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Abstract

In this work we compute lower Lipschitz bounds
of ¢, pooling operators for p = 1,2,00 as
well as £, pooling operators preceded by half-
rectification layers. These give sufficient condi-
tions for the design of invertible neural network
layers. Numerical experiments on MNIST and
image patches confirm that pooling layers can be
inverted with phase recovery algorithms. More-
over, the regularity of the inverse pooling, con-
trolled by the lower Lipschitz constant, is empir-
ically verified with a nearest neighbor regression.

1. Introduction

A standard architecture for deep feedforward networks
consists of a number of stacked modules, each of which
consists of a linear mapping, followed by an elementwise
nonlinearity, followed by a pooling operation. Critical to
the success of this architecture in recognition problems is
its capacity for preserving discriminative signal informa-
tion while being invariant to nuisance deformations. The
recent works (Mallat, 2012; Bruna and Mallat, 2012) study
the role of the pooling operator in building invariance. In
this work, we will study a network’s capacity for preserv-
ing information. Specifically, we will study the invertibil-
ity of modules with a linear mapping, the half rectification
nonlinearity, and ¢,, pooling, for p € {1,2,00}. We will
discuss recent work in the case p = 2, and connections
with the phase recovery problem of (Candes et al., 2013;
Gerchberg and Saxton, 1972; Waldspurger et al., 2012).

1.1. 7, pooling

The purpose of the pooling layer in each module is to
give invariance to the system, perhaps at the expense of
resolution. This is done via a summary statistic over
the outputs of groups of nodes. In the trained system,
the columns of the weight matrix corresponding to nodes
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grouped together often exhibit similar characteristics, and
code for perturbations of a template (Kavukcuoglu et al.,
2009; Hyvérinen and Hoyer, 2001).

The summary statistic in £, pooling is the £, norm of the
inputs into the pool. That is, if nodes zy,,...,xy, are in a
pool, the output of the pool is

1

(Jor, P+ .. + ar, [) 17
where as usual, if p — oo, this is
max (|xr,], ..., |z5]) -

If the outputs of the nonlinearity are nonnegative (as for
the half rectification function), then p = 1 corresponds to
average pooling, and the case p = oo is max pooling.

1.2. Phase reconstruction

Given z € R", a classical problem in signal processing is
to recover x from the absolute values of its (1 or 2 dimen-
sional) Fourier coefficients, perhaps subject to some addi-
tional constraints on z; this problem arises in speech gen-
eration and X-ray imaging (Ohlsson, 2013). Unfortunately,
the problem is not well posed- the absolute values of the
Fourier coefficients do not nearly specify x. For example,
the absolute value of the Fourier transform is translation in-
variant. It can be shown (and we discuss this below) that
the absolute value of the inner products between x and any
basis of R™ are not enough to uniquely specify an arbitrary
x; the situation is worse for C™. On the other hand, recent
works have shown that by taking a redundant enough dic-
tionary, the situation is different, and = can be recovered
from the modulus of its inner products with the dictionary
(Balan et al., 2006; Candes et al., 2013; Waldspurger et al.,
2012).

Suppose for a moment that there is no elementwise nonlin-
earity in our feedforward module, and only a linear map-
ping followed by a pooling. Then with a slightly gener-
alized notion of phase, where the modulus is the £, norm
of the pool, and the phase is the ¢, unit vector specify-
ing the “direction” of the inner products in the pool, the
phase recovery problem above asks if the module loses
any information. The /5 case has been recently studied in
(Cahill et al., 2013)
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1.3. What vs. Where

If the columns of the weight matrix in a pool correspond
to related features, it can be reasonable to see the entire
pool as a “what”. That is, the modulus of the pool indi-
cates the relative presence of a grouping of (sub)features
into a template, and the phase of the pool describes the rel-
ative arrangement of the subfeatures, describing “where”
the template is, or more generally, describing the “pose” of
the template.

From this viewpoint, phase reconstruction results make rig-
orous the notion that given enough redundant versions of
“what” and throwing away the “where”, we can still re-
cover the “where”.

