
Supplementary Material for Signal recovery from Pooling Representations

A. Comparison between phaselift and the
various alternating minimization
algorithms

Here we give a brief comparison between the phaselift al-
gorithm and the algorithms we use in the main text. Our
main goal is to show that the similarities between the ℓ1,
ℓ2, ℓ∞ recovery results are not just due to the alternat-
ing minimization algorithm performing poorly on all three
tasks; however we feel that the quality of the recovery with
a regressed initialization is interesting in itself, especially
considering that it is much faster than either phaselift or
phasecut.

In figures 2, and 3 we compare phaselift against alternat-
ing minimization with a random initialization and alternat-
ing minimization with a nearest neghbor/locally linear re-
gressed initialization. Because we are comparing against
phasecut, here we only show inversion of ℓ2 pooling.

In figure of 2, we use random data and a random dictionary.
As the data has no structure, we only compare against ran-
dom initialization, with and without half rectification. We
can see from figure 2 in this case, where we do not know
a good way to initialize the alternating minimization, alter-
nating minimization is significantly worse than phasecut.
On the other hand, recovery after rectified pooling with al-
ternating minimization does almost as well as phasecut.

In the examples where we have training data, shown in
figure 3, alternating minimization with the nearest neigh-
bor regressor (red curve) performs significantly better than
phasecut (green and blue curves). Of course phasecut does
not get the knowledge of the data distribution used to gen-
erate the regressor.
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Figure 2. Average recovery angle using phaselift and alternating
minimization on random data, Gaussian i.i.d. points in R40. The
blue curve is phaselift followed by alternating minimization; the
green curve is alternating minimization, and the red is alternating
minimization on pooling following half rectification.
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Figure 3. Average recovery angle using phaselift and alternating
minimization on MNIST and patches data sets. Top: MNIST dig-
its, projected via PCA to R

100. Bottom: 16x16 image patches
with mean removed. The red curve is alternating minimization
with nearest neighbor initialization, the green is alternating min-
imization initialized by phasecut (this is the recommended usage
of phasecut), the blue is phasecut with no alternating minimiza-
tion, and the aqua is alternating minimization with a random ini-
tialization.
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B. Proofs of results in Section 2
B.1. Proof of Proposition 2.2

Let us first show that A0 > 0 is sufficient to construct an
inverse ofMα. Let x ∈ RN . By definition, the coordinates
ofMα(x) > α correspond to

s(x) = {i s.t. ⟨x, fi⟩ > αi} ⊂ {1, . . . ,M} ,

which in particular implies that x is known to lie in VS(x),
the subspace generated by s(x). But the restriction Fs(x)

is a linear operator, which can be inverted in VS as long as
λ−(Fs(x)

∣∣
VS

) ≥ A0 > 0.

Let us now show that A0 > 0 is also necessary. Let us
suppose that for some S, FS is such that λ−(FS

∣∣
VS

) = 0.
It results that there exists η ∈ VS such that ∥η∥ > 0 but
∥FSη∥ = 0. Since S is a cone, we can find x ∈ S and
ϵ ̸= 0 small enough such that x + ϵe ∈ S. It results that
Mα(x) = Mα(x + ϵe) which implies that Mα cannot be
injective.

Finally, let us prove (9). If x, x′ are such that S = s(x) =
s(x′), then

∥Mα(x)−Mα(x
′)∥ = ∥FS(x− x′)∥ ≥ A0(x− x′) .

If s(x) ̸= s(x′), let us denote sI = s(x) ∩ s(x′). Then we
have that

∥ Mα(x)−Mα(x
′)∥2 = ∥Mα(x) −Mα(x

′)∥2sI +
+ ∥Mα(x)∥2s(x)\sI + ∥Mα(x

′)∥2s(x′)\sI .

By denoting γ = λ2
−(FsI) +

min(λ2
−(Fs(x)\sI),λ

2
−(Fs(x′)\sI)), and using the parallel-

ogram identity ∥x∥2+∥x′∥2 = 1
2 (∥x+x′∥2+∥x−x′∥2) ≥

min(∥x− x′∥, ∥x+ x′∥)2, it results that

∥Mα(x)−Mα(x
′)∥2 ≥ γmin(∥x− x′∥, ∥x+ x′∥)2 ,

which implies (9). !.

