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Abstract
We propose a state-based variant of the classi-
cal online learning problem of tracking the best
expert. In our setting, the actions of the al-
gorithm and experts correspond to local moves
through a continuous and bounded state space.
At each step, Nature chooses payoffs as a func-
tion of each player’s current position and ac-
tion. Our model therefore integrates the problem
of prediction with expert advice with the state-
ful formalisms of reinforcement learning. Tra-
ditional no-regret learning approaches no longer
apply, but we propose a simple algorithm that
provably achieves no-regret when the state space
is any convex Euclidean region. Our algo-
rithm combines techniques from online learn-
ing with results from the literature on pursuit-
evasion games. We describe a natural quantita-
tive trading application in which the convex re-
gion captures inventory risk constraints, and lo-
cal moves limit market impact. Using historical
market data, we show experimentally that our al-
gorithm has a strong advantage over classic no-
regret approaches.

1. Introduction
A well-studied setting in online learning is that of predic-
tion with expert advice. In the classic model, at each time
step, an algorithm receives advice from a set of experts,
and must then choose an action. Both experts and algo-
rithm receive some payoff, chosen exogenously by Nature,
as a function of their action. The goal of the algorithm
is to compete favorably with the best expert in hindsight.
This setting is stateless, in the sense that previous action
choices have no effect on the current actions available to
a player, nor on the payoff it receives. Here we consider
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a state-based variant on the model in which these proper-
ties no longer hold. The experts and algorithm now operate
in a continuous and bounded state space, and their actions
correspond to local moves within this state space. Players
are forbidden to choose actions that would take them out-
side the state space. Furthermore, payoff is determined as
a function of both state and action.

There are many natural motivations for this new model.
In particular, we shall describe in detail an application in
quantitative trading, but we also imagine that our setting
would be appropriate for a variety of control and optimiza-
tion problems, such as those studied in robotics.

Our model’s dependence on state is reminiscent of rein-
forcement learning, with the key difference being that we
allow arbitrary payoffs in each round. Thus, whereas the
goal in reinforcement learning is to compete with the best
fixed policy, here we can only hope to compete with the
best expert in hindsight. Our goal is to recover standard
no-regret guarantees, but due to the state constraints, clas-
sic methods no longer apply. We provide an algorithm that
can achieve no-regret in any state space in which the algo-
rithm can “capture” the best expert. In particular, we con-
sider convex Euclidean regions in Rn, though capture is
possible in other domains as well (Alexander et al., 2006).
Our approach is a hybrid that takes advantage of algorithms
for two distinctly different problems: “lazy” online predic-
tion, in which an algorithm should not change the expert it
is following too often, and pursuit-evasion games.

We present a detailed application of our framework and al-
gorithm to a natural and common quantitative trading prob-
lem. States represent inventory positions — that is, the
number of shares (long or short) held in each of a num-
ber of stocks or other financial assets. The allowed states
obey a convex constraint that captures risk limits, which are
measured by the volatility or variance of the inventory posi-
tion. The shape of this region is elliptical, and determined
by the correlations between the assets. A player’s move-
ment through the state space corresponds to trades (long or
short in each stock), and each move is constrained to be
small (local) in order to limit market impact. At each step,
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the payoff of a player is the sum of the cost of its current
trade (which could be positive or negative, depending on
whether shares are bought or sold in each stock) and the
change in the liquidation value of its inventory position.

We experimentally demonstrate that our algorithm achieves
higher payoff than traditional no-regret alternatives on a
large dataset of prices of two highly correlated exchange-
traded funds (ETFs), SPY and IWM. We consider two
types of experts, directional and relative, each of which
receives (possibly noisy) signals about the future returns of
each fund. These experts model profitable trading strate-
gies that flourish under differing conditions: whereas the
directional expert thrives when the underlying stocks ex-
hibit strong momentum (positive or negative) of returns
with low volatility, the relative expert deliberately ex-
ploits the correlation of stocks to maintain more hedged
long/short or short/long positions. Using these two experts
as the substrategies, our algorithm significantly outper-
forms (state-constrained variants of) traditional no-regret
approaches on average, and under certain conditions, our
algorithm has a sizeable advantage.