1.4. Contributions of this work

In this work we give conditions so that a module consisting
of a linear mapping, perhaps followed by a half rectifica-
tion, followed by an ¢, pooling preserves the information
in its input. We extend the /5 results of (Cahill et al., 2013;
Balan and Wang, 2013) in several ways: we consider the £,
case, take into account the half rectification nonlinearity,
and we make the results quantitative in the sense that we
give bounds on the lower Lipschitz constants of the mod-
ules. This gives a measure of the stability of the inversion,
which is especially important in a multi-layer system. Us-
ing our bounds, we prove that redundant enough random
modules with ¢; or £, pooling are invertible.

We also show the results of numerical experiments de-
signed to explore the gaps in our results and the results
in the literature. We note that the alternating minimiza-
tion method of (Gerchberg and Saxton, 1972) can be used
essentially unchanged for the /,, case, with or without rec-
tification, and show experiments giving evidence that re-
covery is roughly equally possible for 1, {5, and ¢, us-
ing this algorithm; and that half rectification before pool-
ing can make recovery easier. Furthermore, we show that
with a trained initialization, the alternating method com-
pares favorably with the state of the art recovery methods
(for ¢5 with no rectification) in (Waldspurger et al., 2012;
Candes et al., 2013), which suggests that the above obser-
vations are not an artifcact of the alternating method.

2. Injectivity and Lipschitz stability of
Pooling Operators

This section studies necessary and sufficient conditions
guaranteeing that pooling representations are invertible. It
also computes upper and lower Lipschitz bounds, which
are tight under certain configurations.

Let us first introduce the notation used throughout the pa-
per. Let F = {fi,..., far} be a real frame of RY, with

M > N. The frame F is organized into K disjoint blocks
Fi = {fj}jelk, k=1...K,suchthat [, N [}y = () and
Uk I = {1... M}. For simplicity, we shall assume that
all the pools have equal size |Ij| = L.

The ¢,, pooling operator P, (z) is defined as the mapping
x> Py(x) = {|Flzl, , k=1...K}. (1)

A related representation, which has gained popularity in
recent deep learning architectures, introduces a point-wise
thresholding before computing the £, norm. If « € RM is
a fixed threshold vector, and (p,(2)); = max(0,z; — a;),
then the ¢, rectified pooling operator R,(x) is defined as

:C»—>Rp(x):{||pak(]:gx)”p,k=1...K}, 2)
where o, contains the coordinates I, of av.

We shall measure the stability of the inverse pooling with
the Euclidean distance in the representation space. Given
a distance d(x, 2') in the input space, the Lipschitz bounds
of a given operator ®(z) are defined as the constants 0 <
A < B such that

Vo, Ad(z,z") < ||®(z) — ®(2)|2 < Bd(x,2') .

In the remainder of the paper, given a frame F, we de-
note respectively by A_ (F) and A (F) its lower and upper
frame bounds. If F has M vectors and Q C {1,..., M},
we denote F the frame obtained by keeping the vectors
indexed in 2. Finally, we denote ¢ the complement of (2.

2.1. Absolute value and Thresholding nonlinearities

In order to study the injectivity of pooling representations,
we first focus on the properties of the operators defined by
the point-wise nonlinearities.

The properties of the phaseless mapping
x> M) ={|(z, fi)],i=1...m}, xR, (3)

have been extensively studied in the literature (Balan et al.,
2006; Balan and Wang, 2013), in part motivated by ap-
plications to speech processing (Achanetal., 2003) or
X-ray crystallography (Ohlsson, 2013). It is shown in
(Balan et al., 2006) that if m > 2n — 1 then it is possi-
ble to recover  from M (x), up to a global sign change. In
particular, (Balan and Wang, 2013) recently characterized
the stability of the phaseless operator, that is summarized
in the following proposition:

Proposition 2.1 ((Balan and Wang, 2013), Theorem 4.3)
Let F = (fl, ey f]w) with fi € RN and
d(z,2') = min(|lz — 2’|, 2 + 2/)).
M(z) ={[z, fi)|}i<m satisfies

The mapping

Vo, e R, Ard(z,2') < ||M(z)-M(2")|| < Brd(z,2),

“)
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where
o - .
Ap = min (N (Fa) £ X2 (Far). ()
Br = 0. ©)

In particular, M (z) is injective if and only if for any subset
QO CA{1,..., M}, either Fq or Fqe is an invertible frame.

A frame F satisfying the previous condition is said to be
phase retrievable.

