
Low-Density Parity Constraints
for Hashing-Based Discrete Integration

Stefano Ermon ERMONSTE@CS.CORNELL.EDU
Carla P. Gomes GOMES@CS.CORNELL.EDU

Dept. of Computer Science, Cornell University, Ithaca NY 14853, U.S.A.

Ashish Sabharwal ASHISH.SABHARWAL@US.IBM.COM

IBM Watson Research Center, Yorktown Heights, NY 10598, U.S.A.

Bart Selman SELMAN@CS.CORNELL.EDU

Dept. of Computer Science, Cornell University, Ithaca NY 14853, U.S.A.

Abstract
In recent years, a number of probabilistic in-
ference and counting techniques have been pro-
posed that exploit pairwise independent hash
functions to infer properties of succinctly de-
fined high-dimensional sets. While providing
desirable statistical guarantees, typical construc-
tions of such hash functions are themselves not
amenable to efficient inference. Inspired by the
success of LDPC codes, we propose the use of
low-density parity constraints to make inference
more tractable in practice. While not strongly
universal, we show that such sparse constraints
belong to a new class of hash functions that
we call Average Universal. These weaker hash
functions retain the desirable statistical guaran-
tees needed by most such probabilistic infer-
ence methods. Thus, they continue to provide
provable accuracy guarantees while at the same
time making a number of algorithms significantly
more scalable in practice. Using this technique,
we provide new, tighter bounds for challenging
discrete integration and model counting prob-
lems.

1. Introduction
Many fundamental problems in machine learning and
statistics, such as evaluating expectations or partition func-
tions, can be stated as computing integrals in very high
dimensional spaces. Since exact integration is generally

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

intractable due to the curse of dimensionality (Bellman,
1961), a number of approximation techniques have been
introduced. Sampling (Jerrum & Sinclair, 1997; Madras,
2002) and variational methods (Wainwright & Jordan,
2008; Jordan et al., 1999) are perhaps the most popular,
but rarely provide formal guarantees in practice. Pertur-
bation based methods (Papandreou & Yuille, 2011; Hazan
et al., 2013) exploiting extreme value statistics provide a
novel way of using MAP queries to recover the exact par-
tition function and samples. However, their correctness re-
lies heavily on fully independent Gumbel perturbations ap-
plied to exponentially many configurations.

A new family of provably approximately correct proba-
bilistic inference and discrete integration algorithms seeks
to overcome these limitations (Chakraborty et al., 2013a;b;
Ermon et al., 2013a;b; Gomes et al., 2006b; 2007b). These
techniques are all based on universal hash functions and
require access to an optimization oracle to, e.g., answer a
small (low degree polynomial) number of MAP inference
queries. Since these oracle queries are NP-easy optimiza-
tion problems, this strategy is desirable because discrete
integration is a #P-hard problem (Valiant, 1979), a com-
plexity class believed to be even harder than NP.

This reduction based on universal hashing has been well
studied in theoretical computer science (Valiant & Vazi-
rani, 1986; Bellare et al., 2000; Sipser, 1983). The focus
is often on constructions that are optimal in terms of the
number of random bits used. Typically, constructions ex-
ploit modular arithmetic and can also be interpreted as par-
ity or XOR constraints. In practice, one implements the
optimization oracle with a combinatorial reasoning tool,
such as a Boolean satisfiability (SAT) (Gomes et al., 2006b)
or Integer Programming (Ermon et al., 2013a) solver. Al-
though requiring exponential time in the worst-case, real-

Sparse Hashing for Discrete Integration

world instances are often solved quickly, and the imple-
mentation of the hash function heavily affects the runtime.
One must thus design hash functions that not only have
good statistical properties but are also easy to reason with in
practice. This is closely related to coding theory, where one
seeks codes that have good properties assuming NP-hard
optimal decoding is possible, but which also lead to prac-
tical, efficient suboptimal decoding algorithms (MacKay,
1999).

We introduce a new class of hash functions, termed Aver-
age Universal, that are statistically weaker than traditional
ones but strong enough to be used for discrete integra-
tion and counting. Specifically, they retain the desirable
property that for large enough sets, the size of each hash
“bucket” is sufficiently concentrated around its mean. The
main advantage is that they can be implemented with sparse
low-density parity constraints, which are empirically much
easier to handle. Thus, our construction provides a trade-
off between statistical properties and computational effi-
ciency of combinatorial reasoning with such constraints.
This idea applies to a wide range of probabilistic inference
and counting techniques that are based on universal hash-
ing (Ermon et al., 2013b; Chakraborty et al., 2013a; Gomes
et al., 2006b; 2007b), which would all benefit from our re-
sults.

To illustrate the gains, we empirically demonstrate that
the WISH algorithm for discrete integration (Ermon et al.,
2013b) benefits enormously from sparse parity constraints
when an Integer Programming solver is used as optimiza-
tion oracle (Ermon et al., 2013a). Specifically, given the
same computational power, we obtain much better esti-
mates on the partition function of graphical models thanks
to the sparser parity constraints. The improvement over
WISH comes at no cost, as we maintain the same theo-
retical properties of the original algorithm. Further, we
show that model counting techniques based on modern
SAT solvers (Gomes et al., 2006b) also greatly benefit from
our new hash function construction.