2. Related Work
There is a large literature on the problem of prediction with
expert advice, but little work has been done to extend the
model to state-based settings. A notable attempt was made
by de Farias and Megiddo (2006), who also consider an
experts problem in which the algorithm’s past choices af-
fect the current state of the environment. A similar reactive
setting was analyzed by Poland (2008). Both of these mod-
els assume that all actions are available to the algorithm
in all states, which is the main difficulty overcome by our
approach.

A restriction on the set of allowed actions is considered in
online convex optimization. Here the distribution over ac-
tions must obey a convex constraint in the simplex. In this
case, a variant of the multiplicative weights (MW) algo-
rithm can be used to achieve no-regret to the best fixed ac-
tion in hindsight (Arora et al., 2012). There has been more
recent work along these lines, such as an algorithm for on-
line learning with general polytope constraints (Banerjee
& Wang, 2012). These approaches are quite distinct from
ours, where there is the further restriction to only local
moves, and in which we achieve no-regret to the best ex-
pert, who is allowed to choose a new action in each round.

3. Preliminaries
Our setting is as follows. We have an algorithm a and a
set of k experts, e1, . . . , ek. All players are constrained to
the convex region S ⊂ Rn. We denote the current state of
an expert i and algorithm a at time t by the n-dimensional

vectors s(i)t, s(a)t ∈ S, respectively. First each expert
i chooses an action x(i)t and transitions to the new state
s(i)t+1 = s(i)t + x(i)t. We restrict the magnitude of each
action to ‖x(i)t‖ ≤ ε, for some fixed ε. Additionally, we
require s(i)t+1 ∈ S, else x(i)t is a forbidden action. Af-
ter witnessing these moves, the algorithm chooses an ac-
tion x(a)t, where ‖x(a)t‖ ≤ ε, and makes the correspond-
ing transition. Again, we require s(a)t+1 ∈ S. Finally,
for each state-action pair (s, x), Nature reveals a payoff
pt(s, x). As is standard, we require that these payoffs be-
long to a bounded interval [−b, b].

Additionally, our results will require that Nature chooses
the payoff function for each time step before the game be-
gins. Thus, a player’s payoff is only a function of its cur-
rent state and action, and does not depend on its past be-
havior. This is known as the “oblivious” or non-adaptive
model, and prevents Nature from adversarially adapting to
the choices of the algorithm. Other than this non-adaptivity
constraint, the sequence of payoffs chosen by Nature is ar-
bitrary, and may not exhibit any regularity or obey any sta-
tistical model.

The cumulative payoff of algorithm a is denoted Pa =∑T
t=1 p

t(s(a)t, x(a)t). The cumulative payoff of an ex-
pert i is denoted Pi and defined similarly. The regret R
of a is the difference between the total payoff of the algo-
rithm and the total payoff of the best expert in hindsight,
i.e. R = maxi Pi − Pa. The average per-step regret is
therefore R/T . As is standard, we say a is a no-regret al-
gorithm if the per-step regret goes to zero in the limit of T ,
or equivalently, if R is sublinear in T .

Standard no-regret approaches have no concept of state,
and therefore cannot hope to perform well in our setting.
In fact, it may be impossible even to run a classic no-regret
algorithm in our model, because the algorithm may try to
take an action that is not available in its current state. In the
next section, we present an approach that extends a state-
less no-regret algorithm by introducing phases in which ad-
justments are made to account for state constraints.

4. Main Algorithm
A traditional approach to prediction with expert advice is
to “follow the leader.” At each time step, the algorithm de-
termines which expert currently has maximum cumulative
payoff, and then copies the action of this “leader.” To en-
sure that this algorithm achieves no-regret, it is first neces-
sary to perturb the cumulative payoffs with random noise.
This algorithm is known as Follow the Perturbed Leader
(FPL) and has a regret guarantee of

PFPL ≥ (1− η)Pe −
b log(k)

η
,
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where η is a parameter specifying the algorithm’s learning
rate and Pe is the payoff of the best expert (Kalai & Vem-
pala, 2005).