We now turn our attention to the half-rectification operator,
defined as
My(x) = po(FTz) . (7

For that purpose, let us introduce some extra notation.
Givenaframe F = {f1,..., far},asubsetQ C {1... M}
is admissible if

Nz (@, fi) > e} 0 (s (@ fi) <} #0. 8)

ieQ i¢Q

We denote by Q the collection of all admissible sets, and
Vg, the vector space generated by 2. The following propo-
sition, proved in Section B, gives a necessary and sufficient
condition for the injectivity of the half-rectification.

Proposition 2.2 Let Ao = ming g A—(Fal,, ). Then the
half-rectification operator My, (z) = po(FL x) is injective
if and only if Ag > 0. Moreover, it satisfies

Va, o', Agpd(z,z") < [|[Ma(z)—Ma(2")]] < Bollz—2'|
)
), Bo =

with d(z,2’) = min(|lz — 2'||, ||z + 2
maxg.q A (Fa) < AL (F) and

Aoo = min (Af(fgmg/)z +

Q,Q'eQ

. o\ 1/2
min ()\7(]:9\(909/))7)\7(]:9\(9091))) ) .

The half-rectification has the ability to recover the input
signal, without the global sign ambiguity. The ability to
reconstruct from M, is thus controlled by the rank of any
matrix Fq whose columns are taken from a subset belong-
ing to Q. In particular, if o = 0,since Q € Q = Q° € Q, it
results that m > 2n is necessary in order to have Ay > 0.
Equation (9) shows that the half rectified operator is glob-
ally bi-lipschitz with respect to d(z, ’). However, it is im-
mediate from the proof that it also satisfies a much simpler
local Lipscthiz condition with lower bound Ag ||z — 2’| for
x, 2" sufficiently close.

The rectified linear operator creates a partition of the in-
put space into polytopes, defined by (8), and computes a
linear operator on each of these regions. A given input z

activates a set {0, € Q, encoded by the sign of the lin-
ear measurements {(x, f;) — «;. As opposed to the absolute
value operator, the inverse of M, whenever it exists, can
be computed directly by locally inverting a linear operator.
Indeed, the coordinates of M, (x) satisfying M, (z); > o
form a set s(x), which defines a linear model F(,) which
is invertible if Ag > 0.

In order to compare the stability of the half-rectification
versus the full rectification, one can modify M,, so that it
maps x and —x to the same point. If one considers

r Ma(x)
My (x) = { M_o(—2)

then M., satisfies the following:

if )‘*(]:s(w)) > A (‘Fs(m)c) s
otherwise .

Corollary 2.3 For each x there exists € > 0 such that
Va' sit.d(z,2') <e,

Ad(z,7') < ||Mu(z) — My(2')|| < Bd(z,2"), (10)

with
A = min max(\* (Fa), A2 (Fae)) , (11)
QCQ
B = max Ay (Fq) < A (F), (12)
Qch

and d(x,2') = min(||lz — 2/||, |z + 2'||), so A > 271/24

and B < B. In particular, if M is invertible, so is Ma.

It results that the bi-Lipschitz bounds of the half-
rectification operator, when considered in under the equiva-
lence x ~ —x, are controlled by the bounds of the absolute
value operator, up to a factor 2-'/2. However, the lower
Lipschitz bound (11) consists in a minimum taken over a
much smaller family of elements than in (5).

2.2. ¢, Pooling

We give bi-Lipschitz constants of the £, Pooling and ¢,
rectified Pooling operators for p = 1,2, co.

From its definition, it follows that pooling operators P, and
R, can be expressed respectively as a function of phase-
less and half-rectified operators, which implies that for the
pooling to be invertible, it is necessary that the absolute
value and rectified operators are invertible too. Naturally,
the converse is not true.

2.2.1.¢5 POOLING

The invertibility conditions of the ¢2 pooling representation
have been recently studied in (Cahill et al., 2013), where
the authors obtain necessary and sufficient conditions on
the frame F. We shall now generalize those results, and
derive bi-Lipschiz bounds.
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Let us define

Qs = {(UnFr)i<k ; Vh <K, Uy e R Ul'U, =1d} .

13)
Qs thus contains all the orthogonal bases of each subspace
F.

The following proposition, proved in section B, computes
upper and lower bounds of the Lipschitz constants of Ps.