B.2. Proof of Proposition 2.4

The upper Lipschitz bound is obtained by observing that,
in dimension d,

∀ y ∈ R
d , ∥y∥1 ≤

√
d∥y∥2 , ∥y∥∞ ≤ d∥y∥2 .

It results that

∥Pp(x) − Pp(x
′)∥ ≤ αp∥P2(x) − P2(x

′)∥ (21)
= αp∥M(x)−M(x′)∥ ≤ αpλ+(F) .

Let us now concentrate on the lower Lipschitz bound.
Given x, x′ ∈ Rn, we first consider a rotation F̃k on each
subspace Fk such that ⟨x, f̃k,j⟩ = ⟨x′, f̃k,j⟩ = 0 for j > 2,

which always exists. If now we modify F̃k by applying a
rotation of the remaining two-dimensional subspace such
that x and x′ are bisected, one can verify that

(∥Fkx∥2 − ∥Fkx
′∥2)

2
= (∥F̃kx∥2 − ∥F̃kx

′∥2)2

= (|⟨x, f̃k,1⟩|− |⟨x′, f̃k,1⟩|)2

+(|⟨x, f̃k,2⟩|− |⟨x′, f̃k,2⟩|)2 ,

which implies, by denoting M(x) = (|⟨x, f̃k,j⟩|)k,j , that
∥P2(x) − P2(x′)∥ = ∥M(x)−M(x′)∥. Since F̃ ∈ Q2, it
results from Proposition 2.1 that

∥P2(x) − P2(x
′)∥ ≥ d(x, x′) min

S⊂{1...m}

√
λ2
−(F̃S) + λ2

−(F̃Sc)

≥ d(x, x′)A2 !. (22)

B.3. Proof of Corollary 2.5

Given x, x′, let I denote the groups Ik, k ≤ K such that
s(x) ∩ s(x′) ∩ Ik = Ik. It results that

∥Rp(x)−Rp(x
′)∥2

=
∑

k∈I

|Rp(x)k −Rp(x
′)k|2 +

∑

k/∈I

|Rp(x)k −Rp(x
′)k|2

≥
∑

k∈I

|Rp(x)k−Rp(x
′)k|2+

∑

k/∈I

(∥M0(x)
∣∣
Ik
−M0(x

′)
∣∣
Ik
∥)2 ,

whereM0(x)
∣∣
Ik
denotes the restriction of the modulus op-

eratorM0(x) = |FTx| to the indices Ik.

On the groups in I we can apply the same arguments as
in theorem 2.4, and hence find a frame F̃ from the family
Q̃p,x,x′ such that

∥Rp(x)−Rp(x
′)∥I = ∥M(x)−M(x′)∥I ,

withM(x) = (|⟨x, f̃k,j⟩|)k∈I,j and {f̃k,j} ∈ Q̃p,x,x′ , and
where ∥ · ∥I denotes the restriction to the set of coordinates
given by I . Then, by following the same arguments used
previously, it results from the definition of Ãp that

∥Rp(x)−Rp(x
′)∥ ≥ Ãpd(x, x

′) .

Finally, the upper Lipschitz bound is obtained by noting
that

∥Mα(x)−Mα(x
′)∥ ≤ ∥F(x− x′)∥ ,

and using the same argument as in (21) !.

B.4. Proof of Proposition 2.6

Let x, x′ ∈ RN , and let J = s(x) ∩ s(x′). Suppose
first that Cs(x) ∩ Cs(x′) ̸= ∅. Since ∥P∞x − P∞∥ ≥
∥|Fsx|− |Fsx′|

∣∣
J
∥, it results that

d(x, x′)As(x),s(x′) ≤ ∥P∞x− P∞x′∥ (23)
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by Proposition 2.1 and by definition (17).