There are two main problems with running FPL in our
modified setting. First, consider a step at which the lead-
ing expert changes. If FPL is not in the same state as this
expert, then the algorithm may not be able to copy the ex-
pert’s action. In particular, if FPL is near the boundary
of the convex region, then any move that would carry the
algorithm out of the region is forbidden. Thus, FPL can be-
come stuck, and must wait until the leading expert chooses
an action that can be safely copied. In the intervening steps,
there is no guarantee on the algorithm’s regret.

Second, recall that we have defined payoff as a function of
both state and action. So even if the expert does choose
an action available to FPL, the expert may be in a “better”
state and therefore receive higher payoff. For this reason,
it is easy to see that FPL, or any other standard no-regret
algorithm, cannot achieve no-regret in a state-based model.

The problems described above arise only when the leading
expert changes, but in general there is no limit on the num-
ber of such changes for FPL. In our state-based setting it
will turn out to be important to minimize the frequency of
this event. The Follow the Lazy Leader (FLL) algorithm is
a modified version of FPL with the same regret guarantee,
and has the additional property that the leading expert only
switches ηbT times (Kalai & Vempala, 2005). Recall that
η is the learning rate of the algorithm, and b is the bound
on per-step payoff magnitude. Thus, when η ∈ O(1/

√
T )

and b ∈ o(
√
T ), the number of switches is O(

√
T ). FLL

achieves this behavior1 by correlating the perturbations that
are added to the cumulative payoffs of the experts before
determining the leader. Initially, FLL picks a random set G
of n-dimensional points spaced exactly 1/η apart. Then at
each step t, if P t is a vector of length k denoting the cumu-
lative payoffs of each expert, the vector of perturbations zt

is chosen so that P t + zt rarely differs from P t−1 + zt−1.
More precisely, the vector zt is chosen so that P t + zt

is equal to the unique point in the intersection of G with
P t + [0, 1/η)k. It can be shown that the probability that
this point changes from one round to the next is ηb. Thus,
we expect a change to occur ηbT times.

Merely bounding the number of switches is still insufficient
to achieve no-regret in our setting. Each time a switch oc-
curs, we risk the problems of being unable to follow the

1It is worth noting that there are other algorithms that also
achieve limited switching behavior while preserving the origi-
nal no-regret guarantee. The “shrinking dartboard” algorithm of
Geulen et. al. was the first to achieve such behavior (2010). An-
other solution was proposed more recently by Devroye et. al.
(2013). We restrict our attention to FLL, but the alternatives
would work equally well.

new leader, and of following the leader from a different
state, and therefore receiving different payoff. Our solu-
tion is to “capture” the new expert; i.e., chase it until we are
both in the same state, and then resume copying its actions.
There is a large body of literature on such pursuit-evasion
games. We consider the version of this game in which one
“pursuer” in a fixed domain is attempting to capture one
“evader”. Our notion of capture requires the pursuer to
move to the exact location of the evader.2

This game can be played on both continuous and discrete
domains. We restrict our analysis to an instance of contin-
uous case, but our algorithm can in fact be applied to any
domain on which efficient pursuit is possible. As enumer-
ated in a survey by Chung et. al. (2011), this class includes
a wide variety of graphs (Nowakowski and Winkler pro-
vide an algorithmic characterization (1983)) as well as all
metric spaces satisfying the CAT(0) condition (Alexander
et al., 2006).

In the continuous case, in each round, the evader first
moves by a distance bounded by ε to a new position in
the domain. The pursuer witnesses this choice and then
moves by a distance also bounded by ε to its position of
choice. We consider convex regions in Rn, for which it is
a known result (Kopparty & Ravishankar, 2005; Alexander
et al., 2006) that the pursuer can capture the evader in a fi-
nite number of moves. By combining FLL with any pursuit
algorithm that achieves this result, we obtain Algorithm 1,
Pursuit-Evasion Without Regret (PEWR). At the top level,
our algorithm runs a copy of FLL. When the leading ex-
pert changes, the algorithm uses a subroutine PURSUIT to
reach the same state as the new expert. Once capture is
achieved, the algorithm resumes running FLL.