Proposition 2.4 The {5 pooling operator Py satisfies

Va,z's, Asd(z,2') < ||Py(x) — Po(2)]| < Bad(z,2'),

(14)
where
A = 1 1 \/AQ f/ )\2 /C ,
2SR oy V) AR
By = M (F). (15)
This proposition thus generalizes the results from

(Cahill et al., 2013), since it shows that A3 > 0 not only
controls when P is invertible, but also controls the stabil-
ity of the inverse mapping.

We also consider the rectified ¢2 pooling case. For simplic-
ity, we shall concentrate in the case where the pools have
dimension d = 2. For that purpose, for each z, z’, we con-
sider a modification of the families Qg, by replacing each
sub-frame Fy, by Fr, ns(x)ns(2')» that we denote Qa ;4.

Corollary 2.5 Let d = 2, and set p(x,2’) = s(z) U
s(x)\(s(x) N s(z")). Then the rectified {5 pooling oper-
ator Ry satisfies

Vo, 2, Agd(:zr,x/) < ||Ra(z) — Ra(2')|| < Bad(x, '),
(16)
where

Ay = inf min min
z,x’ F'€Qy 4 ur QCs(z)Ns(z’)

2 ! 2 ! 1/2
N(F) + AL (Fo))

(A2 (Fooen) +

Proposition 2.4 and Corollary 2.5 give a lower Lipschitz
bound which gives sufficient guarantees for the inversion
of pooling representations. Corollary 2.5 indicates that, in
the case d = 2, the lower Lipschitz bounds are sharper
than the non-rectified case, in consistency with the results
of section 2.1. The general case d > 2 remains an open
issue.

2.2.2. 0, POOLING

We give in this section sufficient and necessary conditions
such that the max-pooling operator P, is injective, and we
compute a lower bound of its lower Lipschitz constant.

Given z € R, we define the switches s(z) of x as the K
vector of coordinates in each pool where the maximum is
attained; that is, foreach k € {1,..., K}:

s(z)r = argmax [(z, f;)],
JjEl)

and we denote by S the set of all attained switches:
S = {s(z);z € RM}. This is a discrete subset of
[1.{1,...,Ix}. Given s € S, the set of input signals hav-
ing s(z) = s defines a linear cone Cs C R:

Cs = m ﬂ {LL‘; |<x7f5k>| > |<x7fj>|}7

k<K jeI,

and as a result the input space is divided into a collection
of Voronoi cells defined from linear equations. Restricted
to each cone C,, the max-pooling operator computes the
phaseless mapping M (z) from equation (3) corresponding

to‘FS = (fsla"-afSK)'
Given vectors u and v, as usual, set the angle §(u,v) =
arccos (M) .Foreach s, s’ € Ssuchthat C;NCy =

ll[lo]]

and foreach 2 C {1... K}, we define

B(s,s,Q) = min
ueFS|Q(Cs) vEF

O(u,v).
L)

This is a modified first principal angle between the sub-
spaces JF |Q and Fy }Q, where the infimum is taken only
on the directions included in the respective cones. Set
Asso=A" (.7-"9) -sin(B(s, s', Q).

Given s, s', we also define J(s,s") = {k; sx, = s},}. Re-
call L is the size of each pool. Set

A(S7 S/) - { QC{?%H D)

1 , ) ) 1/2
IE ity Moo+ Awac} 07

/\2, (FQ) + /\2, (‘Fj,gz) +

The following proposition, proved in section B, gives a
lower Lipschitz bound of the max-pooling operator.

Proposition 2.6 For all v and x’, the max-pooling opera-
tor Py, satisfies

d(z, ) (IgispA(s,s/)> < ||Pso(z) — Poo(2))|, (18)

where d(z,z') = min(||lx — 2'||, ||z + 2'|]).