Let us now suppose Cs(x) ∩ Cs(x′) = ∅, and let z = P∞x−
P∞x′. It results that z = |Fs(x)x| − |Fs(x′)x

′| ∈ RK ,
and hence we can split the coordinates (1 . . .K) intoΩ, Ωc

such that

z
∣∣
Ω

= Fs(x)

∣∣
Ω
(x)− Fs(x′)

∣∣
Ω
(x′) ,

z
∣∣
Ωc = Fs(x)

∣∣
Ωc(x) + Fs(x′)

∣∣
Ωc(x

′) .

We shall concentrate in each restriction independently.
Since Fs(x′)

∣∣
Ω
(x′) ∈ Fs(x′)

∣∣
Ω
(Cs(x′)), it results that

∥z
∣∣
Ω
∥ ≥ inf

y∈Fs(x′)

∣∣∣
Ω

∥Fs(x)

∣∣
Ω
(x)− y∥

≥ ∥Fs(x)

∣∣
Ω
(x)∥ · | sin(β(s(x), s(x′),Ω))| .(24)

Since by definition

∀ k ,
∑

j∈Ik

|⟨x, fj⟩|2 ≤ 1

|Ik|
|⟨x, fs(x)k⟩|

2 ,

it results, assuming without loss of generality that all pools
have equal size ( |Ik| = M

K ),

∀ x ∈ Cs , ∥Fs(x)

∣∣
Ω
(x)∥ ≥

√
K

M
∥F

∣∣
Ω
(x)∥

≥
√

K

M
λ−(F

∣∣
Ω
)∥x∥ .(25)

Equivalently, since Fs(x)

∣∣
Ω
(x) ∈ Fs(x)

∣∣
Ω
(Cs(x)) we also

have

∥z
∣∣
Ω
∥ ≥

√
K

M
λ−(F

∣∣
Ω
) · |sin(β(s(x), s(x′),Ω))| · ∥x′∥ .

(26)
It follows that

∥z
∣∣
Ω
∥ ≥

√
K

M
λ−(F

∣∣
Ω
) |sin(β(s(x), s(x′),Ω))|max(∥x∥, ∥x′∥)

≥
√

K

4M
λ−(F

∣∣
Ω
) |sin(β(s(x), s(x′),Ω))| d(x, x′) . (27)

By aggregating the bound for Ω and Ωc we obtain (29) !.

B.4.1. MAXOUT

These results easily extend to the so-called Maxout opera-
tor (Goodfellow et al., 2013), defined as x .→ MO(x) =
{maxj∈Ik⟨x, fj⟩ ; k = 1 . . .K}. By redefining the
switches of x as

s(x) = {j ; ⟨x, fj⟩ > max(⟨x, fj′ ⟩ ; ∀ j′ ∈ pool(j)} ,
(28)

the following corollary computes a Lower Lipschitz bound
ofMO(x):

Corollary B.1 The Maxout operator MO satisfies (20)
with A(s, s′) defined using the switches (28).

B.4.2. ℓ1 POOLING

Propostion 2.6 can be used to obtain a bound of the lower
Lipschitz constant of the ℓ1 pooling operator.

Observe that for x ∈ Rn,

∥x∥1 =
∑

i

|xi| = max
ϵi=±1

|⟨x, ϵ⟩| .

It results that P1(x;F) ≡ P∞(x; F̃), with

F̃ = (f̃k,ϵ =
∑

i

ϵ(i)fk,i ; k = 1 . . . ,K ; ϵ ∈ {−1, 1}L} .

Each pool F̃k can be rewritten as F̃k = HLFk, where HL

is the L × 2L Hadamard matrix whose rows contain the ϵ
vectors. One can verify that HT

LHL = 2L1, which implies
that for any Ω ⊆ {1 . . .K}, λ−(F̃

∣∣∣
Ω
) = 2L/2λ−(F

∣∣
Ω
). It

results that

Corollary B.2 The ℓ1 pooling operator P1 satisfies

∀x, x′ , d(x, x′)

(
min
s,s′

Ã(s, s′)

)
≤ ∥P1(x)− P1(x

′)∥ ,

(29)
where d(x, x′) = min(∥x− x′∥, ∥x+ x′∥) and

Ã(s, s′) = max
{

min
Ω⊆J (s,s′)

√
λ2
−(F̃Ω) + λ2

−(F̃J−Ω) ,

1

2
min

Ω⊆{1...K}

√
Λ2
s,s′,Ω + Λ2

s,s′,Ωc

}
,

with s, s′ and β(s, s′) are defined on the frame F̃ .