There are at least a couple of alternative choices for the pur-
suit subroutine used. Perhaps the one with the cleanest and
most complete theoretical analysis for our purposes is an
algorithm known as SPHERES (Kopparty & Ravishankar,
2005), which we will assume to obtain our formal regret
bound for PEWR in Theorem 1 below. For SPHERES,
the number of steps required to catch an evader in a con-
vex body of diameter3 d is O((d/ε)2). The quadratic de-
pendence on d is in fact tight for certain initial configura-
tions of the pursuer and evader (Sgall, 2001). Note that this
bound has no explicit dependence on the dimensionality n,
since the pursuer always travels along the direct line to the
evader’s current position.

For our experimental examination of PEWR (discussed in
Section 6), rather than using SPHERES for the pursuit sub-
routine, we instead implement a simpler method of direct

2This notion can be relaxed as long as we additionally require
a continuity or Lipschitz condition on payoff functions.

3Defined as the longest Euclidean distance between two points
in the body.
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pursuit as described by Alexander et. al. (2006). Applied
to our setting, the pursuer chooses s(a)t+1 to be a point at
most the allowed distance ε along a line from s(a)t (the al-
gorithm’s current position) to s(i)t+1 (the pursued expert
i’s new position). In practice we expect this approach to be
simpler and to perform equally well as SPHERES.

Algorithm 1 Pursuit-Evasion Without Regret (PEWR)
Input: convex region S ⊂ Rn, set of k experts, se-
quence length T , learning rate η, maximum step size ε
s(a)0 = s(i)0 = s0,∀i ≤ k
P (a) = P (i) = 0,∀i ≤ k
Choose p ∈ [0, 1η ]k uniformly {Initialization for FLL}
G = {p+ 1

η z | z ∈ Zk}
for t = 1 to T do {Main loop}
s(i)t ← s(i)t−1 + x(i)t,∀i ≤ k {Experts move}
P (i)← P (i) + pt(s(i)t, x(i)t),∀i ≤ k
g(i)← G ∩ (P (i) + [0, 1η )),∀i ≤ k
l← arg maxi g(i) {Determine leader}
if s(a)t−1 == s(l)t−1 then {Use FLL}
x(a)t ← x(l)t

else {Use pursuit strategy}
x(a)t ← PURSUIT(S, ε, s(l)t−1, s(l)t, s(a)t−1)

end if
s(a)t ← s(a)t−1 + x(a)t {Algorithm moves}
P (a)← P (a) + pt(s(a)t, x(a)t)

end for

Theorem 1. For any convex set S ⊂ Rn of diameter d,
set of k experts, payoff bound b, maximum step size ε, and
sequence length T , if the learning rate η is set to 1/

√
T

and the pursuit subroutine used is SPHERES, then PEWR
achieves a regret guarantee of

PPEWR ≥ Pe − (2b log(k) + b2c(d/ε)2)
√
T ,

where Pe is the payoff of the best expert.

Proof. Recall that the original FLL regret bound is

PFLL ≥ (1− η)Pe −
b log(k)

η
.

As guaranteed by FLL, the expected number of times we
switch experts is ηbT . As guaranteed by SPHERES, each
time we switch, there are c((d/ε)2) steps on which we can
incur maximum regret of b, for some constant c. On ev-
ery other step, PEWR receives the same payoff as FLL. It
follows that the regret guarantee is

PPEWR ≥ (1− η)Pe − (b log(k)/η)− (ηbT )c(d/ε)2b.

Choosing η = 1/
√
T and using Pe ≤ bT yields

PPEWR ≥ Pe − b
√
T − b log(k)

√
T − b2c(d/ε)2

√
T

≥ Pe − (2b log(k) + b2c(d/ε)2)
√
T .