Propostion 2.6 shows that the lower Lipschitz bound is con-
trolled by two different phenomena. The first one depends
upon how the cones corresponding to disjoint switches are
aligned, whereas the second one depends on the internal
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incoherence of each frame F 7, ). One may ask how do
these constants evolve in different asymptotic regimes. For
example, if one lets the number of pools K be fixed but in-
creases the size of each pool by increasing M . In that case,
the set of possible switches S increases, and each cone C,
gets smaller. The bound corresponding to Cs N Cyr # ()
decreases since the infimum is taken over a larger family.
However, as the cones C; become smaller, the likelihood
that any pair x # 2’ share the same switches decreases,
thus giving more importance to the case Cs N Cy = 0.
Although the ratio % decreases, the lower frame bounds
A_(Fa)?, \_(Fqe)? will in general increase linearly with
L. The lower bound will thus mainly be driven by the prin-
cipal angles (s, s', Q). Although the minimum in (29) is
taken over a larger family, each angle is computed over a
smaller region of the space, suggesting that one can indeed
increase the size of each pool without compromising the

injectivity of the max-pooling.

Another asymptotic regime considers pools of fixed size
L and increases the number of pools K. In that case,
the bound increases as long as the principal angles remain
lower bounded.

We also consider the stability of max-pooling with a half-
rectification. By redefining the switches s(x) accordingly:

s(x) ={j; (z, fj)+0; > max(0, (z, fyr)+ay ; Vj" € pool(j)},

19)
the following proposition, proved in section B, computes a
lower bound of the Lipschitz constant of R .

Corollary 2.7 The rectified max-pooling operator R, sat-
isfies
Va, ! ’ HCL‘ - .’L'/H mipA(Sa SI) < HROO(‘T) - ROO(‘T/)” )

(20)
with

1 1/2
A(Sa SI) = {)\% (-7_—](5,5’)) + EA'?,S,,J(S,S,)C}
defined using the cones Cs obtained from (19).

2.2.3. /1 POOLING AND MAX-OUT

Propostion 2.6 can be used to obtain a bound of the lower
Lipschitz constant of the ¢; pooling operator, as well as
the Maxout operator (Goodfellow et al., 2013); see section
B.4.2 in the supplementary material.

2.3. Random Pooling Operators

What is the minimum amount of redundancy needed to in-
vert a pooling operator? As in previous works on com-
pressed sensing (Candes and Tao, 2004) and phase recov-
ery (Balan et al., 2006), one may address this question by
studying random pooling operators. In this case, the lower

Lipschitz bounds derived in previous sections can be shown
to be positive with probability 1 given appropriate parame-
ters K and L.

The following proposition, proved in Appendix B, analyzes
the invertibility of a generic pooling operator constructed
from random measurements. We consider a frame F where
its M columns are iid Gaussian vectors of R,

Proposition 2.8 Let F = (f1, ..., fam) be a random frame
of RN, organized into K disjoint pools of dimension L.
With probability 1 P, is injective (modulo x ~ —x) if K >
AN forp=1,0andif K > 2N — 1 for p = 2.

The size of the pools L does not influence the injectivity of
random pooling, but it affects the stability of the inverse, as
shown in proposition 2.6. The half-rectified case requires
extra care, since the set of admissible switches Q might
contain frames with M/ < N columns with non-zero prob-
ability, and is not considered in the present work.

3. Numerical Experiments

Our main goal in this section is to experimentally compare
the invertibility of ¢, pooling for p € {1,2, o0}, with and
without rectification. Unlike in the previous sections, we
will not consider the Lipschitz bounds, as we do not know
a good way to measure these experimentally. Our experi-
ments suggest that recovery is roughly the same difficulty
for p = 1,2, 0o, and that rectification makes recovery eas-
ier.

In the ¢5 case without rectification, and with d = 2, a grow-
ing body of works (Candes et al., 2013; Waldspurger et al.,
2012) describe how to invert the pooling operator. This is
often called phase recovery. A problem for us is a lack
of a standard algorithm when p # 2 or with rectification.
We will see that the simple alternating minimization algo-
rithm of (Gerchberg and Saxton, 1972) can be adapted to
these situations. However, alternating minimization with
random initialization is known to be an inferior recovery
algorithm for p = 2, and so any conclusions we will draw
about ease of recovery will be tainted, as we would be test-
ing whether the algorithm is equally bad in the various situ-
ations, rather than if the problems are equally hard. We will
show that in certain cases, a training set allows us to find a
good initialization for the alternating minimization, leading
to excellent recovery performance, and that in this setting,
or the random setting, recovery via alternating minimiza-
tion is roughly as succesful for each of the p, suggesting
invertibility is equally hard for each p. In the same way,
we will see evidence that half rectification before pooling
makes recovery easier.
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3.1.Recovery Algorithms
3.1.1. ALTERNATING MINIMIZATION

