vis
initialize w! to a interior point of a K -simplex;
fort=1,...,Tdo
calculate V(w') using (17)

update w1 o wt exp(—n V(w?)) using (16)
end for
£ xs) = A+ (1= 20) () T (xs)
end for

output 5(S) = E?Zl f;””\(xg).

tion ¢;(r). More precisely, it has quadratic dependence on
C where p;(r) < Cq;(r) for all . If we know p,(r), then
by sampling random features from p;(r), we have C =1
so that much fewer features are needed. However, in prac-
tice, pj(r) is often unknown, so we consider estimating
p; () by ¢;(r) using the following simple approach.

Inspired by the empirical success of Naive Bayes algorithm
in classification by Bishop (2006) and the mean field ap-
proximation in graphical model inference (Wainwright &
Jordan, 2003), we assume that g; (r) is fully factorized, i.e.,

0;() =1, a;(r(s)).

where ¢;(r(s)) means the marginal distribution of the i-th
dimension of r. Given a training dataset D™ as in equa-
tion (11), we estimate each ¢;(r(s)) using the frequency of
node j being influenced by source node ¢, i.e., ¢;(r(s)) =
ﬁ ZiED;” y;; where D7 = {i:s € S;}. Although
this ¢;(r) may be quite different from p;(r), by the ad-
ditional steps of drawing random features and adjusting the
corresponding weights, it leads to very good results, as il-
lustrated in our experiments.

A more intelligent approach for choosing g¢; () may be first
learning a diffusion model outlined in Section 2 and then
using samples from the diffusion model to generate the ran-
dom basis functions. This approach requires more compu-
tation and is left for future study.

6. Sample Complexity of MLE

Here we analyze Algorithm 1 and provide sample complex-
ity bounds for the number of random basis functions and
the size of the training data needed to get a solution close
to the truth. We describe our results here and provide the
proof in the appendix.

We note that existing analysis for random kitchen
sink (Rahimi & Recht, 2008) does not apply to the max-
imum likelihood estimation. Therefore, we use a general
framework by Birgé & Massart (1998) for maximum like-
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lihood estimation. Loosely speaking, the error of the max-
imum likelihood estimator EU’A(XS) € Fw is bounded
by the best possible in the hypothesis class plus a term
scale roughly as O(D/m), where D is the dimension of
the set of candidate models based on a covering approach.
Hence, to get sample complexity bounds for our problem,
we need to bound the dimension of F**. We consider the
mapping from the weight w to the corresponding hypoth-
esis f € F w.Aand show that the distance between two
functions f and f’ are approximately the distance between
their corresponding weights w and w’. Then a covering on
the space of w induces a covering on the function space
FwA, and thus the dimensions of the two spaces are ap-
proximately the same, which is O(K’). Combined the di-
mension bound with Lemma 1, we arrive at the following:

Lemma 2. Assume the statement in Lemma 1 is true.
Ifm = O(X), then the maximum likelihood estimator

f;fv’/\ € FuwA satisfies

Bon B, [ e) — )] <0 (S52)).

This means to get € accuracy, it suffices to choose A = €
and choose K large enough to make sure that the [, error
between the true function and the set of candidate functions
in 7 is at most €2. The bound then follows by applying
the above argument on each node with accuracy O(e/d).

Theorem 3. Suppose in Algorithm 1, we set A\ = O(5),

K = O(C;dz), and m = O (023[13)

€

. Then with probabil-

ity at least 1 — § over the drawing of the random features,
the output of Algorithm 1 satisfies

EpmEp, [<Zj_1 J?.;U’A(Xs) - U(S)) 2] <e

Intuitively, the l5 error of the function Z?:l f;””\ learned
is small if the number K of random features and the size
m of the training data are sufficiently large. Both quanti-
ties have a quadratic dependence on C, since if C' is large,
then the difference between p; and g; could be large, and
thus we need more random features to approximate f; and
also more training data to learn the weights. K and m also
depend on the number d of nodes in the network, for the
reason that we need to estimate each f; up to accuracy €/d
so that their sum is estimated to accuracy e. This is far
too pessimistic, as we observe in our experiment that much
smaller K or m is needed.

7. Experiments

We evaluate INFLULEARNER in synthetic and real world
data. We compare it to the state-of-the-art two-stage ap-
proaches, as well as methods based on linear regression and
logistic regression, and show that INFLULEARNER is more
robust to model misspecification than these alternatives.

7.1. Competitors

Two-stage methods. Two-stage learning methods depend
on the diffusion model assumptions, families of pairwise
temporal dynamics, and whether network structures are
given or not. We design the following four representative
competitors :

1. Continuous-time Independent Cascade model with
exponential pairwise transmission function (CIC).

2. Continuous-time Independent Cascade model with

exponential pairwise transmission function and given

network Structure (CIC-S).

Discrete-time Independent Cascade model (DIC).