The dependence on b and log(k) are standard; the term in-
volving (d/ε)2 is the additional regret we may suffer due to
switches of the leading expert and the ensuing costs of pur-
suit. If we view d as constant with respect to T , the above
expression for cumulative payoff yields per-step regret to
the best expert of O(1/

√
T ), as desired.4

In Theorem 1, as the diameter d of the convex region de-
creases, the pursuit time decreases, and the algorithm’s re-
gret approaches that of standard FLL. We later present ex-
periments that illustrate this trend, and show a significant
boost in our algorithm’s performance when run on tighter
constraints. The experiments also demonstrate the advan-
tage of our algorithm over a “constrained” version of FLL.

5. Application: Trading with Inventory Risk
The theory developed above can be directly applied to a
natural and common quantitative trading problem. In each
time step, a player will choose to buy or sell5 shares in each
of a set of stocks. The player’s payoff is determined by the
net cost or revenue of this trade, as well as the change in
liquidation value (at current prices) of its inventory. As is
standard in practice, trade sizes at each step are bounded
in order to limit market impact, and inventory amounts are
bounded to limit holding risk to acceptable levels. Note that
even if the inventory restrictions are tight, a player may be
able to accrue payoff by frequently “buying low and selling
high” — profitable strategies involve repeatedly trading in
and out of the same stocks. On the other hand, if inven-
tory restrictions are loose, a player may profit from accu-
mulating large inventory positions in anticipation of future
upward movement. Ideally, a player would perform best
by choosing between both strategies, according to current
market circumstances.

To design an algorithm that competes favorably with a set
of trading experts, we can directly map this setting to our
state-based model. Consider a set of n stocks. The players
move through a convex region S ⊂ Rn, defined in “in-
ventory space”. That is, a player’s position st ∈ S is an
n-dimensional vector representing its current holdings of
each stock. The bounds of the region S represent the in-
ventory limits. At time t, the price of stock i is pti ≤ m,
for some upper bound m. Each player can choose to buy
or sell xti fractional shares of stock i. We restrict trade size
to ‖xt‖ ≤ ε, for some fixed ε, to limit market impact.6 A

4Note that no-regret is still obtained (albeit at a slower rate)
even if we allow the constraints to relax with T at rates obeying
d = o(

√
T ), which might be important in some applications.

5We permit the common practice of short selling, which can
be viewed as borrowing shares to sell at current prices, with the
requirement that the loan be repaid in shares at a later time.

6 By market impact, we do not mean trading commissions and
fees, but the well-known empirical phenomenon of adversarial
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(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 1

Figure 1. Effect of correlation coefficient ρ on inventory limits. (a) Uncorrelated stocks (ρ = 0): risk limit dictates that any combination
of long/short inventory in the two stocks less than some total absolute position is permitted. (b) Moderate correlation (ρ = 0.5): larger
absolute inventory is allowed for offsetting (hedged) long/short or short/long positions, while long/long and short/short positions are
riskier and thus more restricted. (b) Perfect correlation (ρ = 1): long/long and short/short positions remain sharply curtailed, but
sufficiently offsetting long/short and short/long positions of arbitrary volume still obey the risk limit.

positive value of xti represents a purchase, and a negative
value represents a sale.

The per-step payoff of a player is the sum of its trading
payoff and inventory payoff. We define these quantities so
that the player’s cumulative payoff will be equal to its net
expenditure plus the liquidation value of its inventory at
the end of the series. The trading payoff received in a given
step is the amount of cash spent or received in exchange for
shares bought or sold, and is formally defined pT = −ptxt.
That is, the player pays ptix

t
i when making a purchase of

xti shares of stock i, and earns ptix
t
i when making the anal-

ogous sale. The inventory payoff is the amount by which
the player’s inventory has changed in value over the last
step, and is defined pI = ptst − pt−1st−1. The player’s
cumulative payoff is therefore P =

∑T
t=1−ptxt + ptst −

pt−1st−1 = pT sT +
∑T
t=1−ptxt, as desired.