2. Preliminaries
We start with definitions of standard universal hash func-
tions (cf. Vadhan, 2011; Goldreich, 2011).

Definition 1. A family of functions H = {h : {0, 1}n →
{0, 1}m} is ε-SU (Strongly Universal) if the following two
conditions hold when H is chosen uniformly at random
from H. 1) ∀x ∈ {0, 1}n, the random variable H(x) is
uniformly distributed in {0, 1}m. 2) ∀x1, x2 ∈ {0, 1}n
x1 6= x2, ∀y1, y2 ∈ {0, 1}m, it holds that P [H(x1) =
y1, H(x2) = y2] ≤ ε/2m .

It can be verified that ε ≥ 1/2m, and the case ε = 1/2m

corresponds to pairwise independent hash functions.

Definition 2. A family of functions H = {h : {0, 1}n →
{0, 1}m} is pairwise independent if the following two con-
ditions hold when H is chosen uniformly at random from
H. 1) ∀x ∈ {0, 1}n, the random variable H(x) is uni-
formly distributed in {0, 1}m. 2) ∀x1, x2 ∈ {0, 1}n x1 6=
x2, the random variables H(x1) and H(x2) are indepen-
dent.

Statistically optimal functions can be constructed by con-
sidering the familyH of all possible functions from {0, 1}n
to {0, 1}m. It is easy to verify that this is a family of
fully independent functions. However, functions from this
family require m2n bits to be specified, making this con-
struction not very useful for large n. On the other hand,
pairwise independent hash functions can be specified com-
pactly. They are generally based on modular arithmetic
constraints of the form Ax = b mod 2, referred to as par-
ity or XOR constraints.

Proposition 1. Let A ∈ {0, 1}m×n, b ∈ {0, 1}m. The
family H = {hA,b(x) : {0, 1}n → {0, 1}m} where
hA,b(x) = Ax + b mod 2 is a family of pairwise inde-
pendent hash functions.

2.1. Probabilistic Inference by Hashing

Recently there has been a range of probabilistic inference,
discrete integration and counting, and sampling meth-
ods relying heavily on universal hash functions, such as
WISH (Ermon et al., 2013b;a), ApproxMC (Chakraborty
et al., 2013b), MBound and Hybrid-MBound (Gomes et al.,
2006b), and XORSample (Gomes et al., 2006a). These
methods all build upon the original theoretical ideas by
Valiant & Vazirani (1986); Bellare et al. (2000); Sipser
(1983).

The key idea is that one can reliably estimate properties of a
very large (high-dimensional) set S (such as the integral of
a function) by randomly dividing it into cells using a hash
function h and looking at properties of a randomly chosen,
lower-dimensional cell h−1(y) ∩ S. Remarkably, although
h−1(y) is exponentially large, by the properties of the hash
functions used it is possible to specify and represent this
set in a compact way, without having to enumerate each
individual element. For example, applying the hash func-
tion to all possible variable assignments for some proba-
bilistic model (e.g., a discrete graphical model) is achieved
by adding to the model a set of randomly generated parity
constraints (e.g., extra factors), that can be specified in a
compact way.

To work with high probability, this family of algorithms
relies on good statistical properties of the hash functions.
Specifically, they need to behave in a uniform and concen-
trated way, so that it is possible to predict |h−1(y) ∩ S| (as
a function of unknown |S|) with high probability, no mat-

Sparse Hashing for Discrete Integration

ter what the structure of S is. Full independence would be
ideal, as it would make the structure of S irrelevant. How-
ever, fully independent hash functions are computational
intractable. If there is high correlation between {h(x)}x∈S ,
things might not work. In the extreme case, even if H is
uniform (property 1), it is possible that all the random vari-
ables h(x), x ∈ S are identical, i.e., the division into cells
does not break up S in a nice way — S is contained in a
single cell in this extreme case. It turns out that pairwise in-
dependence suffices and is also computationally tractable.
All schemes mentioned earlier rely on pairwise indepen-
dence.

2.2. (k, δ)-Concentration and Counting

Formally, let S ⊆ {0, 1}n and H = {h : {0, 1}n →
{0, 1}m} be a family of hash functions. Let h be a hash
function chosen uniformly fromH. Then, for y ∈ {0, 1}m,
define the following random variable:

X(h, S, y) = |h−1(y) ∩ S| (1)

Let µ(h, S, y) = E[X(h, S, y)] denote its expected value
and σ(h,X, y) the standard deviation. Note that if H is
universal, then µ(h, S, y) = |S|/2m. For brevity, we will
sometimes use X and µ when h, S, and y are implicit in
the context. Our main interest is in understanding how con-
centrated X is around µ, under various choices of H. We
introduce a general notion of concentration that will come
handy:
Definition 3. Let k ≥ 0 and δ > 2. Let X be a
random variable with µ = E[X]. Then X is strongly
(k, δ)-concentrated if Pr[|X − µ| ≥

√
k] ≤ 1/δ and

weakly (k, δ)-concentrated if both Pr[X ≤ µ −
√
k] ≤

1/δ and Pr[X ≥ µ+
√
k] ≤ 1/δ.