4. Discrete-time Independent Cascade model with given
network Structure (DIC-S).

et

For the methods CIC and CIC-S, we use NETRATE
(Gomez Rodriguez et al., 2011) to learn the structure and
parameters of the pairwise transmission functions. For
DIC and DIC-S, we learn the pairwise infection probability
based on the method of (Netrapalli & Sanghavi, 2012).

Approach based on logistic regression. Instead of using
random features, we represent f;(xs) using a modified lo-
gistic regression

X T
filxs) = 2R xs)

=———>>2_—1, wherew > 0. 18
1+exp(w'xs) - (18)

Since the sigmoid function is concave in R, and w ' s is
a linear function of x s, the representation in (18) is also a
submodular function of the set S. We learn w by maximiz-
ing the log-likelihood subject to the nonnegative constraint.
We also experimented with the original logistic regression
model which does not lead to a submodular function, and
thus does not perform as well as the representation in (18)
(and hence not reported).

Approach based on linear regression. We use the linear
regression model, w " x5 + b, to directly regress from xs to
the cascade size |Z|. This approach does use the knowledge
that the influence function is a coverage function.

7.2. Synthetic Data

We generate Kronecker type of synthetic networks with the
parameter matrix [0.9 0.5; 0.5 0.3], which mimics the infor-
mation diffusion traces in real world networks (Leskovec
et al.,, 2010). The generated networks consist of 1,024
nodes and 2,048 edges. Given a generated network struc-
ture, we apply the continuous-time independent cascade,
the discrete-time independent cascades and the linear-
threshold model to generate the cascades, respectively.

For the continuous-time diffusion model, we used both
Weibull distribution (Wbl) and exponential distribution
(Exp) for the pairwise transmission function, and set their
parameters at random to capture the heterogeneous tempo-
ral dynamics. For the Weibull distribution, f(t;«,3) =
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InfluLearner

Logistic Linear

IniluLearrJer

4 8
#cascades per source

(b) Exponential (CIC)

4 8
#cascades per source

(a) Weibull Family (CIC)

4 8 32
#cascades per source

(d) LT

4 8
#cascades per source

(c) DIC

Figure 1. Over the generated synthetic networks with 1,024 nodes and 2,048 edges, we present the mean absolute error of the estimated
influence on the testing data by increasing the number of training data when the true diffusion model is (a) continuous-time independent
cascade with pairwise Weibull transmission functions, (b) continuous-time independent cascade with pairwise exponential transmission
functions, (c) discrete-time independent cascade model and (d) linear-threshold cascade model.

g (é)ﬁf1 e*(t/“)ﬁ,t > 0, where o > 0 is a scale param-
eter and 8 > 0 is a shape parameter. We choose « and /3
from 1 to 10 uniformly at random for each edge in order
to have heterogeneous temporal dynamics. The true influ-
ence value range is from 1 to 235, and the average value is
15.78 with the time window 7" = 10. For the exponential
distribution, the average influence is 37.81.

For the discrete-time independent cascade model, the pair-
wise infection probability is chosen uniformly from O to
1. For the discrete-time linear-threshold model, we fol-
lowed Kempe et al. (2003) where the edge weight w,,,, be-
tween u and v is 1/d,, and d,, is the degree of node v. We
run these generative models for 10 time steps. The average
influence values are 9.2 and 8.9 respectively.

The source locations are sampled uniformly without re-
placement from ), and the source set sizes conform to a
power law distribution with parameter 2.5. For the train-
ing set, we independently sample 1,024 source sets, and
independently generate 8 to 128 cascades for each source
set. The test set contains 128 independently sampled source
sets with the ground truth influence estimated from 10,000
simulated cascades.

7.3. Robustness to model misspecification

The cascades used in Figure 1(a) are generated from the
continuous-time independent cascade model with pairwise
Weibull transmission functions. We expect that the four
two-stage methods are not doing well due to model mis-
specification of one form or the other. Figure 1(a) shows
the MAE (Mean Absolute Error) between the estimated
value and the true value. Both CIC-S and CIC used the cor-
rect continuous-time diffusion model but the wrong family
of pairwise transmission functions, so their performance
lies in the middle. However, CIC-S has the prior knowl-
edge about the true network structure, so it is reduced to
a much simpler learning problem and is thus better than
CIC. DIC-S and DIC used the wrong diffusion model with
unit time step (which is hard to determine in practice), so
they have the lowest performance overall. In contrast, IN-
FLULEARNER does not explicitly make assumptions about

diffusion models or transmission functions but only learns
the influence function directly from the data. Thus, it is
much more robust and better than the two-stage methods.
Since INFLULEARNER has better representational power
than the logistic regression based approach, it is able to
better approximate the true influence function and thus can
achieve the best performance overall.