A greedy method for recovering the phase from
the modulus of complex measurements is given in
(Gerchberg and Saxton, 1972); this method naturally ex-
tends to the case at hand. As above, denote the frame
{f1, ., fa} = F, let Fy, be the frame vectors in the kth
block, and set Ij, to be the indices of the kth block. Let
F(=1) be the pseudoinverse of F; set (Py () = ||Fx||p-
Starting with an initial signal z°, update

n ()
Loy = (Bp(@))e oy k=1 K,
2. .':C(nJrl) = ‘F(il)y(n)_

This approach is not, as far as we know, guarantee to con-
verge to the correct solution, even when P, is invertible.
However, in practice, if the inversion is easy enough, or if
xq is close to the true solution, the method can work well.
Moreover, this algorithm can be run essentially unchanged
for each /,; for half rectification, we only use the nonega-
tive entries in y for reconstruction.

In the experiments below, we will use random, Gaussian
1.i.d. F, but also we will use the outputs of dictionary learn-
ing with block sparsity. The F generated this way is not
really a frame, as the condition number of a trained dictio-
nary on real data is often very high. In this case, we will
renormalize each data point to have norm 1, and modify the
update z(*t1) = F(=1y () o

2. pntl) — 3rgmin|lw|l2:1 || Fa — y(n)||2~

In practice, this modification might not always be possible,
since the norm ||z|| is not explicitly presented in P,. How-
ever, in the classical setting of Fourier measurements and
positive x, this information is available. Moreover, our em-
pirical experience has been that using this regularization on
well conditioned analysis dictionaries offers no benefit; in
particular, it gives no benefit with random analysis matri-
ces.

3.1.2. PHASELIFT AND PHASECUT

Two recent algorithms (Candesetal., 2013) and
(Waldspurger et al., 2012) are guaranteed with high
probability to solve the (classical) problem of recovering
the phase of a complex signal from its modulus, given
enough random measurements. In practice both perform
better than the greedy alternating minimization. However,
it is not obvious to us how to adapt these algorithms to the
£, setting.

3.1.3. NEAREST NEIGHBORS REGRESSION

We would like to use the same basic algorithm for all set-
tings to get an idea of the relative difficulty of the recovery
problem for different p, but also would like an algorithm
with good recovery performance. If our algorithm simply
returns poor results in each case, differences between the
cases might be masked.

The alternating minimization can be very effective when
well initialized. When given a training set of the data to re-
cover, we use a simple regression to find x(. Fix a number
of neighbors ¢ (in the experiments below we use ¢ = 10,
and suppose X is the training set). Set G = P,(X),
and for a new point x to recover from P,(z), find the ¢
nearest neighbors in G of P,(z), and take their princi-
pal component to serve as zg in the alternating minimiza-
tion algorithm. We use the fast neighbor searcher from
(Vedaldi and Fulkerson, 2008) to accelerate the search.

3.2. Experiments

We discuss results on the MNIST dataset and on 16 x 16
patches drawn from the VOC dataset '. For each of these
data sets, we run experiments with random dictionaries and
adapted dictionaries. We also run experiments where the
data and the dictionary are both Gaussian i.i.d.; in this case,
we do not use adapted dictionaries.

The basic setup of the experiments in each case is the
same: we vary the number of measurements (that is, num-
ber of pools) over some range, and attempt to recover the
original signal from the ¢, pooled measurements, using
various methods. We record the average angle between
the recovered signal r and the original z, that is, we use
|rTx|2/(||r||?||x||?) as the measure of success in recovery.

In each case the random analysis dictionary F is built by
fixing a size parameter m, and generating a Gaussian i.i.d.
matrix Fy of size 2m x n, where n = 100 for MNIST,
and n = 256 for VOC. Each pair of rows of Fj is then
orthogonalized to obtain J; that is we use groups of size
2, where the pair of elements in each group are orthogonal.
This allows us to use standard phase recovery software in
the /5 case to get a baseline. We used the ADMM version
of phaselift from (Ohlsson et al., 2012) and the phasecut
algorithm of (Waldspurger et al., 2012). For all of our data
sets, the latter gave better results (note that phasecut can
explicitly use the fact that the solution to the problem is
real, whereas that version of phaselift cannot), so we report
only the phasecut results.