For a given δ, smaller k corresponds to higher con-
centration. Clearly, strong (k, δ)-concentration implies
weak (k, δ)-concentration and, for k′ > k, (k, δ)-
concentration implies (k′, δ)-concentration. Further, by
union bound, weak (k, δ)-concentration implies strong
(k, δ/2)-concentration.

As an illustrative example of how (k, δ)-concentration can
be used for estimating sizes of high-dimensional sets, con-
sider the following simple randomized algorithm A for
approximately computing |S| with high probability. Let
Hi = {h : {0, 1}n → {0, 1}i} for i = 1, 2, . . . , n be uni-
versal families of hash functions. For i increasing from 1
to m, compute “is the set h−1

t (0)∩S empty” T times, each
time with a different hash function ht chosen uniformly
from Hi. If the answer is “yes” for a majority of the T
times, stop increasing i and return 2i−1 as the estimate of
|S|.
Proposition 2. Let S ⊆ {0, 1}n. If Hi = {h :
{0, 1}n → {0, 1}i}, i ∈ {1, 2, . . . , n} are universal

families of hash functions such that X(h, S, y) is weakly
(µ2, 4)-concentrated, then A using Hi and T ≥ 8 ln(8n)
correctly computes |S| within a factor of 4 with probability
at least 3/4.

3. Concentration and Hash Families
We discuss how the statistical properties of various hash
familiesH influence the strength of (k, δ)-concentration of
X = |h−1(y) ∩ S|. Proofs may be found in the appendix.
Without any assumptions on the nature of H, Chebychev’s
inequality and Cantelli’s one-sided inequalities yield the
following general observation for strong and weak concen-
tration, resp.:

Proposition 3. Let δ > 2 and H be a family of hash func-
tions. For any S ⊆ {0, 1}n and y ∈ {0, 1}m, and for
h ∈R H, X(h, S, y) is strongly (δσ2, δ)-concentrated and
weakly ((δ − 1)σ2, δ)-concentrated.

Ideally, one would like to choose a family of fully indepen-
dent hash functions, which results in very strong concen-
tration guarantees from Chernoff’s bounds:

Proposition 4. Let δ > 2, c > 3 and H be a
family of fully independent hash functions. For any
S ⊆ {0, 1}n and y ∈ {0, 1}m, and for h ∈R
H, X(h, S, y) is strongly ((c ln δ)µ, δ)-concentrated and
weakly ((3 ln δ)µ, δ)-concentrated.

However, as discussed earlier, it is often impossible to con-
struct such a family. One commonly uses a family of only
pairwise independent hash functions, which have compact
constructions involving objects such as parity or XOR con-
straints. The concentration guarantees we get are much
weaker but still very powerful:

Proposition 5. Let δ > 2 and H be a family of pairwise
independent hash functions. For any S ⊆ {0, 1}n and y ∈
{0, 1}m, and for h ∈R H, X(h, S, y) is strongly (δµ, δ)-
concentrated and weakly ((δ − 1)µ, δ)-concentrated.

This follows from observing that pairwise independence
implies σ2 = |S|/2m(1 − 1/2m) < µ and then applying
Prop. 3.

Although one can compactly represent pairwise indepen-
dent hash functions as m parity constraints (cf. Prop. 1),
these constraints have average length n/2. Such long parity
constraints are often particularly hard to reason about us-
ing standard inference methods (see Experimental section
below). To start addressing this issue, we observe that in
many applications, O(µ)-concentration is unnecessary and
it suffices to have only O(µ2)-concentration. An example
of this is Proposition 2. We next discuss how one can ex-
ploit ε-SU hash functions to explore this wide spectrum of
possible concentrations by varying ε.

Sparse Hashing for Discrete Integration

Theorem 1. Let δ > 2, ε ≥ 1/2m, andH be a family of ε-
SU hash functions. For any S ⊆ {0, 1}n and y ∈ {0, 1}m,
and for h ∈R H, X(h, S, y) is strongly (δµ(1 + ε(|S| −
1)−µ), δ)-concentrated and weakly ((δ−1)µ(1 + ε(|S|−
1)− µ), δ)-concentrated.

Proof. The variance of X can be computed as follows.

E[X(h, S, y)2] =
∑
s,s′∈S

E[1h(s)=y,h(s′)=y]

=
∑
s∈S

E[1h(s)=y] +
∑
s 6=s′

E[1h(s)=y,h(s′)=y]

≤ µ+ |S|(|S| − 1)ε/2m (from SU)

= µ(1 + ε(|S| − 1))

Therefore, σ2 = E[X2]−µ2 ≤ µ(1+ ε(|S|−1)−µ). The
result now follows from Prop. 3.

Corollary 1. Let δ > 2, ε ≥ 1/2m, and H be a family
of ε-SU hash functions. For any S ⊆ {0, 1}n and y ∈
{0, 1}m, and for h ∈R H, X(h, S, y) is strongly (µ2, δ)-
concentrated whenever ε ≤ (µδ + µ − 1)/(|S| − 1) and
weakly (µ2, δ)-concentrated whenever ε ≤ (µ

δ−1 + µ −
1)/(|S| − 1).

Thus, by increasing ε, we can achieve lower (but still ac-
ceptable) levels of concentration of X . In practice, how-
ever, it is not easy to construct ε-SU families that allow ef-
ficient inference. Simply using sparser parity constraints
(i.e., with fewer than n/2 variables on average), for in-
stance, does not lead to SU hash functions because if
s, s′ ∈ S are close in Hamming distance, sparser parity-
based hash functions will act on them in a very correlated
way. The next section provides a way around this.