The cascades used in Figure 1(b) are generated from the
continuous-time independent cascade model with pairwise
exponential transmission functions. Note that in this case
we expect CIC-S and CIC to do well, since they have the
correct assumptions about both the diffusion model and
the family of transmission functions. Particularly, with the
prior knowledge of the true network structure, CIC-S sim-
ply fits the model parameters for each edge, and thus the
estimates converge to the true influence function quickly.
Still, we see that the performance of INFLULEARNER is
close to that of CIC-S and CIC. Figure 1(b) again show
that INFLULEARNER is robust to diffusion model changes.

In Figure 1(c, d), we generate cascades according to
discrete-time independent cascade model and linear thresh-
old model respectively. In Figure 1(c), DIC-S and DIC as-
sumes the correct model, so their performance improves a
lot. However, in Figure 1(d), because CIC-S, CIC, DIC-S,
and DIC all assume the wrong diffusion model, we observe
a similar trend as as in Figure 1(a): INFLULEARNER is ro-
bust and obtain the best results. Note that in this case, the
gap between different methods is not as big since the aver-
age influence value is small.

7.4. Scalability

Figure 2(a) reports the parallel runtime of INFLULEARNER
as we increase the number of training cascades per source
set. We arbitrarily divide the 1,024 independent learning
problems into 32 individual jobs running on a cluster of
32 cores (AMD Opteron(tm) Processor, 2.5GHz). It shows
that the runtime grows almost linearly as the number of
cascades increases.
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Figure 2. (a) Runtime in log-log scale; (b) MAE on seven sets of real cascade data; (c) The performance gain of using different number
of random features; (d) Maximized expected influence of different selected sources on the real hold-out testing data.

7.5. Influence estimation on real data

We further evaluate the performance of our proposed
method on the MemeTracker dataset which includes 300
million blog posts and articles collected from 5,000
active media sites between March 2011 and February
2012 (Leskovec et al., 2009). The flow of information was
traced using quotes which are short textual phrases spread-
ing through the websites. Because all published documents
containing a particular quote are time-stamped, a cascade
induced by the same quote like ‘apple and jobs’ is a col-
lection of times when the media site first mentioned it.
We have selected seven groups of cascades with the typ-
ical keywords like ‘apple and jobs’, ‘tsunami earthquake’,
‘william kate marriage’, ‘occupy wall-street’, ‘airstrikes’,
‘egypt’ and ‘elections’. We split each set of cascades into
60%-train and 40%-test. Because we do not have any prior
knowledge about either the diffusion structure or the under-
lying diffusion mechanism on the real cascades data, we
only compare INFLULEARNER with the Logistic regres-
sion, Linear regression, CIC and DIC.

We evaluate the performance on the held-out testing cas-
cades as follows : we randomly select 10 sources from the
testing cascades, which represents one particular source set
S. For each node v € S, let C(u) denote the set of cascades
generated from u on the testing data. For each u € S,
we uniformly sample one cascade from C(u). Thus, the
union of all sampled cascades is the set of nodes infected
by source set S. We repeat the process for 1,000 times
and take the average of the number of infected nodes as
the true influence of source set S. Finally, we have gener-
ated 100 source sets and report the MAE of each method
in Figure 2(b). We can see that the performance of IN-
FLULEARNER is robust and consistent across all groups of
testing cascades, and is significantly better than the other
competitors.

Moreover, Figure 2(c) demonstrates the effect of the
number of random features on the performance of IN-
FLULEARNER by showing the average MAE over the seven
sets of cascade data as the number of random features in-
creases. As the number of random features grows, IN-
FLULEARNER approximates the true influence better, and

thus the MAE decreases. It seems that 128 to 256 random
features are sufficient to achieve good performance overall.

7.6. Influence maximization on real data

Finally, we use the learned influence function (from IN-
FLULEARNER, Logistic, Linear, CIC and DIC) for solving
the influence maximization problem Kempe et al. (2003);
Du et al. (2013b). Here we want to find a set S* of C
source nodes which maximizes the influence, i.e., S* =
argmax g <c 0(S). We will use a greedy algorithm frame-
work of Nemhauser et al. (1978) to solve the problem.
We use the held-out test cascade to estimate the influence
achieved by selected source nodes. The observation time
window used is T' = 14.

Figure 2(d) shows the influence achieved in Meme group
1 (the rest of the testing groups has similar results as in
the Appendix). INFLULEARNER, Logistic and CIC per-
form consistently better than DIC and linear regression.
The source nodes selected by INFLULEARNER, Logistic
and CIC are very similar, though the estimated influence
value can be different. As a result, the influence value of
INFLULEARNER, Logistic and CIC are very close.

8. Conclusion

Based on the observation that the influence function in
many diffusion models are coverage functions, we propose
to directly learn the influence from cascade data. In this
paper, we provide a novel parameterization of the influ-
ence function as a convex combination of random basis
functions, and an efficient maximum likelihood based algo-
rithm for learning the weighting of the random basis func-
tions. Theoretically, we show that the algorithm can learn
the influence with low sample complexity, and our empir-
ical study also shows our method outperforms traditional
two-stage approaches.
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