In the experiments with adapted dictionaries, the dictionary
is built using block OMP and batch updates with a K-SVD

lavailable at http://pascallin.ecs.soton.ac.
uk/challenges/VOC/voc2012/
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type update (Aharon et al., 2006); in this case, F is the
transpose of the learned dictionary. We again use groups
of size 2 in the adapted dictionary experiments.

We run two sets of experiments with Gaussian i.i.d. data
and dictionaries, with n = 20 and n = 40. We consider m
in the range from n/2 to 8n. On this data set, phaselift out-
performs alternating minimization; see the supplementary
material.

For MNIST, we use the standard training set projected to
R'99 via PCA, and we let the number of dictionary ele-
ments range from 60 to 600 (that is, 30 to 300 measure-
ments). On this data set, alternating minimization with
nearest neighbor initialization gives exact reconstruction by
130 measurements; for comparison, Phaselift at m = 130
has mean square angle of .48; see the supplementary mate-
rial.

We draw approximately 5 million 16 x 16 grayscale image
patches from the PASCAL VOC data set; these are sorted
by variance, and the largest variance 1 million are kept.
The mean is removed from each patch. These are split into
a training set of 900000 patches and a test set of 100000
patches. In this experiment, we let m range from 30 to 830.
On this data set, by m = 330 measurements, alternating
minimization with nearest neighbor initialization recovers
mean angle of .97; for comparison, Phaselift at m = 330
has mean angle of .39; see the supplementary material.

3.3. Analysis

The experiments from Figure 1) show that:

e For every data set, with random initializations and dic-
tionaries, recovery is easier with half rectification be-
fore pooling than without (green vs dark blue in fig-
ures).

e (o, {1, and ¢y pooling appear roughly the same diffi-
culty to invert, regardless of algorithm (each column
of figures, corresponding to an /,, is essentially the
same).

e Good initialization improves performance; indeed, al-
ternating minimization with nearest neighbor regres-
sion outperforms phaselift and phasecut (which of
course do not have the luxury of samples from the
prior, as the regressor does). We believe this of in-
dependent interest.

e Adapted analysis “frames” (with regularization) are
easier to invert than random analysis frames, with or
without regularization (the bottom row of each pair of
graphs vs the top row of each pair in Figure 1).

Each of these conclusions is unfortunately only true up to
the optimization method- it may be true that a different op-

timizer will lead to different results. With learned initial-
izations and alternating minimization, recovery results can
be better without half rectification. Note this is only up un-
til the point where the alternating minimization gets better
than the learned initialization without any refinement, and
is especially true for random dictionaries. The simple inter-
pretation is that the reconstruction step 2 of the alternating
minimization just does not have a large enough span with
roughly half the entries removed; that is, this is an effect
of the optimization, not of the difference between the diffi-
culty of the problems.

4. Conclusion

We have studied conditions under which neural network
layers of the form (1) and (2) preserve signal information.
As one could expect, recovery from pooling measurements
is only guaranteed under large enough redundancy and con-
figurations of the subspaces, which depend upon which 2,
is considered. We have proved conditions which bound the
lower Lipschitz constants for these layers, giving quantita-
tive descriptions of how much information they preserve.
Furthermore, we have given conditions under which mod-
ules with random filters are invertible. We have also given
experimental evidence that for both random and adapted
modules, it is roughly as easy to invert £, pooling with
p = 1, 2, and oo; and shown that when given training
data, alternating minimization gives state of the art phase
recovery with a regressed initialization.

However, there are still many open questions relating to
these networks, or even the invertibility of the layers of
these networks. This work gives little direct help to a prac-
ticioner asking the question “how should I design my net-
work?”. In particular, our results just barely touch on the
distribution of the data; but the experiments make it clear
(see also (Ohlsson et al., 2012)) that knowing more infor-
mation about the data changes the invertibility of the map-
pings. Moreover, preservation of information needs to be
balanced against invariance, and the tension between these
is not discussed in this work. Even in the setting of this
work, without consideration of the data distribution or ten-
sion with invariance, Proposition 2.4 although tight, is not
easy to use, and even though we are able to use 2.6 to get
an invertibility result, it is probably not tight.