4. Average Universal Hashing
We now define a new family of hash functions that have the
same statistical concentration properties as ε-SU (namely,
the guarantees in Theorem 1) but are computationally much
more tractable for inference methods.

Definition 4. A family of functions H = {h : {0, 1}n →
{0, 1}m} is (ε, i)-AU (Average Universal) if the following
two conditions hold whenH is a function chosen uniformly
at random fromH.

• ∀x ∈ {0, 1}n, the random variable H(x) is uniformly
distributed in {0, 1}m.

• ∀S ⊆ {0, 1}n, |S| = i, ∀y1, y2 ∈ {0, 1}m, the fol-
lowing property holds

∑
x1,x2∈S;x1 6=x2

Pr[H(x1) =
y1, H(x2) = y2] ≤ |S|(|S| − 1)ε/2m .

In other words, we allow pairs of random variables
H(x1), H(x2) to be potentially heavily correlated, for in-
stance Pr[H(x1) = y1, H(x2) = y2] could be much larger
than ε/2m. However, it needs to balance out so that the
average correlation among configuration pairs on (large
enough sets) S is smaller than ε/2m.

Proposition 6. Let H be a family of hash functions. (a) If
H is (ε, 2)-AU, then H is also ε-SU. (b) If H is ε-SU, then
H is also (ε, i)-AU for all i ≥ 2. (c) If H is (ε, i)-AU, then
H is also (ε, i+ 1)-AU.

Theorem 2. Theorem 1 and Cor. 1 also hold when H is a
family of (ε, i)-AU hash functions and |S| ≥ i.

Proof. The proof is close to that of Theorem 1. The key
observation is that whenever |S| ≥ i, under an (ε, i)-AU
hash family we obtain the same bound on the variance, σ2,
as in the ε-SU hash family case.

5. Hashing with Low-Density (Sparse) Parity
Constraints

Our main technical contribution is the following:

Theorem 3. Let A ∈ {0, 1}m×n be a random matrix
whose entries are Bernoulli i.i.d. random variables of pa-
rameter f ≤ 1/2, i.e., Pr[Aij = 1] = f . Let b ∈ {0, 1}m
be chosen uniformly at random, independently from A. Let
w∗ = min

{
w |
∑w
j=1

(
n
j

)
≥ q
}

and

ε(n,m, q, f) =
1

|S| − 1

w∗∑
w=1

(
n

w

)(
1

2
+

1

2
(1− 2f)

w

)m
Then the family Hf = {hA,b(x) : {0, 1}n → {0, 1}m},
where hA,b(x) = Ax + b mod 2 and H ∈ Hf is cho-
sen randomly according to this process, is a family of
(ε(n,m, q, f), q)-AU hash functions.

Proof. Let S ⊆ {0, 1}n and y1, y2 ∈ {0, 1}m. Then,∑
x1,x2∈S
x1 6=x2

Pr[H(x1) = y1, H(x2) = y2]

=
∑

x1,x2∈S
x1 6=x2

∑
v∈{0,1}m

Pr [Ax1 + v = y1, Ax2 + v = y2] Pr[b = v]

= 2−m
∑

x1,x2∈S
x1 6=x2

∑
v∈{0,1}m

Pr [Ax1 + v = y1, Ax2 + v = y2]

= 2−m
∑

x1,x2∈S
x1 6=x2

Pr [A(x1 − x2) = y1 − y2]

For brevity, let δ = y1 − y2. The probability
Pr [A(x1 − x2) = δ] depends on the Hamming weight w

Sparse Hashing for Discrete Integration

of x1 − x2, and is precisely the probability that the w
columns of the (sparse) matrix A corresponding to the bits
in which x1 and x2 differ sum to δ (mod 2).

In order to compute this probability, we use an analysis
similar to MacKay (1999), based on treating the m random
entries in each of thew columns ofA as definingw steps of
a biased random walk in each of the m dimensions of the
m-dimensional Boolean hypercube. The probability that
A(x1 − x2) equals δ, when viewed this way, is nothing but
the probability that starting from the origin and taking these
w steps brings us to δ. Note that this is a function of only
w, f , and δ; the exact columns in which x1 and x2 differ
do not matter. Let us denote this probability r(w,f)(0, δ).

Unlike MacKay (1999), each row of our matrix A is sam-
pled independently. So we can model the random walk
with m independent Markov Chains (one for each of the
m dimensions) with two states {0, 1} and with transition
probabilities

p0→0 = 1− α, p0→1 = α, p1→1 = 1− β, p1→0 = β.

