A. Appendix

A.1. Alternative Construction

We consider a related construction where we generate each row independently by fixing exactly t randomly chosen elements to 1. In contrast, the previous construction has on average nf non-zero elements per row, but the number can vary. We can use an analysis similar to the one for Theorem 3, the main difference being that we need to substitute $r^{(w,f)}(0,0)$ with

$$z^{(w,f)}(0,0) = \left(\sum_{\text{even }\ell}^{\min(w,t)} \frac{\binom{w}{\ell}\binom{L-w}{t-\ell}}{\binom{L}{t}}\right)^m.$$

Then we can obtain a closed form expression for ϵ by again looking at the worst-case distribution of the neighbors in terms of Hamming distance w.

A.2. Proofs

Proof of Proposition 2. Let $i^* = \log_2 |S|$ and 2^{i-1} be the output of \mathcal{A} . We will show that \hat{i} is within $||i^*|, |i^*| + 2|$ with probability at least 3/4.

Fix any $i \leq i^*$. Then $\mathbb{E}[|h_t^{-1}(0) \cap S|] = |S|/2^i \geq 1$. Weak $(\mu^2, 4)$ -concentration implies that $\Pr[|h_t^{-1}(0) \cap S|] = 0] \leq 1/4$. Chernoff bound applied to the T underlying independent 0-1 indicator random variables then implies that a majority of the T sets will be empty with probability at most $\exp(-T/8)$. It follows that with probability at least $(1 - \exp(-T/8))^{i^*} \geq (1 - \exp(-T/8))^n \geq 1 - n \exp(-T/8)$, the majority of the T sets for all $i \leq i^*$ will simultaneously be non-empty. Thus, for $T \geq 8 \ln(8n)$, we have that with probability at least 7/8, all $i \leq i^*$ will behave correctly.

Fix any $i \ge i^*+2$. Here we can simply use Markov's inequality to infer that $\Pr[|h_t^{-1}(0) \cap S| \ge 1] \le 1/4$. From the same Chernoff bound based argument as above, it follows that for $T \ge 8 \ln(8n)$, with probability at least 7/8, all $i \ge i^* + 2$ will behave correctly.

By union bound, it follows that the output $2^{\hat{i}-1}$ of \mathcal{A} will be in the range $[2^{\lfloor i^* \rfloor -1}, 2^{\lfloor i^* \rfloor +1}]$ with probability at least 1 - 1/8 - 1/8 = 3/4.

Proof of Proposition 3. From Chebychev's inequality, $\Pr[|X - \mu| \ge \sqrt{\delta\sigma}] \le \delta$, which implies the claimed strong correlation. For showing the desired weak correlation, we use Cantelli's one-sided inequalities. For the first case, $\Pr[X \le \mu - \sqrt{\delta - 1\sigma}] \le 1/(1 + (\delta - 1)) = 1/\delta$. The second case works similarly.

Proof of Proposition 4. From Chernoff's bound, $\Pr[X \le \mu + \sqrt{k}] = \Pr[X \le (1 + \frac{\sqrt{k}}{\mu})\mu] \le \exp(-\frac{k}{3\mu}).$ Thus, $k \ge (3 \ln \delta)\mu$ suffices to bound this probability by $1/\delta$. The other side, $\Pr[X \le \mu - \sqrt{k}]$, similarly leads to $k \ge (2 \ln \delta)\mu$ as the condition to bound the probability by $1/\delta$. Combining the two, we get the desired result for weak concentration. The result for strong concentration follows by using the union bound to obtain $\exp(-\frac{k}{3\mu}) + \exp(-\frac{k}{2\mu})$, which is less than $\exp(-\frac{k}{c\mu})$ for any c > 3.

Proof of Proposition 5. This follows from observing that pairwise independence implies $\sigma^2 = |S|/2^m(1 - 1/2^m) < \mu$ and then applying Prop. 3.

Proof of Proposition 6. The first two observations are straightforward. For the third, let S and T be sets with |T| = |S|+1. Given $y_1, y_2 \in \{0,1\}^m$, let $f(x_1, x_2)$ denote $P[H(x_1) = y_1, H(x_2) = y_2]$. Then

$$\sum_{x,y\in T, x\neq y} f(x,y) = \frac{1}{|T|-2} \sum_{z\in T} \sum_{x,y\in T\setminus\{z\}, x\neq y} f(x,y)$$
$$\leq \frac{1}{|T|-2} \sum_{z\in T} |S|(|S|-1)\frac{\epsilon}{2^m}$$
$$= \frac{|T|}{|T|-2} |S|(|S|-1)\frac{\epsilon}{2^m} \leq |T|(|T|-1)\frac{\epsilon}{2^m}$$

This finishes the proof.

Proof of Lemma 1. By Theorem 3, the hash functions $h_{A,b}^i$ from \mathcal{H}^{f*} in the inner loop at iteration *i* are $(\epsilon, 2^{i+2})$ -AU, with $\epsilon < \frac{31}{5(2^{i+2}-1)}$ by construction.

Let
$$S = \{\sigma_1, \sigma_2, \cdots, \sigma_{2^{i+2}}\}, X = |(h_{A,b}^i)^{-1}(\mathbf{0}) \cap S|.$$

Notice $|S| = 2^{i+2}$ and $E[X] = 2^{i+2}/2^i = 4.$

By by Corollary 1 and Theorem 2, X is weakly $(\mu^2, 9/4)$ -concentrated.

Then by weak concentration

$$\Pr[w_i \ge b_{i+2}] = \Pr[w_i \ge w(\sigma_{2^{i+2}})] \ge \Pr[X \ge 1]$$

= 1 - \Pr[X \le 0] \ge 1 - 4/9 = 5/9

Similarly, we have from Markov's inequality

 $\Pr[w_i \le b_{i-2}] \ge 3/4 \ge 5/9.$

Finally, using Chernoff inequality (since w_i^1, \cdots, w_i^T are i.i.d. realizations of w_i)

$$\Pr\left[M_i \le b_{i-2}\right] \ge 1 - \exp(-\alpha' T) \tag{3}$$

$$\Pr\left[M_i \ge b_{i+2}\right] \ge 1 - \exp(-\alpha' T) \tag{4}$$

where $\alpha' = 2(5/9 - 1/2)^2$, which gives the desired result

$$\Pr\left[b_{i+2} \le M_i \le b_{i-2}\right] \ge 1 - 2\exp(\alpha' T)$$
$$= 1 - \exp(-\alpha^* T)$$

where $\alpha^* = \ln 2\alpha' = 2(5/9 - 1/2)^2 \ln 2 > 0.0042$

A.3. Additional Experiments

We report additional experimental results for mixed interaction Ising grids in Figure 4 with the same setup as in Section 7 but with external field 1.0 rather than 0.1.

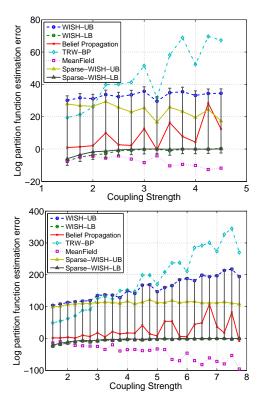


Figure 4. Results on Ising grids with mixed interactions. Top: Mixed 10×10 . Field 1.0. Bottom: Mixed 15×15 . Field 1.0.