We can now directly apply the result of Theorem 1 to obtain
a bound on the regret of PEWR when run in this setting.
Because pti ≤ m and ‖xt‖ ≤ ε, payoffs fall in the interval
[−mε,mε]. Therefore, our dependence on b translates to a
dependence on mε.

5.1. Inventory Risk as a Convex Region

Although the theory holds for any convex region S, our
goal in this application is to define the state space such that
the player is restricted to inventories of limited risk. We
use the most common quantitative measure of the risk of
an inventory position, which is the variance of the corre-
sponding dollar investment. The variance of an investment
in a set of stocks depends on the correlations between the
prices of these stocks. For instance, if two stocks are highly
correlated, then it is risky to hold long or short positions in
both. However, a long position in one can be “cancelled

price movements caused by trading large volumes in short peri-
ods.

out” by a short position in the other.

To encode this formally in the case of the two stocks, we
proceed as follows. We first convert the price time se-
ries of each stock, denoted p1 and p2, to a series of re-
turns, denoted r1 and r2, where rti = pt+1

i /pti − 1. Let
µi and σi denote the mean and variance of ri, and let
Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
denote the covariance matrix, where ρ

is the correlation coefficient of the two stocks. Assuming
joint normality of the returns series,7 µ and Σ parameter-
ize a 2-dimensional normal distribution over the data. Let
(a, b) denote a random variable from this distribution, and
let x and y denote the dollar value of an investment in each
stock, respectively. The dollar value of an investment (x, y)
is therefore u = xa + yb. Because u is a linear combina-
tion of the components of a normal distribution, u is also
normally distributed, with mean xµ1 + yµ2 and variance
(x y)Σ(x y)′ = σ2

1x
2 + σ2

2y
2 + 2ρσ1σ2xy.

Thus, to upper bound the risk of an investment (x, y) by R,
we use the constraint σ2

1x
2 +σ2

2y
2 + 2ρσ1σ2xy ≤ R. This

equation represents an ellipse centered at the origin. The
effect of the correlation coefficient ρ on the shape of the
ellipse is illustrated in Figure 1. The ellipses shown are for
σ1 = σ2 = 1 and R = 1. As the correlation increases, in-
ventories containing both long/long or short/short holdings
become riskier, and so the constraint puts a tighter bound
on such positions.

One remaining discrepancy is that this constraint is defined
in dollar space, whereas the algorithm’s inventory has thus
far been defined in share space. To address this, we use
the initial dollar prices p11 and p12 as a benchmark8 to per-

7Normality is approximately obeyed by our experimental data.
We note that our methods could be applied to other distributional
models over returns.

8This is standard practice, since typically risk limits are deter-
mined in advance of the trading period of interest.



Pursuit-Evasion Without Regret

(a) Cumulative Returns (b) Cumulative Payoffs

Figure 2. Performance of the directional and relative expert on a particular subsequence of the price data. The returns of the stocks
on this period are shown in (a), and the payoffs of each expert in (b). At around time 2000, both stocks have steep positive returns.
The directional expert can go long in both stocks, and is therefore better able to take advantage of the joint upward movement. In the
remainder of the sequence, the directional expert is restricted by inventory constraints. The relative expert continues to make trades that
exploit the small differences in returns, and becomes the new leader.

form a conversion. Then given a share inventory of (v, w),
the corresponding dollar investment is (p11v, p

1
2w). We use

this vector to obtain a constraint σ2
1(p11v)2 + σ2

2(p12w)2 +
2ρσ1σ2p

1
1p

1
2vw ≤ R.

6. Experiments
We analyze the performance of our algorithm on the ap-
plication discussed above using a real dataset containing
prices of two exchange-traded funds, the S&P 500 (SPY)
and the Russell 2000 (IWM). These were chosen deliber-
ately due to their high historical and structural correlation;
the Russell 2000 index contains the S&P 500. The dataset
contains 135,548 observations drawn from the months of
October and November of 2013. Prices were sampled daily
at 30 second intervals during regular market hours. The cu-
mulative returns of each fund are shown in Figure 2. The
correlation of the two raw price timeseries is 0.9642 and
the correlation of returns is 0.7097.