Observing that the eigenvalues are 1 and 1 − α − β, it is
easy to verify that

Pr[Xn = 0 | X0 = 0] =
β

α+ β
+

α

α+ β
(1−α−β)n (2)

and Pr[Xn = 1 | X0 = 0] = 1 − Pr[Xn = 0 | X0 = 0].
Setting α = β = f and δ = y1 − y2 we get

r(w,f)(0, δ) =

m∏
j=1

(
1

2
+ (1− 2δj)

1

2
(1− 2f)

w

)

≤
(

1

2
+

1

2
(1− 2f)

w

)m
= r(w,f)(0, 0)

because f ≤ 1/2. Plugging into the previous expression
we get ∑

x1,x2∈S
x1 6=x2

Pr[H(x1) = y1, H(x2) = y2]

≤ 2−m
∑
x1∈S

h(w|x1)r(w,f)(0, 0)

where h(w|x) is defined as the number of vectors in S that
are at Hamming distance w from x. Clearly, h(w|x) ≤(
n
w

)
. Since r(w,f)(0, 0) is monotonically decreasing in w,

we can derive a worst case bound on the above expression
by assuming all

(
n
w

)
vectors at distance w from x are ac-

tually present in S for small w. Recalling the definition of
w∗ from the statement of the theorem, for all |S| ≤ q this

gives:∑
x1,x2∈S
x1 6=x2

Pr[H(x1) = y1, H(x2) = y2]

≤ 2−m
∑
x1∈S

w∗∑
w=1

(
n

w

)
r(w,f)(0, 0)

= 2−m|S|
w∗∑
w=1

(
n

w

)
r(w,f)(0, 0) = |S|(|S| − 1)

ε(n,m, q, f)

2m

which proves thatH is (ε(n,m, q, f), q)-AU.

The significance of this result is that given n,m, and q,
we have a family of hash functions parameterized by f for
which we can control the “average correlation” across all
pairs of points in any set of size at least q. These range
from rather dense but fully pairwise independent families
when f = 0.5, to statistically useful but much sparser and
hence much more tractable families when f < 0.5. Algo-
rithms for probabilistic inference that use universal hash-
ing often do not need full or even pairwise independence
but only (µ2, δ)-concentration for success with high prob-
ability. Section 4 thus prescribes a value of ε > 1

2m that
suffices. Using the above theorem, we can therefore look
for the smallest value of f that is compatible with the re-
quirement. For example, using Thm. 3 and Cor. 1 applied
to AU hash families as Thm. 2, we can look for the smallest
value f∗ such that the resulting family Hf = {hA,b(x) :
{0, 1}n → {0, 1}m} guarantees (µ2, δ)-concentration for
sets of size at least 2m+2 and for δ = 9/4.

In the top panel of Figure 1 we plot the corresponding
f∗(n) as a function of the number of variables n, for
m = n/2 constraints. In the bottom panel, we plot f∗(m)
as a function of m, for n = 100. We see that we can ob-
tain hash functions with provable concentration guarantees
using constraints with average length scaling empirically
as n1−0.72 as opposed to n/2 for the pairwise independent
construction. We also plot the smallest value of f that guar-
antees concentration when the set S in Definition 3 is not an
arbitrary set of size q = 2m+2 but is instead restricted to be
an (m + 2)-dimensional hypercube, for which we have an
exact expression for h(w|x). This is clearly a lower-bound
for f∗ (which is guaranteed to work for any set, hypercube
included). The hypercube is intuitively close to a worst-
case distribution for h(w|x) because points have small av-
erage distance and hence high correlation. The compari-
son with the hypercube case highlights that our bounds are
fairly tight.

5.1. Alternative Construction

We consider a related construction where we generate each
row independently by fixing exactly t randomly chosen el-

Sparse Hashing for Discrete Integration

0 500 1000 1500 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of variables n

D
en

si
ty

 f

Worst−case f*
Hypercube f*

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of constraints m

D
en

si
ty

 f

Worst−case f*
Hypercube f*

Figure 1. Numerical evaluation of the bound on the constraint
density. Top: m = n/2, varying n. Bottom: n = 100, vary-
ing m.

ements to 1. In contrast, the previous construction has on
average nf non-zero elements per row, but the number can
vary. We can use an analysis similar to the one for Theo-
rem 3, the main difference being that we need to substitute
r(w,f)(0, 0) with

z(w,f)(0, 0) =

min(w,t)∑
even `

(
w
`

)(
L−w
t−`
)(

L
t

)
m

.

Then we can obtain a closed form expression for ε by again
looking at the worst-case distribution of the neighbors in
terms of Hamming distance w.

6. WISH With Sparse Parity Constraints
Our technique and analysis based on Average Universal
hash functions applies to a range of probabilistic infer-
ence and counting techniques such as WISH (Ermon et al.,
2013b;a), ApproxMC (Chakraborty et al., 2013b), and
MBound (Gomes et al., 2006b). While preserving all their
theoretical properties in terms of approximation guaran-
tees, by substituting pairwise independent hash functions
with sparse Average Universal ones we obtain significant
improvements in terms of runtime (see experimental sec-
tion below). For concreteness and brevity, we discuss its
application to the recent WISH algorithm for discrete inte-
gration.