Similarly as in Corollary 2.7, one can obtain a similar
bound for the Rectified ℓ1 pooling.

B.5. Proof of Corollaries 2.7 and B.1

The result follows immediately from Proposition 2.6, by
replacing the phaseless invertibility condition of Propostion
2.1 by the one in Proposition 2.2. !.

B.6. Proof of Proposition 2.8

Proposition 2.8 also extends to the maxout case. We restate
it here with the extra result:

Proposition B.3 Let F = (f1, . . . , fM ) be a random
frame of RN , organized intoK disjoint pools of dimension
L. Then these statements hold with probability 1:

1. Pp is injective (modulo x ∼ −x) if K ≥ 4N for p =
1,∞, and ifK ≥ 2N − 1 for p = 2.

2. The Maxout operatorMO is injective ifK ≥ 2N+1.
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Let us first prove (i), with p = ∞. Let x, x′ ∈ RN such
that P∞(x) = P∞(x′), and let s = s(x), s′ = s(x′).
The set of K pooling measurements is divided into the in-
tersection J (s, s′) = {k ; s(x)k = s(x′)k} and its com-
plement J (s, s′)c = {k ; s(x)k ̸= s(x′)k}. Suppose first
that |J (s, s′)| ≥ 2N − 1. Then it results that we can pick
d = ⌈ |J (s,s′)|

2 ⌉ ≥ N elements of J (s, s′) to form a frame
V , such that either x − x′ ∈ Ker(V ) or x + x ∈ Ker(V ).
Since a random frame of dimension ≥ N spans RN with
probability 1, it results that x = ±x′. Suppose otherwise
that |J (s, s′)| < 2N − 1. It follows that |J (s, s′)c| ≥
2N + 1, and hence that any partition of J (s, s′)c into two
frames will contain always a frameF

∣∣
Ω
with at leastN+1

columns. Since two random subspaces of dimension N in
RM have nonzero largest principal angle with probability
1 as long as K > N , it results that Λs,s′,Ω > 0 and hence
that Prob(|P∞(x)

∣∣
J (s,s′)c

| = |P∞(x′)
∣∣
J (s,s′)c

|) = 0. The
case p = 1 is proved identically thanks to Corollary B.2.

Finally, in order to prove (ii) we follow the same strategy.
If |J (s, s′)| ≥ N , then MO(x) = MO(x′) ⇒ x = x′

with probability 1 since F
∣∣
J
spans RN with probability 1.

Otherwise it results that |J (s, s′)c| ≥ N + 1, which im-
pliesMO(x) ̸= MO(x′), since two random subspaces of
dimensionN in R|J (s,s′)c| have 0 intersection with proba-
bility 1.

Let us now prove the case p = 2. We start drawing a ran-
dom basis for each of the pools F1, . . . , FK . From propo-
sition 2.4, it follows that we have to check that ifM ≥ 2N ,
the quantity

min
F ′=U F ,UTU=1

min
Ω⊆{1...M}

λ2
−(F

′
Ω) + λ2

−(F
′
Ωc) > 0

with probability 1. If M ≥ 2N − 1, it follows that either
Ω has the property that it intersects at least N pools, either
Ωc intersectsN pools. Say it is Ω. Now, for each pool with
nonzero intersection, say Fk , we have that

∥(F ′
k)

T y∥ ≥
1√
(L)

|⟨fk,j , y⟩|

for some fk,j belonging to the initial random basis of Fk.
It results that

λ2
−(F

′
Ω) ≥

1√
(L)

λ2
−(F

∗) ,

where F ∗ is a subset of N columns of the original frame
F , which means

λ2
−(F

′
Ω) ≥

1√
(L)

λ2
−(F∗) > 0 .

!.


