Sparse Hashing for Discrete Integration

A. Appendix
A.1. Alternative Construction

We consider a related construction where we generate
each row independently by fixing exactly ¢ randomly
chosen elements to 1. In contrast, the previous con-
struction has on average n f non-zero elements per row,
but the number can vary. We can use an analysis simi-
lar to the one for Theorem 3, the main difference being
that we need to substitute (*>/)(0,0) with
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Then we can obtain a closed form expression for e
by again looking at the worst-case distribution of the
neighbors in terms of Hamming distance w.

A.2. Proofs

Proof of Proposition 2. Let i* = log, |S| and 2i=1 be
the output of A. We will show that ¢ is within
[[2*], [¢*] + 2] with probability at least 3/4.

Fix any i < i*. Then E[|h;1(0) N S]] = |5|/2" > 1.
Weak (12,4)-concentration implies that Pr[|h; *(0) N
S| = 0] < 1/4. Chernoff bound applied to the T un-
derlying independent 0-1 indicator random variables
then implies that a majority of the T sets will be
empty with probability at most exp(—77/8). It follows
that with probability at least (1 — exp(—7/8))" >
(1 —exp(=T/8))™ > 1 — nexp(—T/8), the majority
of the T sets for all i < i* will simultaneously be
non-empty. Thus, for 7' > 81n(8n), we have that with
probability at least 7/8, all i < ¢* will behave correctly.

Fix any ¢ > ¢*+2. Here we can simply use Markov’s in-
equality to infer that Pr[|h; 1 (0)NS| > 1] < 1/4. From
the same Chernoff bound based argument as above, it
follows that for T > 81n(8n), with probability at least
7/8, all i > i* + 2 will behave correctly.

By union bound, it follows that the output 211 of A
will be in the range [2L7"1=1 27" J+1] with probability
at least 1 —1/8 —1/8 = 3/4. O

Proof of Proposition 3. From Chebychev’s inequality,
Pr[|X — pu| > Véo] < §, which implies the claimed
strong correlation. For showing the desired weak corre-
lation, we use Cantelli’s one-sided inequalities. For the
first case, Pr[X < u—vd§ — 1o] < 1/(1+(6—1)) = 1/6.
The second case works similarly. O

Proof of Proposition 4. From  Chernoff’s  bound,
Pr(X < p+ V] = Pr(X < (14 ¥E)u] < exp(—£).

Thus, k > (31nd)u suffices to bound this probability
by 1/6. The other side, Pr[X < p — v/k|, similarly
leads to k& > (2Ind)u as the condition to bound the
probability by 1/6. Combining the two, we get the
desired result for weak concentration. The result for
strong concentration follows by using the union bound
to obtain exp(—3 ) + exp(— ), which is less than

exp(—a) for any ¢ > 3. O

Proof of Proposition 5. This follows from observing
that pairwise independence implies 02 = |S]/2™(1
1/2™) < p and then applying Prop. 3. O

Proof of Proposition 6. The first two observations are
straightforward. For the third, let S and T be sets

with |T'| = |S|+1. Given y1,y2 € {0,1}™, let f(z1,x2)
denote P[H(x1) = y1, H(z2) = y2]. Then
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This finishes the proof. O

Proof of Lemma 1. By Theorem 3, the hash functions
hy, from H'* in the inner loop at iteration ¢ are

(€,272)-AU, with € < m by construction.

—1
Let S = {01,009, -, 0942}, X = | ( gyb) 0)N S|.
Notice |S| = 2172 and E[X] = 2i+2/2! = 4.

By by Corollary 1 and Theorem 2, X is weakly
(u?,9/4)-concentrated.

Then by weak concentration

Pr{w; > biyo] = Pr{w; > w(ogi+2)] > Pr[X > 1]

=1-Pr[X<0]>1-4/9=5/9

Similarly, we have from Markov’s inequality
Priw; <b;_s] >3/4>5/9.
Finally, using Chernoff inequality (since wj,- -, w
are i.i.d. realizations of w;)
Pr[M; <bjs] > 1 —exp(—a'T) (3)
Pr[M; > biyo] > 1 —exp(—a’T) (4)
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where o = 2(5/9 — 1/2)2, which gives the desired re-
sult
Pr [bl’+2 S Mz S bi_Q] Z 1-— QGXP(O/T)
=1—exp(—a*T)

where o* =In2a’ =2(5/9 —1/2)?In2 > 0.0042 O

A.3. Additional Experiments

We report additional experimental results for mixed
interaction Ising grids in Figure 4 with the same setup
as in Section 7 but with external field 1.0 rather than
0.1.
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Figure 4. Results on Ising grids with mixed interactions.
Top: Mixed 10 x 10. Field 1.0. Bottom: Mixed 15 x 15.
Field 1.0.