Algorithm 1 SPARSE-WISH (w, n = log2 |X |,∆, α)

T ←
⌈

ln(1/∆)
α lnn

⌉
for i = 0, · · · , n do

for t = 1, · · · , T do
f∗ = min{f |ε(n, i, 2i+2, f) < 31

5(2i+2−1)}
Sample hash function hiA,b fromHf∗

i.e. sample sparse A ∈ {0, 1}i×n, b ∈ {0, 1}i
wti ← maxσ w(σ) subject to hiA,b(σ) = 0

end for
Mi ← Median(w1

i , · · · , wTi)
end for
Return M0 +

∑n−1
i=0 Mi+12i

WISH is an algorithm used to estimate the partition func-
tion Z =

∑
σ∈{0,1}n w(σ) =

∑
σ∈X

∏
α∈I ψα({x}α) of a

graphical model by solving a small number of MAP queries
on the original model augmented with randomly generated
parity constraints. WISH uses a universal hash function to
partition the space of all possible variable assignments into
2i cells, and then searches for the most likely variable as-
signment within a single cell. By varying the number of
cells used to partition the state space, it estimates the tail of
the weight distribution, finding its quantiles that can then
be used to obtain a constant factor approximation of the in-
tractable partition function within any desired degree of ac-
curacy, with high probability and using only a polynomial
number of MAP queries.

The original WISH (Ermon et al., 2013b) is based on pair-
wise independent hash functions, constructed using ran-
dom parity constraints of average length n/2 for a problem
with n binary variables. Our previous analysis allows us
replace them with sparser constraints as in Theorem 3, ob-
taining an extension that we call SPARSE-WISH of which
we provide the pseudocode as Algorithm 1. The key prop-
erty is that Lemma 1 from Ermon et al. (2013b) still holds.

Lemma 1. Fix an ordering σi, 1 ≤ i ≤ 2n, of the config-
urations in {0, 1}n such that for 1 ≤ j < 2n, w(σj) ≥
w(σj+1). For i ∈ {0, 1, · · · , n}, define bi , w(σ2i). Let
Mi = Median(w1

i , · · · , wTi) be defined as in Algorithm 1.
Then, for 0 < α ≤ 0.0042,

Pr
[
Mi ∈ [bmin{i+2,n}, bmax{i−2,0}]

]
≥ 1− exp(−αT)

The proof is based on a variance argument. Intuitively, the
hash functions used at iteration i are by Thm. 3 (ε, 2i+2)-
AU with ε chosen such that by Cor. 1 and Thm. 2 they guar-
antee weak (µ2, 9/4)-concentration for sets of size at least
2i+2. In particular, this guarantees that the hash functions
will behave nicely on the set formed by the 2i+2 heavi-
est configurations (no matter what is the structure of the
set), and Mi will not underestimate bi by too much. See

Sparse Hashing for Discrete Integration

0 0.1 0.2 0.3 0.4 0.5
10

20

30

40

50

60

70

80

90

Density f

M
ed

ia
n

In
te

gr
al

ity
 G

ap

10 constraints
15 constraints
20 constraints
25 constraints
30 constraints

Figure 2. Integrality gap, w = 2.5, M = 10..

Appendix for a formal proof. We then have the following
result analogous to Theorem 1 of Ermon et al. (2013b):

Theorem 4. For any ∆ > 0, positive constant α ≤ 0.0042,
and the hash familiesHf given by Proposition 3, SPARSE-
WISH makes Θ(n lnn ln 1/δ) MAP queries and, with prob-
ability at least (1 − ∆), outputs a 16-approximation of
Z =

∑
σ∈{0,1}n w(σ).

This means that if we carefully choose the density f∗ as in
the pseudocode (which is a function of the number of con-
straints i, and in general much smaller than 0.5; cf. bottom
panel of Fig 1), we maintain the same accuracy guarantees
but using much sparser constraints. In contrast, the analy-
sis of short XORs in Ermon et al. (2013a) only guaranteed
that the output is an approximate lower bound for Z, not a
constant factor approximation.

7. Experimental Evaluation
We evaluate SPARSE-WISH using the Integer Linear Pro-
gramming (ILP) formulation from Ermon et al. (2013a) to
solve the MAP inference instances in the inner loop of the
algorithm. We use the Integer Programming solver CPLEX
with a timeout of 10 minutes on Intel Xeon 5670 3GHz
machines with 48GB RAM, obtaining at the end a lower
bound and, by solving a sequence of LP relaxations, an up-
per bound on the optimization instances. These translate
into bounds for the generally intractable partition function
Z 1 (Ermon et al., 2013a) . We evaluate these bounds on
M ×M grid Ising models for M ∈ {10, 15}. In an Ising
model, there are M2 binary variables, with unary poten-
tials ψi(xi) = exp(fixi) and (mixed) binary interactions
ψij(xi, xj) = exp(wijxixj), where wij ∈R [−w,w] and
fi ∈R [−f, f]. The external field is f ∈ {0.1, 1.0}.

In Figure 2 we show the median integrality gap2 (over 500

1When all the ILPs are solved to optimality, upper and lower
bounds match and the value is guaranteed to be a constant factor
approximation for Z.

2At the root node of the ILP solver search tree.