Our experiments compare the performance of PEWR to
a variant of the FLL algorithm, called Constrained FLL
(CFLL in the sequel), that behaves as follows. When the
leading expert changes and CFLL is not able to follow be-
cause of the region boundary, the algorithm remains sta-
tionary and waits until the leader makes a move that it can
follow. During this waiting period, CFLL will still receive
inventory payoff, but can make no trading payoff. We ex-
pect that the algorithm’s regret will suffer during this pe-
riod. However, because PEWR incurs regret while pur-
suing the new expert, it is unclear which approach is bet-
ter. It may be the case that CFLL profits from valuable
inventory, while PEWR wastes time during an unnecessary
chase. As we see in our experiments, PEWR’s approach is
indeed preferable to that of CFLL, particularly when inven-
tory constraints are tight.

6.1. Experts and Parameters

The experts used in our experiments reflect two different
trading strategies. We imagine that each expert first re-
ceives some possible noisy signal about the future perfor-
mance of the two stocks. More formally, for each stock
i ∈ {1, 2}, the expert receives the return value rti =
pt+1
i /pti − 1 + γr, where r is a random number chosen

from [−1, 1], and γ is a parameter used to scale the random
noise. The directional expert buys stock i if rti > 0 and
sells stock i if rti < 0. The magnitude of each transaction
is chosen in proportion to rti . The relative expert trades in
proportion to the difference dt = rt1 − rt2 between the two
returns. If dt > 0, the expert buys stock 1 and sells stock 2,
and if dt < 0, the expert does the opposite. The value of the
maximum allowed step size εwas chosen so that the typical
trade size of the experts and algorithms was approximately
two shares in magnitude. Additionally, the learning rate η
of both algorithms was set to be 0.05.

Given that they receive signals on future returns, we ex-
pect both experts to be profitable, but in different ways.
The directional expert has greater flexibility in the types of
trades it is allowed to make, and has the advantage of being
able to follow large upward or downward moves in prices.
However, it will likely accumulate large inventory, which
makes it vulnerable to constraint boundaries. The relative
expert is forced to maintain a more conservative hedged po-
sition on the 45◦ line. Because SPY and IWM are strongly
correlated, the differences in returns will be small and bal-
anced, so the relative expert will remain close to the origin
and maintain smaller inventory. As a result, we expect its
payoffs to benefit from greater stability. An example il-
lustrating the different behavior of each expert is shown in
Figure 2. Because each expert has an advantage in different
market circumstances, it is most interesting to consider an
algorithm that will switch between them.
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(a) R = 1. PEWR outperforms CFLL
by 4.4% on average.

(b) R = 0.5. PEWR outperforms CFLL
by 6.5% on average.

(c) R = 0.1. PEWR outperforms CFLL
by 12.2% on average.

Figure 3. Effect of ellipse size on the comparative performance of PEWR and CFLL. Each scatterplot illustrates the same set of 1000
trials, each on a random price sequence of length 5000. The x axis measures the cumulative payoff of CFLL on each trial, while the y
axis measures cumulative payoff of PEWR. Points above the diagonal are wins for PEWR. The red crosses highlight points where the
winning algorithm outperforms the losing algorithm by more than 25%. The directional expert was parameterized with γ = 0.002 and
the relative expert with γ = 0. (a) Under weak risk limits, PEWR only slightly outperforms CFLL, as long pursuit times handicap PEWR
and CFLL may encounter constraints only infrequently. (b) Under moderate risk limits, pursuit times for PEWR are faster, and CFLL
may frequently hit risk constraints that prevent it from following experts. (c) Under tight risk limits, PEWR significantly outperforms
CFLL, which is frequently unable to follow the current leading expert, and is often in unfavorable inventory positions relative to PEWR.
PEWR outperforms CFLL by 25% or more on 17.4% of trials, while the reverse occurs in only a single trial.