This work also shows there is much research to do in the
field of algorithmic phase recovery. What are correct al-
gorithms for ¢, inversion, perhaps with half rectification?
How can we best use knowledge of the data distribution
for phase recovery, even for the well studied /o case? Is
it possible to guarantee that a well initialized alternating
minimization converges to the correct solution?
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Figure 1. Average recovery angle using alternating projections. The vertical axis measures the average value of [Tz |?/(||7||?||z]|?),
where r is the recovered vector, over 50 random test points. The horizontal axis is the number of pooling measurements. The leftmost
figure is /1 pooling, the middle ¢, and the right £, all with pools of size 2. Random filters are Gaussian i.i.d.; adapted filters are
generated by block OMP/KSVD with 5 nozero blocks of size 2. First row: each z is Gaussian i.i.d. in R*®. Dark blue curve is
alternating minimization, and green curve is alternating minimization with half rectification; both with random initialization. Remaining
rows, magenta and yellow: nearest neighbor regressor described in 3.1.3 without and with rectification; red and aqua: alternating
minimization initialized via neighbor regression, without and with rectification. See Section 3.3 for a discussion.



Signal recovery from Pooling Representations

References

Kannan Achan, Sam T. Roweis, and Brendan J. Frey. Prob-
abilistic inference of speech signals from phaseless spec-
trograms. In In Neural Information Processing Systems
16, pages 1393-1400. MIT Press, 2003.

M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algo-
rithm for designing overcomplete dictionaries for sparse
representation. Trans. Sig. Proc., 54(11):4311-4322,
November 2006. ISSN 1053-587X.

Radu Balan and Yang Wang. Invertibility and robustness
of phaseless reconstruction, 2013.

Radu Balan, Pete Casazza, and Dan Edidin. On signal re-
construction without phase. Applied and Computational
Harmonic Analysis, 20(3):345-356,May 2006.

J. Bruna and S. Mallat. Invariant scattering convolution
networks. IEEE transactions of PAMI, 2012.

Jameson Cahill, Peter G. Casazza, Jesse Peterson, and
Lindsey Woodland. Phase retrieval by projections, 2013.

E. Candes and T. Tao. Near Optimal Signal Recovery
From Random Projections: Universal Encoding Strate-
gies? ArXiv Mathematics e-prints, October 2004.

Emmanuel J. Candes, Thomas Strohmer, and Vladislav
Voroninski. Phaselift: Exact and stable signal recov-
ery from magnitude measurements via convex program-
ming. Communications on Pure and Applied Mathemat-
ics, 66(8):1241-1274,2013.

R. W. Gerchberg and W. Owen Saxton. A practical algo-
rithm for the determination of the phase from image and
diffraction plane pictures. Optik, 35:237-246,1972.

I.J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout Networks. ArXiv e-prints, Febru-
ary 2013.

A. Hyvirinen and P. Hoyer. A two-layer sparse coding
model learns simple and complex cell receptive fields
and topography from natural images. Vision Research,
41(18):2413-2423, August 2001. ISSN 00426989. doi:
10.1016/s0042-6989(01)00114-6.

Koray Kavukcuoglu, Marc’ Aurelio Ranzato, Rob Fergus,
and Yann LeCun. Learning invariant features through
topographic filter maps. In Proc. International Con-
ference on Computer Vision and Pattern Recognition

(CVPR’09).1EEE, 2009.

S. Mallat. Group Invariant Scattering. Communications in
Pure and Applied Mathematics,2012.

Henrik Ohlsson, Allen Y. Yang, Roy Dong, and S. Shankar
Sastry. Cprl — an extension of compressive sensing to the
phase retrieval problem. In Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou,
and Kilian Q. Weinberger, editors, NIPS, pages 1376—
1384,2012.

Y. Ohlsson, H. Eldar. On conditions for uniqueness for
sparse phase retrieval, 2013.

A. Vedaldi and B. Fulkerson. @ VLFeat: An open
and portable library of computer vision algorithms.
http://www.vlfeat.org/,2008.

Iréne Waldspurger, Alexandre d’ Aspremont, and Stéphane
Mallat. Phase recovery, maxcut and complex semidefi-
nite programming, 2012.


http://www.vlfeat.org/