1 2 3 4 5
−20

0

20

40

60

80

100

Coupling Strength

Lo
g

pa
rt

iti
on

 fu
nc

tio
n

es
tim

at
io

n
er

ro
r

WISH−UB
WISH−LB
Belief Propagation
TRW−BP
MeanField
Sparse−WISH−UB
Sparse−WISH−LB

2 3 4 5 6 7 8
−100

0

100

200

300

400

Coupling Strength
Lo

g
pa

rt
iti

on
 fu

nc
tio

n
es

tim
at

io
n

er
ro

r

WISH−UB
WISH−LB
Belief Propagation
TRW−BP
MeanField
Sparse−WISH−UB
Sparse−WISH−LB

Figure 3. Results on Ising grids with mixed interactions with field
0.1. Top: 10× 10 grid. Bottom: 15× 15 grid.

runs) for the ILP formulation of the MAP inference in-
stances, for i ∈ {10, 15, 20, 25, 30} random parity con-
straints generated at various density levels f . We see that
problems with short XORs (generated with small f) typi-
cally have smaller integrality gaps, which confirms the fact
that short XORs are easier to reason about. This is not sur-
prising, because the optimizations involved are analogous
to max likelihood decoding problems, and sparse codes are
known to be easier to decode empirically (MacKay, 1999).

We compare SPARSE-WISH with WISH (based on the
same ILP formulation, but with denser f = 0.5 con-
straints), with Loopy BP (Murphy et al., 1999) which es-
timates Z without providing any accuracy guarantee, Tree
Reweighted BP (Wainwright, 2003) which gives a provable
upper bound, and Mean Field (Wainwright & Jordan, 2008)
which gives a provable lower bound. We use the implemen-
tations in the LibDAI library (Mooij, 2010), allowing 1000
random restarts for Mean Field. Figure 3 shows the error in
the resulting estimates, where ground truth is from Junction
Trees (Lauritzen & Spiegelhalter, 1988).

We see that SPARSE-WISH provides significantly better
bounds compared to the original WISH algorithm. Since
they are both run for the same amount of time using the
same combinatorial optimization suite, the improvement is
to be attributed entirely to the sparser constraints employed

Sparse Hashing for Discrete Integration

by SPARSE-WISH, which are easier to reason about. Intu-
itively, as seen in Figure 2 the LP relaxation obtained using
shorter XORs is much tighter, hence improving the quality
of the bounds, and yielding overall the best provable up-
per and lower bounds among all algorithms we considered.
Notice the improvement in terms of lower bound is smaller
because in both cases the bounds are quite tight (with an
error close to 0). Remarkably, SPARSE-WISH is the only
method that does not deteriorate as the coupling strength is
increased. We emphasize that the improvement over WISH
comes at no cost, because thanks to our carefully chosen
density thresholds f∗, we maintain the same theoretical
properties without trading off accuracy for speed.

7.1. Model counting for SAT

Long parity constraints are difficult to reason about not
only for Integer Programming solvers but also for SAT
solvers. In fact, SAT solvers can be substantially faster on
sparser parity constraints than those of length n/2 (Gomes
et al., 2006b).

The use of short parity constraints for model counting (i.e.,
count the number of solutions of a SAT instance) was inves-
tigated by Gomes et al. (2007a), where it was empirically
shown that short XORs perform well on a wide variety of
instances a number of problem domains. Our analysis pro-
vides the first theoretical basis for this observed empirical
phenomenon, while also providing a principled way to es-
timate a priori a suitable length of parity constraints to use.

Table 1 reports the bounds obtained with our analysis on
the benchmark used by Gomes et al. (2007a). The best pre-
viously known theoretical bound on the length was n/2,
based on the pairwise independent construction (Prop. 1).
The best previously known empirical bound was computed
by finding the smallest XOR length such that the vari-
ance of the resulting model count estimate is the same as
what one would obtain with pairwise independent func-
tions, which can be easily computed analytically. The
new provable bound is computed by looking for the short-
est XOR length that gives (µ2, δ)-concentration and there-
fore provides a “correct” answer more than half the time
(as in Prop. 2). Specifically, by Theorem 2, we look for
the minimum XOR length satisfying the weak (µ2, 9/4)-
concentration condition given by Corollary 1, where the
number of variables (n), the log of the set size (log2 |S|),
and the number of XORs (m) are taken from Gomes et al.
(2007a) and reported in the first three columns of Table 1.
The new empirical bound is also based on the shortest
XOR length yielding weak (µ2, 9/4)-concentration, but us-
ing Prop. 3 for general hash families and taking the sample
variance as a proxy for the true variance, σ2.

On this diverse benchmark spanning a variety of domains
(Latin square completion, logistic planning, hardware veri-

Table 1. Minimum size of XOR constraints suitable for model
counting for SAT

Instance Provable Empirical
Num log2 Num Bounds Bounds

Name Vars Solns XORs Old New Old New
ls7R34med 119 10 7 59 46 6 3
ls7R35med 136 12 9 68 53 7 3
ls7R36med 149 14 11 74 56 7 3

log.c.red 352 19 10 176 112 98 28
2bitmax 6 252 97 87 126 26 – 8

wff-3-100-330 100 32 25 50 21 17 7
wff-3-100-380 100 22 15 50 27 26 8
wff-3-100-396 100 18 11 50 29 38 10
string-50-30 50 30 20 25 8 11 4
string-50-40 50 40 30 25 5 >10 4
string-50-49 50 49 39 25 3 6 3

blk-50-3-10-20 50 23 13 25 10 >15 5
blk-50-6-5-20 50 26 16 25 9 15 4

blk-50-10-3-20 50 30 20 25 8 15 3

fication, random, and synthetic), the new theoretical bound
on the minimum XOR length is significantly smaller than
n/2. The empirical bound we achieve (last column, of-
ten in single digits and thus extremely efficient for SAT
solvers) is also much smaller than the previously reported
empirical bound. The gap between our new provable and
empirical bounds is due to the intricate structure of the
set S of solutions. If the solutions in S are far away on
average (hence less correlated when using sparse parity
constraints), we obtain an empirical variance that is much
tighter than our provable worst-case bound. Overall, our
new bounds significantly improve upon the previous best
known bounds in all cases considered.