6.2. Results

Our experiments demonstrate the advantages of PEWR
over CFLL in a state-based setting. We compare the per-
formance of each algorithm for varying ellipse sizes in Fig-
ure 3. These plots depict the results of 1000 trials, each
on a random subsequence of length 5000, in which ellipse
sizes were varied between R = 1, R = 0.5, and R = 0.1.
In each case, there are many trials in which PEWR’s pay-
off far surpasses that of CFLL. When CFLL does receive
higher payoff, the difference is quite small. These trends
become more pronounced as ellipse size decreases. When
the state space is large, CFLL rarely runs into boundaries,
but PEWR may incur unnecessary regret during its pur-
suit phases. As a result, PEWR’s advantage at ellipse size
R = 1 is modest. On the other hand, when inventory lim-
its are tight, CFLL is often handicapped by the constraints,
whereas PEWR can achieve capture quickly. Thus, at el-
lipse size R = 0.1, we see that PEWR outperforms CFLL
by significant amounts in a large number of trials. See Fig-
ure 3 caption for details.

Figure 4 (on the following page) illustrates a typical trial,
and draws attention to the differences in behavior of the two
algorithms. We see that CFLL suffers from running into
boundary constraints, as well as from following leading
experts from inferior inventory positions. Because PEWR
pursues each leading expert, both problems are avoided,
and PEWR receives 2.8 times as much payoff as CFLL. In-
terestingly, the size of the ellipse used in this example is
R = 3, a relatively loose risk constraint on which PEWR
has only a small advantage on average. However, our

experiments identified many subsequences of the dataset
on which PEWR significantly outperforms CFLL, even on
large ellipses. The main conclusion is that, while PEWR
never loses to CFLL by much, there are certain conditions
(such as particular price sequences or small ellipses) under
which PEWR has a sizeable advantage.

Finally, we note a connection between PEWR’s theoretical
regret bound and our experimental results. Recall that the
bound of Theorem 1 has a regret term arising from PEWR’s
worst case pursuit time. There is also a strong experimen-
tal correlation between PEWR’s regret and the fraction of
time that the algorithm spends in the pursuit subroutine.
On average over 1000 trials, for ellipse size R = 0.5, the
correlation coefficient is 0.5314.

7. Future Work
We believe the state-based model proposed here opens a
wide variety of possible research avenues. One question is
whether there exists an algorithm that can achieve no-regret
in continuous state spaces in the non-oblivious adversary
model. We can also generalize our setting to discrete state
spaces in which players move through a finite state machine
and actions are determined by a transition function. In this
model, even more remains to be explored. As noted previ-
ously, our algorithm can easily be applied to state machines
in which pursuit (or a slightly weaker notion) is possible.
However, we do not yet have a complete characterization of
the machines on which it is possible to achieve no-regret.
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(a) Directional Expert: Color coding of dots
(cooler colors for earlier in the sequence, warmer
colors for later) show inventory movement within
the risk limits. Movement over time is broadly
from short/short to long/long to long/short.

(b) Relative Expert: By design, movement is re-
stricted to stay on the fully hedged diagonal within
the risk constraint ellipse. Thus only long/short
and short/long positions occur.

(c) PEWR Algorithm: Movement is a temporal
blend of the two experts, with clear trail marks
corresponding to periods of pursuit following a
change in the leading expert.

(d) PEWR Algorithm: Different color coding with
pursuit steps only in red, highlighting the occa-
sional movement between experts.

(e) CFLL Algorithm: Movement also switches be-
tween experts, but without pursuit as in PEWR.
Thus we see multiple separate periods of follow-
ing the relative expert’s diagonal movement, but
from the “wrong” inventory position, as well as
periods where this causes CFLL to be against the
risk constraint. Similarly, CFLL usually follows
the directional expert from a different state as well.

(f) Cumulative Payoffs: As a result, CFLL perfor-
mance badly lags PEWR and both experts.

Figure 4. Illustrative and typical example in which PEWR significantly outperforms CFLL. The ellipse size is R = 3, the directional
expert is parameterized with γ = 0.0001, and the relative expert with γ = 0.
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