8. Conclusion
We introduced a new class of hash functions, called Av-
erage Universal, that can be constructed using low-density
(sparse) parity constraints. While statistically weaker than
traditional hash functions, these are still powerful enough
to be used in hashing-based randomized counting and dis-
crete integration schemes. Sparse parity constraints are em-
pirically much easier to do inference with, a well-known
fact in the context of low-density parity check codes. By
substituting dense parity constraints with sparser ones, we
obtain variations of inference and counting techniques that
have the same provable guarantees but are empirically
much more tractable. We show that this leads to signif-
icant improvements in the bounds obtained by the recent
WISH algorithm and in model counting applications.

Acknowledgments: Research supported by NSF grants
#0832782 and #1059284.

Sparse Hashing for Discrete Integration

References
Bellare, M., Goldreich, O., and Petrank, E. Uniform generation

of NP-witnesses using an NP-oracle. Information and Compu-
tation, 163(2):510–526, 2000.

Bellman, R. Adaptive control processes: A guided tour. Princeton
University Press (Princeton, NJ), 1961.

Chakraborty, S., Meel, K., and Vardi, M. A scalable and nearly
uniform generator of SAT witnesses. In CAV, 2013a.

Chakraborty, S., Meel, K. S., and Vardi, M. Y. A scalable approx-
imate model counter. In Principles and Practice of Constraint
Programming, pp. 200–216. Springer, 2013b.

Ermon, S., Gomes, C., Sabharwal, A., and Selman, B. Optimiza-
tion with parity constraints: From binary codes to discrete in-
tegration. In UAI, 2013a.

Ermon, S., Gomes, C., Sabharwal, A., and Selman, B. Taming
the curse of dimensionality: Discrete integration by hashing
and optimization. In ICML, 2013b.

Goldreich, O. Randomized methods in computation. Lecture
Notes, 2011.

Gomes, C. P., Hoffmann, J., Sabharwal, A., and Selman, B. Short
XORs for model counting; from theory to practice. In 10th
SAT, volume 4501 of LNCS, pp. 100–106, Lisbon, Portugal,
May 2007a.

Gomes, C. P., van Hoeve, W. J., Sabharwal, A., and Selman, B.
Counting CSP solutions using generalized XOR constraints. In
AAAI, 2007b.

Gomes, C., Sabharwal, A., and Selman, B. Near-uniform sam-
pling of combinatorial spaces using XOR constraints. Ad-
vances In Neural Information Processing Systems, 19:481–
488, 2006a.

Gomes, C., Sabharwal, A., and Selman, B. Model counting: A
new strategy for obtaining good bounds. In AAAI, pp. 54–61,
2006b.

Hazan, T., Maji, S., and Jaakkola, T. On sampling from the Gibbs
distribution with random maximum a-posteriori perturbations.
In NIPS, pp. 1268–1276, 2013.

Jerrum, M. and Sinclair, A. The Markov chain Monte Carlo
method: an approach to approximate counting and integra-
tion. Approximation algorithms for NP-hard problems, pp.
482–520, 1997.

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. An intro-
duction to variational methods for graphical models. Machine
learning, 37(2):183–233, 1999.

Lauritzen, S. L. and Spiegelhalter, D. J. Local computations with
probabilities on graphical structures and their application to ex-
pert systems. Journal of the Royal Statistical Society. Series B
(Methodological), pp. 157–224, 1988.

MacKay, D. J. Good error-correcting codes based on very sparse
matrices. Information Theory, IEEE Transactions on, 45(2):
399–431, 1999.

Madras, N. Lectures on Monte Carlo Methods. American Math-
ematical Society, 2002. ISBN 0821829785.

Mooij, J. libDAI: A free and open source c++ library for discrete
approximate inference in graphical models. JMLR, 11:2169–
2173, 2010.

Murphy, K., Weiss, Y., and Jordan, M. Loopy belief propagation
for approximate inference: An empirical study. In UAI, 1999.

Papandreou, G. and Yuille, A. L. Perturb-and-MAP random
fields: Using discrete optimization to learn and sample from
energy models. In ICCV, pp. 193–200, 2011.

Sipser, M. A complexity theoretic approach to randomness. In
Proceedings of the fifteenth annual ACM symposium on Theory
of computing, pp. 330–335. ACM, 1983.

Vadhan, S. Pseudorandomness. Foundations and Trends in Theo-
retical Computer Science, 2011.

Valiant, L. The complexity of enumeration and reliability prob-
lems. SIAM Journal on Computing, 8(3):410–421, 1979.

Valiant, L. and Vazirani, V. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47:85–93, 1986.

Wainwright, M. Tree-reweighted belief propagation algorithms
and approximate ML estimation via pseudo-moment matching.
In AISTATS, 2003.

Wainwright, M. and Jordan, M. Graphical models, exponential
families, and variational inference. Foundations and Trends in
Machine Learning, 1(1-2):1–305, 2008.

